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An integromic signature for lung cancer early detection
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ABSTRACT

We previously developed three microRNAs (miRs-21, 210, and 486-5p), two long 
noncoding RNAs (lncRNAs) (SNHG1 and RMRP), and two fucosyltransferase (FUT) 
genes (FUT8 and POFUT1) as potential plasma biomarkers for lung cancer. However, 
the diagnostic performance of the individual panels is not sufficient to be used in 
the clinics. Given the heterogeneity of lung tumors developed from multifactorial 
molecular aberrations, we determine whether integrating the different classes of 
molecular biomarkers can improve diagnosis of lung cancer. By using droplet digital 
PCR, we analyze expression of the seven genes in plasma of a development cohort of 
64 lung cancer patients and 33 cancer-free individuals. The panels of three miRNAs 
(miRs-21, 210, and 486-5p), two lncRNAs (SNHG1 and RMRP), and two FUTs (FUT8 
and POFUT1) have a sensitivity of 81-86% and a specificity of 84-87% for diagnosis 
of lung cancer. From the seven genes, an integromic plasma signature comprising 
miR-210, SNHG1, and FUT8 is developed that produces higher sensitivity (95.45%) 
and specificity (96.97%) compared with the individual biomarker panels (all p<0.05). 
The diagnostic value of the signature was confirmed in a validation cohort of 40 lung 
cancer patients and 29 controls, independent of stage and histological type of lung 
tumor, and patients’ age, sex, and smoking status (all p>0.05). The integration of the 
different categories of biomarkers might improve diagnosis of lung cancer.

INTRODUCTION

Over 85% lung cancers are non-small cell 
lung cancers (NSCLC). NSCLC mainly consists of 
adenocarcinoma (AC) and squamous cell carcinoma 
(SCC). Tobacco smoking is the major cause of NSCLC. 
Since the prognosis for patients with lung cancer is 
strongly correlated to the tumor stage, diagnosing lung 
cancer at a curable stage can reduce the mortality [1]. The 
early detection of lung cancer in a large randomized trial 
using low-dose CT (LDCT) has revealed a 20% reduction 
in mortality as compared to chest X-rays [1]. However, 
LDCT is associated with over-diagnosis, excessive 
cost, and radiation exposure [2, 3]. The development 

of circulating biomarkers that can accurately and cost-
effectively identify early stage lung cancer is required [4].

During tumor development, cancer cells undergo 
apoptosis and necrosis, and release tumor-associated 
molecules that can circulate in bloodstream. The tumors-
derived molecules in plasma provide cell-free circulating 
cancer biomarkers. Regulatory non-coding RNAs 
(ncRNAs) can be classified into two major classes based 
on the transcript size: small ncRNAs (<200 bp) including 
microRNAs (miRNAs) and long ncRNAs (lncRNAs) 
(>200 bp) [5, 6]. Through different molecular mechanisms 
or pathways, the two types of ncRNAs have diverse and 
critical functions in tumorigenesis [7-10]. Furthermore, 
plasma miRNAs and lncRNAs directly released from 
primary lung tumors or the circulating lung cancer cells 
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might provide cell-free biomarkers for lung cancer [8]. 
For instance, we recently developed a panel of three 
plasma miRNA biomarkers with 86% sensitivity and 87% 
specificity and a panel of two plasma lncRNA biomarkers 
with 83% sensitivity and 84% specificity for lung cancer 
early detection [7, 11-15].

Emerging evidences have demonstrated that aberrant 
glycosylation leads to cancer development and progression 
[16]. Fucosylation is the major type of glycosylation, and 
regulated by fucosyltransferases (FUTs) [16, 17]. We 
recently found that combined use of two plasma FUTs 
(FUT8 and POFUT1) had 81% sensitivity and 84% 
specificity for diagnosis of lung cancer, thus providing a 
new category of cell-free circulating biomarkers for lung 
cancer.

Since NSCLC is a heterogeneous disease and 
develops from multifactorial molecular aberrations [18], 
the analysis of one type of molecular changes may not 
achieve the performance required to move forward for 
clinical application. Indeed, although our individual 
panels of plasma biomarkers show promise for lung cancer 
diagnosis, their sensitivities (81-86%) and specificities 
(84-87%) are not sufficient to be used in the laboratory 
settings.

Because miRNAs, lncRNAs, and FUTs have highly 
diverse roles that drive the development of lung cancer 
[7-10, 16], we hypothesize that integrating the different 
classes of biomarkers may improve the early detection 
of lung cancer. Here we evaluate the individual and 
combined applications of the three categories of plasma 
molecular biomarkers for lung cancer.

RESULTS

The three individual panels of plasma 
biomarkers displayed a different level in NSCLC 
patients vs. smokers

Droplet Digital PCR (ddPCR) was used for 
quantification of the genes (miRs-21, 210, 486-5p, 
SNHG1, RMRP, FUT8, and POFUT1) in plasma of a 
development cohort of 64 lung cancer patients and 33 
cancer-free individuals. All the seven genes generated at 
least 10,000 droplets in each well of the plasma samples. 
Therefore, the seven genes could be successfully ‘‘read’’ 
by ddPCR for their absolute quantification in plasma. 
These genes had a significantly different expression level 
in plasma of the NSCLC patients compared with the 
control individuals (all P<0.05). As a result, the individual 
genes resulted in 50.09 to 75.76% sensitivities and 63.64 
to 90.91% specificities for detection of NSCLC (Table 1). 
Furthermore, the panel of three microRNA biomarkers 
(miRs-21, 210, and 486-5p) had an area under receiver 
operating characteristic curve (AUC) of 0.92 with 86.36% 
sensitivity and 87.88% specificity, the panel of two plasma 
lncRNA biomarkers (SNHG1 and RMRP) displayed 0.89 

AUC with 83.33% sensitivity and 84.85% specificity, and 
the panel of two FUTs (FUT8 and POFUT1) exhibited 
an AUC of 0.85 with 81.82% sensitivity and 84.85% 
specificity for diagnosis of lung cancer (Table 2). The 
individual panels of the genes didn’t show special 
association with stage and histology of the NSCLC, 
age, gender, and smoking status of the participants (All 
p>0.05). The seven genes would be potential plasma 
biomarkers for lung cancer.

An integromic plasma signature for lung cancer 
early detection

We used logistic regression models with constrained 
parameters as in least absolute shrinkage and selection 
operator (LASSO) and AUCs to determine performance 
of different patterns of combining the genes. From the 
seven genes, one miRNA (miR-210), one lncRNA 
(SNHG1), and one FUT (FUT8) were selected as the best 
biomarkers (all P<0.001). A logisitic regression model 
with each of the different types of genes was developed 
as an integromic signature for diagnosing lung cancer: 
U=-7. 29+2.8*log (SNHG1) +3.83*log (FUT8) +3.36 *log 
(miR-210). Combined analysis of the 3 biomarkers by 
using the logisitic regression model produced a higher 
AUC (0.97) (Figure 1) than did the individual panels 
of biomarkers (p<0.05). We used the highest Youden’s 
J index to set up corresponding cut-off value [19]. The 
optimal cut-off for the integromic signature was U=0.79. 
Any subject with U≥0.79 was classified as a lung cancer 
case. As a result, the integromic plasma signature yielded 
significantly higher sensitivity (95.45%), specificity 
(96.97%), and accuracy (95.96%) compared with the 
individual panels of biomarkers (all p<0.05) (Table 2). 
Furthermore, combined use of all the seven genes did 
not produce higher sensitivity and specificity compared 
with the integromic plasma signature (p>0.05). In 
addition, Pearson’s correlation analysis showed that 
the relationships among levels of the three genes were 
very low (All p>0.05), implying that the integration 
of the different classes of molecular biomarkers 
has complementary classification. Moreover, the 
integromic plasma signature had no special association 
with histological type of the NSCLC, age, gender, and 
smoking status of the participants (All p>0.05). The 
integromic signature did not show statistical difference of 
sensitivity and specificity for different stages of NSCLC 
(Supplementary Figure 1).

Validating the integromic plasma signature for 
lung cancer detection

The plasma expression levels of the three genes 
(miR-210, SNHG1, and FUT8) were assessed by using 
ddPCR in a validation cohort of additional 40 NSCLC 
patients and 29 healthy controls. Combined analysis of 
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the three genes by using the logisitic regression model 
created 0.94 AUC for lung cancer diagnosis. There was 
no significant difference between the develop cohort and 
validation cohort with regarding the signature’s AUCs 
(0.95 vs. 0.94, p=0.46) (Figure 2). In the validation cohort, 
the three genes used in combination could differentiate the 
NSCLC patients from healthy controls with a sensitivity 
of 95.00% (82.08% to 99.12%) and a specificity of 
96.55% (80.37% to 99.82%). In line with the findings in 
the development cohort, the integromic plasma signature 
did not show statistical difference of sensitivity and 
specificity across different stages and subtypes of NSCLC 
(all p>0.05). Moreover, there was no association of 
expressions of the genes with the age, gender, or smoking 
status of the individuals (All p>0.05).

DISCUSSION

Although showing promise, the use of the individual 
miRNA, lncRNA, or FUT biomarker panels alone has 
moderate sensitivities (81-86%) and specificities (84-
87%). The miRNAs, lncRNAs, and FUTs have highly 
different functions in carcinogenesis [20-22]. Given the 
heterogeneous nature of lung cancer and the numerous 

cellular pathways involved, we hypothesize that integrating 
the different classes of molecular biomarkers may improve 
the early detection of lung cancer. Intriguingly, the 
integrated analysis of only one of each type of biomarkers 
by using a single platform (ddPCR) yields a significantly 
higher diagnostic performance compared with any panel of 
one type of genes. Furthermore, the correlations among the 
changes of the miRNAs, lncRNA, and FUT are very low, 
supporting that the diagnostic vales of the three classes 
of molecular alterations could be complementary to each 
other. Therefore, the observation confirms our hypothesis. 
Moreover, since the integromic plasma signature shows 
similar sensitivity and specificity in the early vs. advanced 
stages of NSCLC, it might be a useful approach for the 
early detection of lung cancer, a clinically challenging.

miR-210 stimulates a hypoxic phenotype and 
upsurges radioresistance in NSCLCs [21]. Hypoxia-
induced miR-210 can regulate tumor cell susceptibility 
to cytolytic T-lymphocyte-mediated lysis by a 
mechanism involving its downstream targets PTPN1, 
HOXA1, and TP53I11 [23]. SNHG1 could promote 
NSCLC progression of lung cancer via miR-101-3p/
SOX9/Wnt/β-catenin regulatory network and miR-145-
5p/ MTDH axis [14, 22]. In addition, SNHG1 plays 

Table 2: The area under receiver operating characteristic curves (AUCs) of the individual panels of biomarkers and 
the plasma integromic signature in a development cohort

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy

A panel of 3 miRNAs 0.92 (0.87 to 0.97) 86.36% (75.69% to 
93.57%)

87.88% (71.80% to 
96.60%)

86.87% (78.59% to 
92.82%)

A panel of 2 lncRNAs 0.89 (0.85 to 0.93) 83.33% (72.13% to 
91.38%)

84.85% (68.10% to 
94.89%)

83.84% (75.09% to 
90.47%)

A panel of 2 FUTs 0.85 (0.78 to 0.91) 81.82% (70.39% to 
90.24%)

84.85% (68.10% to 
94.89%)

82.83% (73.94% to 
89.67%)

An integromic 
signature

0.95 (0.91 to 0.99) 95.45% (87.29% to 
99.05%)

96.97% (84.24% to 
99.92%)

95.96% (89.98% to 
98.89%)

Abbreviations: CI, confidence interval.

Table 1: Diagnostic performance of individual genes for lung cancer in a development cohort

Sensitivity (95% CI) Specificity (95% CI)

miRs-21 75.76% (63.64% to 85.46%) 63.64% (45.12% to 79.60%)

miR-210 50.09% (46.29% to 71.05%) 72.73% (54.48% to 86.70%)

miR-486-5p 72.73% (60.36% to 82.97%) 63.64% (45.12% to 79.60%)

SNHG1 75.76% (63.64% to 85.46%) 81.82% (64.54% to 93.02%)

RMRP 62.12% (49.34% to 73.78%) 90.91% (75.67% to 98.08%)

FUT8 71.21 (58.75% to 81.70%) 87.88% (71.80% to 96.60%)

POFUT1 60.61% (47.81% to 72.42%) 90.91% (75.67% to 98.08%)

Abbreviations: CI, confidence interval.
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an oncogenic role in lung squamous cell carcinoma 
through ZEB1 signaling pathway by inhibiting TAp63 
[24]. FUT8 inhibits the malignant behaviors of lung 
cancer cells and is involved in the regulation of dozens 
of genes associated with the malignancy through 
multiple mechanisms [20]. Upregulation of FUT8 could 
contribute to epithelial-mesenchymal transition via the 
transactivation of β-catenin/lymphoid enhancer-binding 
factor-1 (LEF-1) [20].

The study does have some limitations. 1), the sample 
size of the cohorts is small. We will perform a new study 
to prospectively validate the integromic signature for lung 
cancer early detection using a large population. 2), it is 
well known that lung cancer-associated molecular genetic 
changes are also related to chronic obstructive pulmonary 
disease (COPD) [25]. Many lung cancer patients who are 
smokers and cancer-free heavy smokers have COPD [25]. 
COPD could impact molecular genetic profiles in plasma 

Figure 1: Diagnostic values of the individual panels of biomarkers and integromic plasma signature in a development 
cohort. The integromic plasma biomarker signature yields a higher area under receiver operating characteristic curve (AUC) than does 
individual panels of biomarkers (All p<0.05).

Figure 2: Comparison of AUCs of the integromic plasma signature for diagnosis of lung cancer in different cohorts. 
The integromic plasma signature has no significant difference of AUCs in the development cohort (black line) vs. validation cohort (gray 
line) (0.95 vs. 0.94, p=0.46).
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of both lung cancer patients and cancer-free heavy smokers. 
In this present project, there is no COPD information of 
the cases and controls enrolled. Therefore, we are not able 
to evaluate if the biomarkers identified in the study are 
associated with COPD. We will recruit lung cancer patients 

and cancer-free smokers who have COPD, and determine if 
COPD is the confounding effect on the molecular changes. 
3), the early detection of NSCLC using LDCT followed by 
appropriate treatments can significantly reduce lung cancer 
mortality in smokers [1]. LDCT is now recommended for 

Table 3: Characteristics of a development cohort and a validation cohort

A development cohort

NSCLC cases (n = 66) Controls (n = 33) P-value

Age 67.68 (SD 9.23) 62.70 (SD 15.33) 0.16

Sex 0.39

 Female 17 8

 Male 49 25

Smoking pack-years (median) 33.6 32.69 0.17

Stage

 Stage I 15

 Stage II 11

 Stage III 17

 Stage IV 19

 Unknown 4

Histological type

 Adenocarcinoma 34

 Squamous cell carcinoma 32

A validation cohort

NSCLC cases (n = 40) Controls (n = 29) P-value

Age 64.57 (SD 9.28) 63.76 (SD 13.49) 0.28

Sex 0.46

 Female 10 8

 Male 30 21

Smoking pack-years (median) 33.68 31.63 0.23

Stage

 Stage I 9

 Stage II 8

 Stage III 11

 Stage IV 11

 Unknown 1

Histological type

 Adenocarcinoma 22

 Squamous cell carcinoma 18

Abbreviations: NSCLC, non-small cell lung cancer.
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lung cancer screening in smokers. Yet LDCT has a low 
specificity for the early detection of lung cancer, presenting 
a major clinical challenge [1]. The participants enrolled 
in this project are not representative of the smokers in 
LDCT screening setting for lung cancer. We will perform 
a prospective trial to determine if the integromic signature 
could improve the spesitivity of LDCT for the early 
deteciton of lung cancer in smokers.

MATERIALS AND METHODS

Patients and clinical specimens

Using a protocol approved by the local Institutional 
Review Boards Institutional Review Boards, we recruited 
lung cancer patients and cancer-free smokers according 
to the inclusion and/or exclusion criteria recommended 
by U.S. Preventive Services Task Force [26]. Briefly, we 
enrolled smokers between the ages of 55-80 who had at 
least a 30 pack-year smoking history and were former 
smokers (quit within 15 years). Exclusion criteria included 
pregnancy, current pulmonary infection, surgery within 6 
months, radiotherapy within 1 year, and life expectancy 
of < 1 year. We collected blood in BD Vacutainer spray-
coated K2EDTA Tubes (BD, Franklin Lakes, NJ) and 
prepared plasma using the standard operating protocols 
developed by The NCI-Early Detection Research Network 
[27]. The specimens were processed within 2 hours of 
collection by centrifugation at 1,300 X g for 10 minutes at 
4°C. The surgical-pathologic staging of NSCLC was used 
as the ground truth according to the TNM classification 
of the International Union Against Cancer (UICC) with 
the American Joint Committee on Cancer (AJCC) and 
the International Staging System for Lung Cancer [28, 
29]. A total of 106 NSCLC patients and 62 cancer-free 
smokers were recruited. Among the cancer patients, 27 
patients were female and 79 were male. Twenty-four had 
stage I NSCLC, 19 with stage II, 28 with stage III, 30 with 
stage IV, and 5 with unknown stage. Fifty-six lung cancer 
patients were diagnosed with AC, while 40 with SCC. Of 
the cancer-free smokers, 16 patients were female and 46 
were male. There were no significant differences of age, 
gender and smoking status between the NSCLC patients 
and cancer-free smokers. The cases and controls were 
randomly grouped into two cohorts: a development cohort 
and a validation cohort. The development cohort consisted 
of 66 lung cancer patients and 33 cancer-free smokers, 
while the validation cohort comprised 40 lung cancer 
patients and 29 cancer-free smokers. The demographic and 
clinical variables of the two cohorts are shown in Table 3.

ddPCR

RNA was extracted from plasma by using Trizol 
LS reagent (Invitrogen Carlsbad, CA) and RNeasy 
Mini Kit (Qiagen, Hilden, Germany) [11, 12]. The 

qualification and quantification of RNA were assessed 
by using Biospectrometer (Hutchinson Technology Inc, 
Hutchinson, MN) and Electrophoresis Bioanalyzer (Agilent 
Technologies, Foster City, CA). Reverse Transcriptase 
(RT) was carried out to generate cDNA by using a RT Kit 
(Applied Biosystems, Foster City, CA) [11, 12]. ddPCR for 
analysis of expression level of the genes was performed 
as described in our published works by using a QX200™ 
Droplet Digital™ PCR System (Bio-Rad, Hercules, CA) 
[11-15, 30-50]. Briefly, PCR reaction mix containing cDNA 
was partitioned into aqueous droplets in oil via the QX100 
Droplet Generator, and then transferred to a 96-well PCR 
plate. A two-step thermocycling protocol (95°C ×10min; 
40 cycles of [94°C ×30s, 60°C ×60s], 98°C ×10 min) was 
undertaken in a Bio-Rad C1000 (Bio-Rad, Pleasanton, CA). 
The PCR plate was then transferred to the QX100 Droplet 
Reader for automatic reading of samples in all wells. Copy 
number of each gene per μl PCR reaction was directly 
determined. Primers and probes of the targeted genes are 
shown in Supplementary Table 1. We used QuantaSoft 
1.7.4 analysis software (Bio-Rad) and Poisson statistics to 
compute droplet concentrations (copies/μL). Only genes 
that had at least 10,000 droplets were considered to be 
robustly detectable by ddPCR in plasma and subsequently 
underwent further analysis [31]. All assays were done in 
triplicates, and one no-template control and two interplate 
controls were carried along in each experiment.

Statistical analysis

To estimate sample size, we set AUC of H0 (the 
null hypothesis) at 0.5. H1 represented the alternative 
hypothesis. To have a high reproducibility with adequate 
precision, we required ≥28 subjects per group. With this 
sample size, we would have 85% power to detect an 
AUC of 0.75 at the 2% significance level. Therefore, the 
sample size in the two cohorts could have enough statistical 
power. Pearson’s correlation analysis was applied to assess 
relationship between gene expressions and demographic 
and clinical characteristics of the patients and control 
individuals. AUCs were used to determine accuracy, 
sensitivity, and specificity of each gene. We used the highest 
Youden’s J index (sum of sensitivity and specificity—1) to 
set up corresponding cut-off value [19]. Logistic regression 
models with constrained parameters as in LASSO were 
used to eliminate the irrelevant genes, develop composite 
panels of biomarkers, and optimize a signature with the 
highest sensitivity and specificity. To compare the signature 
and our previously developed plasma biomarker panels, 
we compared their AUCs to determine the sensitivity and 
specificity as previously described [15].

CONCLUSIONS

Given the heterogeneous nature of NSCLC 
developed from multifactorial molecular aberrations, we 
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have for the first time demonstrated that the integration 
of miRNA, lncRNA, and FUT biomarkers could provide 
an efficient approach for diagnosis of lung cancer. 
Nonetheless, a large multi-center clinical project to 
prospectively validate the full utility of the integromic 
signature is required.
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