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ABSTRACT

In order to choose optimal personalized anticancer treatments, transcriptomic 
data should be analyzed within the frame of biological networks. The best known 
human biological network (in terms of the interactions between its different 
components) is metabolism. Cancer cells have been known to have specific metabolic 
features for a long time and currently there is a growing interest in characterizing new 
cancer specific metabolic hallmarks. In this article it is presented a method to find 
personalized therapeutic windows using RNA-seq data and Genome Scale Metabolic 
Models. This method is implemented in the python library, pyTARG. Our predictions 
showed that the most anticancer selective (affecting 27 out of 34 considered cancer 
cell lines and only 1 out of 6 healthy mesenchymal stem cell lines) single metabolic 
reactions are those involved in cholesterol biosynthesis. Excluding cholesterol 
biosynthesis, all the considered cell lines can be selectively affected by targeting 
different combinations (from 1 to 5 reactions) of only 18 metabolic reactions, which 
suggests that a small subset of drugs or siRNAs combined in patient specific manners 
could be at the core of metabolism based personalized treatments.
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INTRODUCTION

It is well known that the metabolism of cancer cells 
differs from the metabolism of normal cells. The Warburg 
effect (aerobic lactic fermentation) has been known to 
be a characteristic of cancer cells for almost a century 
[1]. Metabolic reprogramming in cancer cells goes well 
beyond the Warburg effect and an increasing number of 
cancer specific metabolic hallmarks are being described 
[2–4]. As a result of that, there is also a growing interest in 
targeting metabolic enzymes for cancer therapy. A review 
by Vander Heiden [5] highlighted that there are currently 
around 30 metabolic enzymes considered to be targets 
of anti-cancer agents in different stages of development. 
These targets are related to metabolic processes such as 
nucleic acid synthesis, amino acid metabolism, lipid 
synthesis, glycolysis, TCA cycle etc. Indeed anti-folates 
have been used against many tumor types for almost half 
a century [6]. The previously mentioned review points out 

the main challenges in the development of metabolism 
based anticancer agents: “unwanted toxicity caused by 
the effects of agents targeting metabolic pathways in 
normal proliferating cells is likely to be a major challenge 
in the development of drugs that target proliferative cell 
metabolism. Several pathways often exist to generate the 
same metabolic end product, and redundant pathways 
that are present in normal cells but absent in cancer cells 
may provide a therapeutic window. However this same 
redundancy may also impair the efficacy of drugs in 
tumours that can use more than one pathway”. Fortunately, 
metabolism is the best known biological network and the 
problem of finding metabolic therapeutic windows, can 
be approached using Genome Scale Metabolic Models 
(GSMMs).

GSMMs [7, 8] are comprehensive compilations 
of all the metabolic reactions occurring in a particular 
organism. Each reaction is catalyzed by one or several 
enzymes, each of them coded by a gene. Thus a direct 
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gene-protein-reaction connection is established. The 
structure of the metabolic network can be reflected by its 
stoichiometric matrix, which contains the stoichiometric 
coefficients of each metabolite in each reaction. Assuming 
that the concentration of each metabolite is in steady 
state, it is possible to define a space of feasible flux 
distributions and evaluate the metabolic capabilities 
of the cell (for example its capability to synthesize 
biomass building blocks). GSMMs can be used to 
compute distributions of metabolic fluxes using linear 
programming, this computation requires setting upper 
and lower boundaries for each metabolic flux as well 
as the choice of an objective function to be maximized 
(this is commonly referred as Constraint Based Modeling 
or CBM). The objective function is normally chosen to 
be the production of biomass, which is represented in 
the models as a biomass stoichiometric equation that 
includes the proportions of macromolecules forming a 
biomass unit. Vander Heiden, in his review [5] pointed 
out that “determining flux through the cancer cell 
metabolic network is likely to provide a better insight 
into successful enzyme targets”. Current methods to 
measure metabolic flux distributions such as the usage 
of 13C labeled substrates, are limited to a relatively small 
number of fluxes in the central carbon metabolism [9]. 
Experimentally measured fluxes can be used to constrain 
GSMMs and obtain estimations (averages and standard 
deviations) of fluxes not measured directly [10, 11]. 
However, direct or indirect measurements of metabolic 
fluxes are more costly and time consuming and less 
comprehensive than other high-throughput experimental 
techniques such as RNA-seq. The recent development of 
new high-throughput single cell RNA-seq methods [12] 
is likely to allow obtaining gene expression profiles of 
the different cell sub-populations in tumours using fast 
experimental protocols. For all these reasons we aimed 
to develop a computational method that allows finding 
personalized therapeutic windows using GSMMs and 
RNA-seq data. An intermediate stage in this method is 
the computation of putative metabolic flux distributions 
based in RNA-seq data alone. This is done by setting, for 
all the reaction rates in the model, upper bounds that are 
proportional to the expression levels of their associated 
genes. A similar approach (the PRIME method) consists in 
setting maximal boundaries to a set of reaction rates, based 
on gene expression microarrays [13]. In our approach 
every gene-associated reaction in the model is constrained 
based on the expression of its associated genes given as 
RPMK (reads per million per kilobase). A python library, 
pyTARG, has been developed in order to automatically 
constrain human GSMMs using RNA-seq data, provide 
estimations of metabolic flux distributions as well as sets 
of putative targets expected to impair the production of 
biomass building blocks in a target cell type (a cancer cell) 

while having lower effects on a reference cell type (in our 
case healthy mesenchymal stem cells). 

Using RNA-seq data from healthy differentiated 
tissues and cancer cell lines, we estimated metabolic 
flux distributions and compared them in order to identify 
cancer metabolic hallmarks. Remarkably, already well 
described metabolic hallmarks such as higher glycolysis, 
glutaminolysis etc. were well reproduced in the estimated 
flux distributions, which supports the validity of the 
method presented here. 

RESULTS AND DISCUSSION

Predictions of metabolic fluxes using constraint 
based modeling

In order to assess if our constraint based modeling 
approach (pyTARG) can provide realistic estimations of 
metabolic fluxes and compare it to the existing method 
PRIME [13], we have selected 3 cell lines (MCF7, 
U251 and A549) for which RNA-seq data are available 
at the Human Proten Atlas (www.proteinatlas.org), and 
microarrays are available (as well as for all the NCI-60 
cell lines) at CellMiner (https://discover.nci.nih.gov/
cellminer/). The largest exchange metabolic fluxes of 
cancer cells are glucose and glutamine uptake and lactate 
secretion. We will benchmark our method based on its 
ability to quantify these fluxes. Experimental uptake rates 
for the selected cell lines are available in the literature 
[14]. The fluxes reported in the cited reference are given 
in moles per cell and GSMMs normally work with fluxes 
normalized by grams of biomass, therefore we need to 
obtain the typical cellular masses of each of the considered 
cell lines, which are also reported in the literature [15]. 
Both PRIME and pyTARG work by maximizing the 
biomass production rate after imposing constraints on the 
model (see methods). The flux distribution obtained after 
such maximization is just one among many possible flux 
distributions with the same optimal biomass production 
rate. In order to assess how accurately each of the methods 
is able to reproduce experimental flux distributions, a set 
of alternative optimal solutions was computed for each 
cell line as described previously [10], from these sets 
we computed averages and standard deviations for the 
predictors of lactate production, glucose consumption 
and glutamate consumption obtained using pyTARG and 
PRIME respectively. As it is shown in Figure 1 and Table 
1, all the fluxes in all the cell lines are predicted more 
accurately by pyTARG, with especially large differences 
for lactate production and glucose consumption.

The main difference between pyTARG and PRIME 
is that the first one constraints all the metabolic reactions 
based on the expression levels of their associated genes, 
while PRIME only constrains the reactions whose 
associated genes showed significant correlations with 
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Figure 1: Average estimations of metabolic fluxes using pyTARG and PRIME and experimental metabolic fluxes, the 
error bars correspond to standard deviations.
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experimental growth rates. This leads to many reactions 
being left unconstrained (including reactions whose 
genes are completely non-expressed and which should be 
constrained to have a zero flux). Less constrains lead to 
more feasible solutions for the same biomass production 
rates and less accuracy in the prediction of metabolic fluxes.

Identification of cancer metabolic hallmarks 
using constraint based modeling

By using RNA-seq data, putative flux distributions 
for 34 different cancer cell lines and 26 healthy tissues were 
computed as described in materials and methods. RNA-seq 
data were obtained from the Human Protein Atlas (www.
proteinatlas.org). A t-test was used to identify reactions 
showing statistically significant (with false discovery rates 
under 0.01 after correction for multiple testing) differences 
in metabolic fluxes (these reactions will be named 
“differentially used” reactions). In the same way differentially 
expressed genes (with 0.01 false discovery rates) were 
identified. Differentially used reactions associated to one 
or several differentially expressed genes were selected as 
cancer metabolic hallmarks. The list of identified metabolic 
hallmarks (with the corresponding p-values for each reaction 
and gene) is presented in the Supplementary File 1. Figure 2 
summarizes the main hallmarks identified. 

In full agreement with the Warburg effect, glucose 
uptake, glycolysis as well as lactic acid production and 
secretion were predicted to have higher metabolic fluxes 
in cancer cells compared to normal tissues. The respiratory 
chain was transcriptionally downregulated in cancer cells 
and also showed lower metabolic fluxes. Water transport 
by aquaporin 1 (AQP1) was downregulated in cancer cells, 
which is consistent with less water production due to lower 
activity of the respiratory chain. A concomitant increase in 
both gene expression and metabolic flux was observed in 
all the steps of glycolysis with the exception of pyruvate 
kinase. The expression of glycolytic enzymes is known 
to be induced by the PI3K/Akt signaling pathway, whose 

constitutive activation is one of the most common features 
in spontaneous human cancers [16]. Increased activity of 
the oncogene MYC and loss of the tumor suppressor TP50 
have also been reported to result in increased glycolytic 
fluxes [17]. The hypoxia inducible factor HIF-1, which is 
downstream of the PI3K signaling pathway, also induces 
the expression of lactic acid transporters MTC1 and MTC4 
[18]. Increased glutaminolysis, another key feature of cancer 
metabolism regulated by the oncogene MYC [4], is also 
predicted using our CBM approach. Glutathione reductase 
(GSR) was found to have higher metabolic activity in cancer 
cells, which is at the basis of the NADH depleting effect 
of vitamin C on cancer cells [17]. Metabolism of omega 
6 fatty acids and arachidonic acid synthesis also appeared 
to be differentially upregulated in cancer cells compared 
to healthy tissues. This is consistent with the current 
knowledge of the impact of arachidonic acid metabolism 
on cancer cell proliferation [19]. Cholesterol biosynthesis 
was also predicted to be higher in cancer cells and its role 
as a suitable therapeutic window will be further discussed 
in the next section.

The expression levels and predicted metabolic fluxes 
for the glycolytic enzymes PGAM4 (phosphoglycerate 
mutase) and TPI1 (triosephosphate isomerase) are 
shown in Figure 3. More examples can be found in the 
Supplementary Figures 1–11.

Overall we can conclude that constraining a 
human GSMM using RNA-seq data is a valid approach 
to compute metabolic flux distributions that mimic well 
known features of cancer metabolism. Therefore, CBM 
could be expected to be a suitable tool for predicting 
the effects of blocking certain metabolic reactions 
(pharmacologically or by gene silencing).

Computational prediction of therapeutic 
windows

The main challenge to find new anticancer drug 
targets is the existence of deleterious effects on healthy cells, 

Table 1: Mean squared errors for each metabolic flux expressed in (mmol/g-DW h)2

U251 PRIME pyTARG
Lactate production 3.14 0.045
Glucose consumption 2.30 0.0195
Glutamine consumption 0.0069 0.0030
MCF7
Lactate production 5.14 0.0001
Glucose consumption 2.82 0.0164
Glutamine consumption 0.0031 0.0015
A549
Lactate production 4.04 0.0052
Glucose consumption 2.60 0.0171
Glutamine consumption 0.0055 0.0018
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in particular on dividing healthy cells such as stem cells 
and progenitors. In order to test if the previously identified 
reactions can be targeted achieving negative effects on 
cancer cells while having lower effects on healthy cells, 
the metabolic flux through each target reaction was forced 
to have a maximal value equal to 0.1 times its original 
value (calculated using CBM). A new flux distribution was 
computed after imposing the mentioned constraint and the 
impact on growth on each cell line was reported as the ratio 
between the new estimated growth rate and the original 
one. A ratio of 0.1 means that biomass production is fully 
coupled to the targeted reaction. In the opposite extreme, a 
value of 1 would mean that there are alternative pathways 
able to fully compensate the drop in activity of the targeted 
reaction (see materials and methods for a full description). 
This was performed on the 34 cell lines previously used 
and 6 mesenchymal stem cell lines (3 from bone marrow 
and 3 form placenta) [20]. Mesenchymal stem cells were 
chosen because they share with metastatic cells the feature 
of having undergone Epithelial to Mesenchymal Transition, 
which makes them more similar to cancer initiating cells 
than other healthy dividing cells. 

A t-test was carried out in order to identify reactions 
that have significantly higher effects on cancer cells 
compared to the 6 mesenchymal stem cells. The results 
(p-values, t-scores and average differences in effect) for each 
of the tested reactions are reported in the Supplementary 

File 2. The two most statistically significant reactions were 
found to be lactate dehydrogenase and lactic acid transport, 
which is consistent with the Warburg effect. Enzymes 
related to lactate metabolism (LDHA and MTC4) have been 
reported as suitable targets in multiple pre-clinical studies 
[21, 22]. Glucose uptake follows lactic acid production 
and secretion in statistical significance, which is consistent 
with the known increased dependence of cancer cells on 
glucose consumption. There are ongoing preclinical efforts 
to exploit glucose transporters as anticancer targets [23, 24]. 
Despite the clear differential effect on cancer cells compared 
to healthy stem cells, the simulations predict relatively 
low effects on the proliferation rates of cancer cells, with 
decreases of 20% for the most sensitive cell lines. This 
suggests that cell metabolism is robust enough to largely 
compensate the dependence of the cells on the mentioned 
reactions, therefore targeting lactate production or glucose 
uptake likely should be combined with other targets in 
order to achieve larger cytostatic effects. In contrast to other 
metabolic hallmarks, blocking cholesterol synthesis resulted 
in a drastic effect on the growth capabilities of most of the 
considered cancer cell lines (Figure 3), and left almost 
unaffected 5 of the 6 mesenchymal stem cell lines.

The effects of targeting MVD (mevalonate 
diphosphate decarboxylase) and glucose uptake are 
represented in Figure 4. The effects of more reactions are 
shown in the Supplementary Figures 12–15.

Figure 2: Main differentially used reactions between cancer cells and healthy tissues. Enzymes with higher activity in cancer 
cells are labeled in red, those with lower activity in cancer cells are labeled in blue. P-values showing the significance of change are given 
near each reaction.
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Deregulation of the mevalonate pathway and 
cholesterol metabolism in cancer, has already been 
described [25]. Overexpression of the enzyme HMG-
CoA reductase has been reported to increase anchorage 
independent growth of malignant cells as well as the 
growth of xenograft tumors in vivo [26]. High amounts 
of stored cholesteryl esters in tumors are considered as 

hallmarks of cancer aggressiveness [27]. The potential 
therapeutic window offered by cholesterol biosynthesis 
is particularly interesting given the fact that there already 
exist approved inhibitors of cholesterol synthesis such as 
statins. The first anticancer clinical trials with statins were 
carried out already in 1996 and currently more than 18 
clinical trials (phase I and II) have been carried out [28].  

Figure 3: Expression levels and predicted metabolic fluxes (expressed in milimoles per hour and gram of cell biomass) 
for PGAM4 (phosphoglycerate mutase) and TPI1 (triosephosphate isomerase).
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Figure 4: Relative effects on cancer cell lines (red bars) and healthy mesenchymal stem cells (blue bars) after 
constraining to 0.1 times their initial values, the flux through MVD (mevalonate diphosphate decarboxylase) and 
Glucose uptake.
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Preclinical experiments have shown anticancer activities 
(cytostatic and pro-apoptotic effects) of statins both 
in solid and liquid tumors. For example lovastatin (an 
inhibitor of the mevalonate pathway) has been shown 
to induce apoptosis in leukemia cells while keeping 
unaffected normal bone-marrow progenitors [29, 30]. 
This is a confirmation of the potential selective effects of 
targeting cholesterol biosynthesis. In a recent review [28] 
it is pointed out that it would be very beneficial to find 
markers allowing to identify which patients are sensitive 
to a treatment with statins. The cell lines in which biomass 
production was predicted to be fully coupled to cholesterol 
biosynthesis, were characterized by lacking the expression 
of the cholesterol transporter NPC1L1 and the lipoprotein 
lipase LPL, involved in the assimilation of lipoproteins 
from the blood stream. This makes these cells unable 
to incorporate external cholesterol and dependent on its 
biosynthesis. These two enzymes are therefore potential 
biomarkers for the sensitivity to a treatment with statins. 
Among the 34 considered cancer cell lines, 27 lacked 
expression of the mentioned enzymes and were predicted 
to be sensitive to impaired cholesterol metabolism. In 
order to check if it is possible to observe this phenomenon 
in vivo, expression profiles of NPC1L1 and LPL were 
downloaded from the TCGA Research Network (http://
cancergenome.nih.gov/). Tumors are composed of 
many different cell types, including cells from tumor 
associated stroma, therefore using bulk gene expression 
data has large limitations, which are likely to be overcome 
with the development of high throughput single cell 
sequencing techniques [12]. However the data from the 
TGCA research network (see Supplementary Figures 27 
and 28) revealed lower expression (more than a standard 
deviation lower than the corresponding healthy tissues) 
of NPC1L1 in: bladder urothelial carcinoma, cervical 
cancer, cholangiocarcinoma, head and neck squamous 
cell carcinoma, all the kidney cancer types, sarcoma and 
thymoma. LPL interestingly also appeared downregulated 
in bladder urothelial carcinoma, cervical cancer, all the 
kidney cancers and thymoma. Besides that, LPL was also 
downregulated in breast cancer, lung adenocarcinoma and 
lung squamous cell carcinoma. The mentioned tumors 
could be therefore more sensitive to treatments with drugs 
blocking cholesterol biosynthesis. Nevertheless, future 
treatments based on targeting metabolic pathways should 
be personalized based on RNA-seq data of individual 
patients.

Computational choice of optimal target sets for 
individualized treatments

Efficient cancer treatments will require finding 
therapeutic windows that allow targeting selectively cancer 
cells while keeping the damage on healthy proliferating 
cells as low as possible. These therapeutic windows are 
likely different for each patient and should be determined 

by analyzing individual gene expression profiles (of tumor 
cells but also of healthy cells to be used as a reference). 
In this work, we have developed a heuristic algorithm 
implemented in the python programing language and 
contained in the library pyTARG (see materials and 
methods). This algorithm finds sets of metabolic reactions 
that, targeted simultaneously, lead to a reduction in the 
predicted biomass production rate down to a half of its 
initial value, while keeping as mild as possible the effects 
on a second cell type chosen as a reference.

In order to test pyTARG we found reaction sets 
targeting selectively each of the 34 cancer cell lines used 
in this article. The placental mesenchymal stem cell line 
PL10087 was used as a reference. This cell line was chosen 
because it is predicted to be sensitive to blocking cholesterol 
biosynthesis (differently from the other mesenchymal stem 
cells used in this study), therefore the algorithm will output 
targets outside the cholesterol synthesis pathways.

Figure 5 indicates which reactions sets were found 
by pyTARG for each of the tested cell lines. Figure 6 
shows the relative effects on the targeted cell lines and the 
reference cell line. 

Interestingly only 18 metabolic reactions appear in 
34 different combinations despite the fact that the model 
contains several thousands of gene associated metabolic 
reactions. This means that the use of a rather limited set 
of enzyme specific inhibitors or small interfering RNAs, 
combined in a patient specific manner, could constitute the 
core of a metabolism-based therapeutic solution to cancer. 
All the reaction sets found by pyTARG include at least 
one of the glycolytic reactions identified in our previous 
analysis. This result is consistent with the Warburg 
effect and the current interest in developing glycolytic 
inhibitors as anticancer drugs [31]. Nevertheless, with few 
exceptions, glycolytic targets are not sufficient to cause 
drastic cytostatic effects and need to be combined with 
non-glycolytic reactions.

The reaction that appears most commonly among the 
sets of targets if fumarate hydratase (FH), one of the steps 
in the TCA cycle which was also revealed (in our previous 
analysis) to carry higher metabolic fluxes in cancer cell 
lines compared to healthy tissues. Interestingly, the FH 
gene has not been described as an anticancer target but as a 
tumor suppressor gene [32] whose loss of function due to 
germ line mutations results in hereditary leiomyomatosis 
and renal cell cancer (HLRCC) due to the accumulation of 
fumarate and succinate. Renal cancers with non-functional 
FH genes have been shown to be more dependent on 
glycolysis and particularly sensitive to its inhibition [33], 
which is fully consistent with our predictions.

Evidence of compensatory responses in breast, 
prostate and lung cancers

The reactions in the sets found by pyTARG need 
to be targeted simultaneously in order to decrease the 
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predicted proliferation rate down to 50% of its initial 
value. This means that the loss of activity of one single 
reaction in the set can be compensated by the increased 
activity of one or several of the remaining members of the 
set. Therefore it is reasonable to expect that tumors with a 
very low expression level of FH, will tend to show higher 
expression of one or several glycolytic enzymes. 

Despite the already mentioned limitations of using 
bulk tumor RNA-seq data, we tested if the hypothesized 
compensatory effects are detectable in tumor samples. 
We downloaded RNA-seq data from the TCGA Research 
Network (http://cancergenome.nih.gov/), corresponding 

to the cohorts BRCA (breast cancer), PRAD (prostate 
cancer) and LUSC (lung squamous cell carcinoma). From 
each cohort, we selected the 20 samples with higher and 
lower expression levels of FH and performed a t-test 
for differential expression of glycolysis related genes. 
Significant compensatory effects (with p-values lower 
than 0.01) were observed for the glucose transporter 
gene SLC25A1 in the BRCA cohort and for the glucose 
transporter gene SLC2A9 in the PRAD cohort. No 
significant results were observed in the lung cancer cohort. 

Following the same method, we tested for 
compensatory effects on the expression of aquaporins, 

Figure 5: Combinations of reactions to be targeted in order to reduce selectively the proliferation rate of each cell line. 
The horizontal axis of the heatmap shows the reaction identifiers in the Human Metabolic Reaction database. The stoichiometry of each 
reaction is shown below.
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which appeared in 3 of the reaction sets predicted by 
pyTARG and carbonic anhydrases, which appeared in 
6 reaction sets. A significant overexpression of lactate 
dehydrogenase (LDHA) was observed in the three 
considered cancer types, compensating the loss of AQP5 
(aquaporin 5). In the LUSC cohort, LDHA appeared to 
compensate also the downregulation of AQP2, 3 and 4. 
Our previous analysis (Supplementary Figure 10) showed 
that cancer cells show lower water transport rates than 
healthy tissues and a strong downregulation of AQP1, 
however, it appears that water transport mediated by 
other aquaporin genes is still important for cancer cells 
with moderate glycolytic rates. All these observations 
suggest that targeting alternative aquaporins such as 
AQP5, combined with LDHA, could constitute a selective 
therapeutic strategy against cancer. High expression 
of AQP5 has been linked to higher proliferation and 
metastasis in lung cancer [34]. In general, different 
aquaporins, have been associated to negative prognosis in 
different cancer types [35]. 

LDHA also appeared to compensate the 
downregulation of carbonic anhydrases: CA3 in breast and 
lung cancers, CA4 in prostate cancers and CA12 and 13 in 
lung cancers. The membrane bound CA9 and CA12 are the 
carbonic anhydrases that have received most attention as 
promising anticancer targets [36]. The purely stoichiometric 
nature of the model used in this article, which takes account 

only of the chemical reaction catalyzed by the enzymes, as 
well as the compensatory effects observed in the analyzed 
cancer cohorts, suggest that other carbonate anhydrases, 
cytoplasmic as well as membrane bound, could be suitable 
anticancer targets, in combination with LDHA or other 
enzymes involved in aerobic glycolysis.

The described compensatory effects are shown 
graphically in Figure 7 and in the Supplementary 
Figures 16–26.

CONCLUSIONS

It has been shown that human GSMMs constrained 
using RNA-seq data can be used to compute metabolic 
flux distributions that reflect well known metabolic 
hallmarks of cancer. The effects of blocking metabolic 
reactions in cancer cell lines and mesenchymal stem 
cells have been also tested computationally leading to the 
conclusion that cholesterol biosynthesis could be a highly 
selective therapeutic window to be targeted using statins 
or other drugs. An algorithm to identify personalized 
therapeutic windows have been developed, leading to 
the identification of groups of metabolic reactions with 
cytostatic effects (for 34 different cancer cell lines). 
These sets of reactions frequently involve glycolytic 
reactions combined with non-glycolytic ones such as 
fumarate hydratase, carbonic anhydrases or aquaporins. 

Figure 6: The purple bars show the relative growth of each cancer cell line after constraining the fluxes in their 
corresponding reaction sets (shown in figure 5) to a maximum of 0.1 times their original fluxes. The blue bars show the 
corresponding effects on the PL10087 mesenchymal cell line, which was used as a reference.
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Compensatory effects were observed in tumor samples for 
some of the identified pairs of reactions. We can conclude 
that the use of stoichiometric metabolic models integrated 
with personalized gene expression data, could play a key 
role in the design of patient specific therapeutic strategies 
against cancer.

MATERIALS AND METHODS

Genome scale metabolic model

We have used a manually curated version of the 
Human Metabolic Reactions (HMR) database [37]. The 

Figure 7: Compensatory effects of LDHA (lactate dehydrogenase) with AQP5 (aquaporin 5) and CA4 (carbonic 
anhydrase 4) found in prostate tumor samples. A differential expression test for the expression of the gene in the y axis is 
performed between the 20 samples with higher expression of the gene in the axis x (red dots) and the 20 samples with lower expression of 
the gene in the axis x (blue dots). A significant overexpression in the second group indicates that downregulation of the gene in the axis x 
is compensated in some tumors by an upregulation of the gene in the axis y.
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model is presented in Excel format in the Supplementary 
File 3 and it has been deposited in SBML format in the 
database BioModels [38] and assigned the identifier 
MODEL1707250000. The model is allowed to uptake 
and secrete all the compounds present in HMR and whose 
uptake or secretion rates were measured experimentally in 
a previous study [14].

RNA-seq data

Gene expression data for cancer cell lines 
(BioProject accession number PRJNA183192) as well 
as the healthy tissues included in the Human Proteome 
Atlas were downloaded from www.proteinatlas.org 
in the form of a comma separated file that contains the 
gene expression of each gene in each cell line (given as 
RMPK). This file was parsed using a customized python 
script (available upon request). RNA-seq fastq files for 6 
different mesenchymal stem cell lines (3 from placenta 
and 3 from bone-marrow) were downloaded from https://
usegalaxy.org/u/cic19/h/mesenchymal-stem-cells-rnaseq 
the reads were aligned on the complete list of human 
transcripts obtained from Ensembl BioMart using 
Bowtie2. The resulting alignment files were analyzed 
using a customized python script that is available upon 
request.

Constraining GSMMs and computing flux 
distributions using PRIME

Upper bounds for the reactions whose associated 
genes are significantly correlated with growth rate were 
computed as described in the PRIME algorithm [13]. 
The reactions correlated with growth were found using 
microarray data and growth rates from CellMiner (https://
discover.nci.nih.gov/cellminer/) corresponding to the NCI-
60 cell lines. A false discovery rate of 0.05 was used. The 
selected reactions are reported in the Supplementary File 4 
together with their correlation coefficients with the growth 
rate and their p-values.

Constraining GSMMs and computing flux 
distributions using pyTARG

The model is constrained using the function 
fullconstrain from the pyTARG library. This library can 
be downloaded from https://github.com/SergioBordel/
pyTARG. The function takes as input the model stored in 
BioModels after being imported using the python library 
COBRApy [39]. The RNA-seq data are provided to the 
fullconstrain function as a python dictionary whose keys 
are Ensembl gene identifiers and contain the expression 
of each gene reported in reads per million and kilo-base 
(RPMK). A short tutorial describing the use of all the 
functions in pyTARG is included in the Supplementary 
Material.

Each gene-associated reaction in the model is 
constrained to have a maximal value (or minimal if the 
reaction proceeds in the negative sense) proportional to the 
expression level of its associated gene. When a reaction 
is associated to several genes the highest expressed gene 
is chosen. Reactions not associated to any gene are left 
unconstrained. The proportionality constant between the 
gene expression and the upper boundary for the fluxes is a 
pure phenomenological constant chosen to reproduce the 
experimental growth rate of the cell line A549. The chosen 
proportionality constant was 0.0027 mmol g-DW-1h-1  
times the expression level of the most abundant enzyme 
associated to each reaction (measured in RPKM). The 
boundaries were set in a discrete way (by rounding up 
the expression levels to their upper multiple of 10), this 
helped to avoid numerical problems while performing 
linear optimization.

After constraining the model and setting an 
objective function, the flux distribution can be computed 
using the function flux of the pyTARG library, which 
itself relies on the COBRApy library. The computed flux 
distribution corresponds to maximizing the objective 
function while keeping the total sum of metabolic fluxes 
as low as possible.

In this article we have always used the rate of 
biomass production as objective function. Biomass 
production is linked to proliferation rate, which is the main 
phenotype relevant to cancer that can be directly linked to 
a metabolic flux. On the other hand, the effects of blocking 
a metabolic reaction on other relevant phenotypes such 
as ATP production rate or NADH production rate (which 
could be linked to apoptosis for example) will be also 
observable on the biomass production rate. Interestingly, 
26 of the healthy tissues form the Human Proteome 
Atlas were able to produce all the biomass building 
blocks necessary to proliferate. This does not mean 
necessarily that they proliferate, which would require 
that these building blocks are actually assembled into 
macromolecules and all the checkpoints of the cell cycle 
are being transited by the cells. Indeed we observed 
that most of the genes whose expression is correlated 
with growth rate are not metabolic genes but cell cycle 
components and ribosomal proteins [40]. Nevertheless 
we used the computed flux distributions as reasonable 
estimations for the metabolism of healthy tissues and this 
allowed us to retrieve all the well-known hallmarks of 
cancer metabolism previously discussed.

Computing the effects of targeting metabolic 
reactions

The function block of pyTARG constrains the 
fluxes of one or several metabolic reactions to 0.1 
times their original values and computes a new flux 
distribution after imposing the constraints. It outputs the 
ratio between the value of the objective function after and 
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before imposing the new constraints. A ratio of 0.1 would 
mean that the objective function is fully coupled to at 
least one of the constrained reactions while higher values 
mean that the metabolism of the cell is theoretically able 
to compensate the new constrain by using alternative 
pathways. We chose to constrain the targeted reactions 
to 0.1 times their original value and not to zero, in order 
to account for the fact that in a real setup the reaction 
would not be fully blocked (pharmacologically or 
using siRNAs). Also in some cases, the metabolic flux 
of essential reactions (that result in a zero value of the 
objective function when fully removed from the model) 
can be strongly reduced without drastic effects on the 
objective function.

Finding personalized therapeutic windows

The function personal of the pyTARG library 
implements a heuristic algorithm that aims to find a 
set of metabolic reactions with cytostatic effects on 
a target cell type while minimizing the effects on a 
healthy reference cell line. The inputs to the function 
are two models in COBRApy format, constrained using 
RNA-seq data for the target and the reference cell lines 
respectively. The algorithm starts by computing flux 
distributions for each of the two cell types. For each 
reaction in the model we take the difference between the 
flux in the target cell and the flux in the reference cell. 
The reactions are ranked in decreasing order starting 
from those with larger differences. Once the reactions 
have been ranked, the algorithm constrains the first 
reaction to 0.1 times its original flux in both cells. If 
the relative growth rate (in case the objective function 
is biomass production) on the target cell line is lower 
than 0.9 and the difference between relative growth rates 
between the target and the reference is higher than 0.05, 
the reaction is selected and the flux constraint is kept. If 
the conditions are not satisfied, the constraint is released 
and the same is repeated with the second reaction. The 
algorithm proceeds testing reactions until the relative 
growth rate of the target cell line drops to 0.5. The 
output of the function is a python list with the identifiers 
of the selected reactions. The chosen parameters of the 
algorithm have led to results involving relatively few 
reactions (from 1 to 5) as it is shown in Figure 5 and 
resulting in large differences in relative effects between 
the target and the reference cell lines (Figure 6).
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