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Genetically enhanced T lymphocytes and the intensive care unit
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ABSTRACT

Chimeric antigen receptor-modified T cells (CAR-T cells) and donor lymphocyte 
infusion (DLI) are important protocols in lymphocyte engineering. CAR-T cells have 
emerged as a new modality for cancer immunotherapy due to their potential efficacy 
against hematological malignancies. These genetically modified receptors contain an 
antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular 
costimulatory domain resulting in lymphocyte T cell activation subsequent to antigen 
binding. In present-day medicine, four generations of CAR-T cells are described 
depending on the intracellular signaling domain number of T cell receptors. DLI 
represents a form of adoptive therapy used after hematopoietic stem cell transplant 
for its anti-tumor and anti-infectious properties. This article covers the current status 
of CAR-T cells and DLI research in the intensive care unit (ICU) patient, including the 
efficacy, toxicity, side effects and treatment.

INTRODUCTION

In adults, T lymphocytes start developing from 
the pluripotent stem cell, go through the stages of 
lymphocyte committed stem cell, pre-T cell, which 
migrate in the thymus and form the thymocyte, later 

migrating to the periphery and forming the naive T cell. 
This process follows three main paths to T helper cells, 
T cytotoxic cells and T memory cells (Figures 1 and 2). 
MHC complexes are recognized by the T cell receptor 
(TCR), these stimulated T lymphocytes that have an 
effect on macrophages and B cells, thus augmenting their 
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activities. Thus, a major structures involved in T cell 
function is the TCR, a receptor with therapeutic potential 
in the clinic. TCR is formed in more than 90% of the T 
cells by an α and a β chain. The domains and sequences 
that form the TCR are (starting from the N-terminus 
and form the extracellular domains to the intracellular 
ones): a leader sequence, a variable region, a constant 
region, a small connecting peptide, a transmembrane 
domain and a cytoplasmic region [1]. TCRs functions 
together with other structures, with which forms the 
T-cell receptor complex, as seen in Figure 3. One topic 
of high interest is the management of the ICU patient 
diagnosed with a hematological malignancy, for which he 
is under treatment. A special emphasis in hematological 
patients that are treated together with the ICU team is 
the clinical management based on cellular therapies or 
immunotherapy. A state-of-the-art protocol that has seen 
quick development over the last years and presents a high 
potential in treating hematological malignancies is the 
CAR-T cell technology [2-4]. Murine models that assess 
the effects and toxicity of CAR-T cells represent important 

areas of research before phase I-III clinical trials, due to 
the potential of this technology to become tomorrow's 
therapeutics.

CAR-T cells therapy basically requires drawing 
blood from patients and separating out the T cells. Next, 
by using a disarmed virus, the T cells are genetically 
engineered to produce receptors on their surface called 
chimeric antigen receptors, or CARs. The final step is 
the infusion of the CAR-T cells into the patient (which is 
preceded by a “lymphodepletion” chemotherapy regimen). 
The engineered cells further multiply in the patient’s 
body and, with guidance from their engineered receptor, 
recognize and kill cancer cells that harbor the antigen on 
their surfaces [5-9].

As many other therapeutic alternatives, CAR-T 
cells also have an important toxicity in the host organism. 
Nevertheless, the clinical response that CAR-T cells 
can induce is worth the risk [10]. The toxicity induced 
by CAR-T cells is linked to immune-mediated adverse 
effects, out of which some last longer than the toxicities 
induced by conventional pharmaceutical molecules [10, 

Figure 1: T cell lineage development.
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11]. Such toxicities are mainly represented by cytokine 
release syndrome (CRS) and B-cell aplasia [12-16]. The 
expansion of CAR-T cells and the activation of lymphoid 
and myeloid cells determine the release of high amounts of 
pro-inflammatory molecules [17], with the cross-reactivity 
of CAR-T cells with normal tissues leading sometimes to 
organ damage, caused by similar expression patterns of 
normal tissues with the target cells [18, 19]. Furthermore, 
CAR-T cells and CRS can be also linked by the rise in the 
levels of IL-6, TNF, IL-2 and IL-8 that eventually lead to 
arterial hypotension and fever [20-23].

Another important protocol in lymphocyte 
engineering is the use of DLI for cytomegalovirus (CMV) 
reactivation, as well as other disorders related to immune 
deficiency. DLI may also improve the graft-versus-tumor 
(GVT) or graft-versus-leukemia effect of an allogeneic 
stem cell transplantation [24, 25]. In the current paper we 
aim to approach the ICU patient that presents following a 
diagnosis with a hematological disease and treated mainly 
through the use of CAR-T cells, DLI, as well as similar 
novel technologies.

Design of CAR-T cells

CAR-T cells are produced by a multistep process 
that implicates primary T cells harvesting, modification 
and then use. Primary T cells are harvested from a patient’s 
peripheral blood and enriched. Their enhancement is 
possible by the use of lentiviral vectors [26-29]. These 
vectors integrate in the host genome and determine the 

expression of the CAR construct. One problem that 
can occur is that the lentiviral capsid presents a natural 
tropism against CD4+ cells. The solution comes from 
pseudotyping the lentiviral capsid with viral glycoproteins, 
the most common used being the vesicular stomatitis 
virus glycoprotein (VSV-G). However, VSV-G is not 
suitable for transfection of B and T lymphocytes. Thus, 
other glycoproteins have been used for this matter, as is 
the case of the measles virus, hemagglutinin and fusion 
glycoproteins [30, 31].

Although CAR-T cells have presented great promise 
for clinical applications, there are two main problems that 
can arise: CRS and in the case of anti-CD19 CAR-T cells, 
B-cell aplasia and subsequent immunodepression [23, 32-
34]. One of the solutions used in this regard is the use of 
switch molecules, like rimiducid, to control CAR-T cells 
activity [35-37]. Another approach for controlling CAR-T 
cells activity is represented by using suicide genes in the 
CAR construct [38].

Other concerns regarding CAR-T cells is the 
potential of lentiviral vectors to generate insertional 
mutagenesis [39, 40]. Efforts have been made in the 
scientific community to generate integration-deficient 
lentiviral vectors and the addition to those of a scaffold/
matrix associated region, so the vector and the CAR 
construct can persist through subsequent cell divisions 
as an episome [41]. In addition to lentiviral vectors, there 
are two more approaches that can be used: transposon 
and the CRISPR/Cas9 system. Transposons have already 
been used in clinical trials and their insertion in the human 

Figure 2: Circulation, rolling and adherence of naïve T cells in the high endothelial venule (HEV), their diapedesis 
through the HEV wall, interaction with dendritic cells and activation.
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genome has not been associated with any disease [42-45]. 
Nevertheless, if transposons are to be used, a transposase 
should also be expressed in the cell, either from the same 
construct or from a different construct, which affects the 
experimental setup and add more complexity. Inserting the 
CAR construct in a T lymphocyte by using the CRISPR/
Cas9 system is realized from an endonuclease guided 
by an RNA, each formed from crRNA (the sequence 
for recognition of the specific part of the genome) and 
transcrRNA (the sequence that is recognized and bound 
by the Cas9 so it can be guided at the specific site). This 
system generates a double stranded break in the host 
genome and, through, non-homologous end joining the 
CAR construct can be inserted [46, 47].

Despite CAR-T cell therapy have shown promise in 
both the preclinical setting, as well as in clinical trials, 
various drawbacks have been described due to the rapid 
expansion. One such side-effects is the severe cytokine 
release after the antigen recognition [32], as well the 
inability of anti-CD19 CARs to tell the difference between 
normal and malignant B lymphocytes. This will lead to the 
development of a long-term B-cell aplasia [23]. Thus, a 
control of CAR T cell function may be very important due 
to a reduction of side-effects that might potentially be life-
threatening. To overcome this endeavor, various research 
groups have used antibody-based switch molecules 
that are designed to control the immunological synapse 
between a CAR and a malignant cell. This leads to a 

Figure 3: The signaling pathways for TCR complex activation. The pathways converge to IL-2 transcription, which determines T 
cell clonal expansion and subsequent immune response. TCRs functions together with other structures, with which forms the T-cell receptor 
complex. After the TCR binds the peptide-MHC complex, the TCR undergoes conformational changes that determine the phosphorylation 
of the ITAMs (immunoreceptor tyrosine-based activation motifs) located on CD247 and the CD3 polypeptides. ITAM phosphorylation 
creates binding sites for proteins presenting Src homology 2 (SH2) domains, one of the more important ones being the zeta associated 
protein of 70 kDa (ZAP-70). After binding and activation, ZAP-70 recruits linker of activation of T cells (LAT). After the binding and 
activation of LAT, other signaling molecules are recruited. Such is the case of SH2-binding leukocyte phosphoprotein of 76-kDa (SLP-76) 
and Grb2. Grb2 activates SOS, which catalyzes the exchange of GDP to GTP linked to Ras, activating the MAPK pathway, phosphorylating 
the extracellular receptor-activated kinase 1 and 2 (ERK1/2), which in turn, phosphorylates Elk. Thus determines the transcription of Fos, 
important for the transcription of interleukin-2 (IL-2). Other pathway that branches off the TCR and phosphorylated proteins complex 
determine the activation of Vav, which determines the GDP/GTP exchange on Rac, which in turn activates p38. This action determines, in 
the end, the activation of c-Jun N-terminal kinase (JNK), which phosphorylates c-Jun, representing the second molecule implicated in the 
transcription of IL-2.
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highly controlled cytotoxic activity, as well as to increased 
specificity for cancer cells [48, 49].

Another safety concern is related to insertional 
mutagenesis potential of integrating vectors. Although 
an important step was made by switching from onco-
retroviral vectors to lentiviral vectors, that are considered 
as a safer alternative to the former ones due to a relative 
random insertional pattern. However, the oncogenic 
potential of lentiviral vectors has been previously reported 
[40, 50] and this might raise safety issues regarding the 
use of integrating vectors. Towards this end, efforts have 
been made to reduce the insertional mutagenesis potential 
of delivery vectors for CAR into T-cells. Generation of 
integration-deficient lentiviral vectors and inclusion of a 
scaffold/matrix associated region (S/MAR) in the vector 
backbone displayed comparable cytotoxic effect of 
CAR-T cells engineered with non-integrating vectors to 
those that have the integration function unaffected [51]. 
Non-integrating vectors due to the presence of S/MAR 
element in their design are maintained in subsequent cell 
generation as an episome.

An alternative to lentiviral vectors could be 
represented by transposons, as they have been described 

as efficient gene delivery vectors and has been used 
for gene therapy applications in clinical trials [42, 44], 
45]. DNA transposons have been used as gene delivery 
vehicles instead of retro-transposons because their 
genomic insertions have not been associated with any 
human disease [52] (Figure 4). However delivery of the 
transgene is mediated by an encoding transposase that 
must be provided in trans from the same construct or 
a second construct and this might add an extra level of 
complexity to the experimental setup.

Yet, another alternative to both viral and non-viral 
delivery could be represented by the newly descried 
gene editing tool, named CRISPR/Cas9. This technology 
offers the possibility to target virtually any genomic 
site in a RNA-guided manner. The editing complex 
futures the Cas9 nuclease and a guide RNA, comprised 
of a CRISPR RNA (crRNA) and a trans-acting crRNA 
(tracrRNA). Upon hybridization of the crRNA to the target 
sequence, Cas9 generates a double-strand break (DBS), 
that can be repaired by non-homologous end joining 
(NHEJ), an event that can result in a loss-of-function of 
the genomic locus. In the presence of a donor DNA, by 
a mechanism of homology-directed recombination, an 

Figure 4: Production alghoritm of CAR T cells.
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exogenous sequence can be introduced in the targeted 
locus [46, 47]. This knock-in capability of CRISPR/Cas9 
can be exploited to deliver CAR expression cassette in a 
desired genomic locus that does not interfere with gene 
function and therefore minimizing the genotoxic effects 
experienced with integrating viral vectors. And recent 
improvements in gRNA and Cas9 have reduced the off-
target effects to a minimum, increasing the chances 
of CRISPR/Cas9 to reach clinical applicability. Up to 
date, CRISPR/Cas9 already proved its applicability in 
the field of immunotherapy by enhancing CAR-T cells 
potency by knock-out diverse genes with importance in 
target recognition and cytotoxic activity [53]. Therefore, 
CRISPR/Cas9 will surly make a difference in advancing 
immunotherapies for malignant disorders, in both 
hematological and solid cancers. However further 
improvements in delivery systems are still to be made, 
and stated above, designing more specific and regulated 
systems are desirable to achieve a controlled activity of 
CAR-T cells.

In present-day medicine, four generations of CAR-T 
cells are described, each presenting a chimeric activated 
receptor with common regions among them. Starting from 
the exterior of the cell to the cytoplasm these regions are: 
single-chain variable fragment (scFv), the hinge region, 
the transmembrane domain and the CD3ζ intracellular 
domain of the T cell receptor [54, 55]. The first generation 
of CAR-T cells presented only these regions and showed 
good results in vitro, but did not present efficiency in vivo 
because of the lack of costimulatory signals [56-59]. By 
trying to overcome these limitations, further generations of 
CAR-T cells have been developed. The second generation 
of CAR-T cells present, in addition to the basic construct 
a costimulatory domain, such as CD28 or 41BB (CD137) 
close to the CD3ζ domain, which are both associated with 
clonal expansion and survival of T cells in their activated 
state [60-62]. The third generation of CAR-T cells can 
be generated by the addition to the second generation 
CAR of other costimulatory regions, like CD27, ICOS or 
OX40 (CD134), which can further improve cell survival 
[63, 64]. The fourth generation of CAR-T cells (also 
called TRUCKS) can be built using any of the first three 
generations and by the addition of a promoter that can 
be regulated, thus putting CAR-T cell activity under the 
practitioner’s control [54].

CAR-T cells-based and DLI therapy in the 
intensive care unit

Indications of using CAR-T cells therapy are acute 
lymphoblastic leukemia (ALL), chronic lymphocytic 
leukemia and non-Hodgkin lymphoma. CAR-T cell 
therapies are also being developed for solid tumors but 
studies are being in the early stages. Still, the first steps 
in investigating the side-effects of CAR T cells are 
represented by the use of murine models of the therapy. 

One of the first documented adverse reactions on CAR T 
cell therapy in preclinical murine models is the cytokine 
release syndrome (CRS). It has been shown in a murine 
model that CAR T-cell infusion associated CRS can 
be prevented through the administration of the kinase 
inhibitor ibrutinib [16]. To the present date, graft versus 
host disease (GVHD) is not a real concern regarding CAR 
T-Cell therapy side effects [65]. In two clinical reports, 
patients that underwent allogeneic hematopoietic stem 
cell transplant (allo HSCT) also received infusions of anti 
CD19 CAR allogeneic T cells from their initial transplant 
donors. The first report did not identify any GVHD in any 
of the eight transplanted patients [66], while the second 
report showed that one out of twenty patients developed a 
worsening of a pre-existing chronic GVHD [67].

Across the large variety and number of preclinical 
publications focusing on CAR T cells, very few of them 
document toxicity in animal models as it would seem 
normal with any new compound that has a potential use 
in a clinical setting. Paradoxically, there are numerous 
studies reporting the clinical use of CAR T cells even 
though their safety has not yet been evaluated extensively 
in vivo. An explanation for this phenomena could include 
factors like the large variety of engineered CAR cells, the 
differences between mouse and human physiology and 
T-Cell biology and the differences in drug metabolism 
capacity in each species. An example which would 
confirm this hypotheses would be the fact that one in 
vivo study involves CAR T cells targeting the Her2/
neu antigen, proving the antineoplastic activity and the 
biological safety of Her2/neu-specific CAR T cells in 
transgenic animals with lymphodepletion [68], yet the 
clinical trial involving the same engineered cells showed 
that one of the patients died due to a massive cytokine 
release syndrome [69]. The majority of preclinical studies 
investigating CAR T cells have focused on verifying their 
specificity and potency for antineoplastic activity, the key 
advantage of CARs in vivo being the fact that they possess 
the ability to redirect T-cell effector function without 
HLA-restriction. The in vivo testing of CARs expresses 
several drawbacks. First of all the successful engraftment 
of T-cells in immunocompromised mice is hard to achieve 
due to the residual elements of the mouse’s innate 
immune system; another drawback is the fact that even 
if the engraftment is successful, most of the mice develop 
GVHD in long term studies (more than 60 days) [70]. 
CAR T-Cells target human antigens which are restricted to 
transplanted tumor cells in mice, rendering the assessment 
of their effects on healthy tissues in mice models hard to 
achieve [71]. The humanized NSG mouse has been an 
indispensable tool for evaluating short-term CAR T cell 
activity in vivo. CARs that act against ROR1 for mantle 
cell lymphoma and CD44v6 for acute myeloid leukemia 
and multiple myeloma have been tested in humanized 
NSG mice extensively [72, 73]. Humanized mice have 
been also used to assess the function and efficacy of  
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co-stimulatory domains like CD27, ICOS, CD28 and 
4-1BB, due to their potential enhanced efficiency in 
targeting malignancies and augmenting CARs safety [74, 
75]. In a humanized animal model, the Hu-PBL-SCID 
NSG mouse, engineered T cells showed the ability to 
destroy a cancer cell line that expressed prostate tumor 
antigens [76]. Modern genetic engineering methods like 
messenger RNA transduction have been used to generate 
CAR NK-Cells and to successful target a non-Hodgkin's 
lymphoma in a Hu-PBL-SCID NSG model. The study 
confirmed that activated expanded PBNK became highly 
cytolytic, eradicating resistant CD20+ B-leukemia/
lymphoma after nucleofection with anti-CD20 CAR 
messenger RNA [77]. Najima et al have successfully 
transplanted WT-1 specific TCR transduced human HSCs 
into class I matched transgenic NSG mice. The WT-1 
tetramer positive T cells differentiated in the thymus and 
the splenic cytotoxic lymphocytes of the mice targeted 
leukemia cells in an antigen-specific HLA restricted 
manner and destroyed them [78].

Even if current mouse models for CAR T cells have 
a poor predictive nature, these may relate to the biological 
differences between species, a barrier which could be 
overcome by developing new humanized mice models. 
Studies in the last decade have focused mainly on their 
clinical applications with toxicity being neglected as a 
main research aim. Most of the clinical studies report toxic 
effects on these engineered cells which in turn will cause 
a stronger will of the researchers to better understand the 
potential mechanisms of in vivo toxicity by developing 
better animal models to this purpose.

Cytokine capture system (CCS) is a protocol for 
isolating different cell populations, stimulating and using 
them further on. However, the manual method of CCS 
is time consuming, requiring 10 to 12 hours and has to 
be undertaken by a skilled operator. These problems 
have been solved by Prodigy (Miltenyi Biotech), an 
apparatus that can perform this operation in a closed 
environment and within 2 hours. The automated protocol 
consists in four main steps: preparation of materials under 
sterile conditions, preparation and use of automated 
cell enrichment system, cell count determination and 
examination of the separation performance; these steps are 
described in more detail by Kumaresan et al [79]. The use 
of this technique, and thus of Prodigy, has been studied 
in the field of hematopoietic stem cell transplantation 
(HSCT), specifically offering an infusion of selected T 
cells which have an effect against opportunistic infections 
and also improve the GVT effect [80, 81]. A good example 
of using this assay is the treatment of opportunistic CMV 
infections in patients that have underwent an allogeneic 
HSCT. This can be done by incubating overlapping 
peptides from the CMV pp65 antigen with total nuclear 
cells provided by CMV positive donors. The pp65 peptide 
fragments stimulate the T cells to secrete interferon-γ 
(IFN-γ), after which, antigen-specific T-cells can be 

selected, using reagents that can recognize CD45 and 
IFN-γ [82-84].

DLI represents a form of adoptive therapy used after 
allogeneic stem cell transplant for its anti-tumor and anti-
infectious properties and it has been used to restore the 
patient’s immune function, thus aiding in the prophylaxis 
or treatment of relapse, in preventing infectious diseases 
(as is the case of CMV infection) and to establish full 
donor chimerism [85-87]. The start of the idea of GVT 
activity was observed after a flare of graft versus host 
disease (GVHD) or after sudden discontinuation of 
immunosuppression [88, 89]. GVT can be confirmed 
by the fact that T cell-depleted graft transplantation are 
associated with a higher risk of relapse [90-92]. Following 
these observations, DLI was tested for its antileukemic 
effects. The first described application was in 1990 by 
Horowitz et al, who described three patients treated for 
chronic myelogenous leukemia (CML) with matched-
sibling allogeneic HSCT that have relapsed with chronic-
phase CML and were treated for the relapse with DLI. 
The results showed a complete cytogenetic remission in 
all three patients. Further studies were done for the use of 
DLI against CML relapse and the majority of the studies 
have presented long term molecular remission. DLI has 
been studied as a therapeutic tool in other hematological 
malignancies, but it’s efficiency was not as good as with 
CML [93-97].

The complications that occur after DLI include, 
more notably GVHD and marrow aplasia. GVHD in 
these patients has been correlated with a GVT effect, 
although some studies contradict these results [93, 95, 
98-101]. Although progress has been made in predicting 
GVHD, the influence of DLI on these effects remains 
poorly defined. In this direction, studies working on the 
hypothesis that lower doses or escalating doses of T cells 
can minimize GVHD, while still maintaining a significant 
level of GVT activity, have been made [102-104]. Even 
if the advantage of unrelated donor grafts depleted of T 
cells is obvious through the lower incidence of GVHD, 
there are also marked disadvantages to this approach, 
one of them being represented by the increased number 
of opportunistic infections CMV and Epstein-Barr virus 
infections, but not only [105-111]. Naturally, several 
studies have been devised to research the application of 
DLI in preventing or curing these infections [110-114]. A 
study on 462 recipients of bone marrow transplant from 
unrelated donors showed that infections were the cause 
of 30% of deaths, compared to 14% in the case of disease 
recurrence [115]. Other reports showed that infections 
accounted for 38 to 75% of the cases of death compared 
to 8 to 25% in the case of leukemia relapse [108, 109, 116-
118]. One study, in particular, has analyzed the immune 
reconstitution after unrelated HSCT, in this report is has 
been show that T cell depleted HSCT, is associated with 
prolonged T cell lymphopenia and CD4 lymphopenia 
[119-122].
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Other refinements or reconfigurations of CAR-T 
cells are being tested. One approach is the development 
of CAR-T cells therapies that use immune cells collected 
not from patients, but from healthy donors. The idea is to 
create so-called off-the-shelf CAR-T cells therapies that 
are immediately available for use and don’t have to be 
manufactured for each patient.

Although adoptive transfer of CAR-T cells is 
a unique and promising cancer therapeutic, there are 
significant safety concerns. Clinical trials of this therapy 
have revealed potential toxic effects of these CARs 
when healthy tissues express the same target antigens as 
the tumor cells, leading to outcomes similar to GVHD 
[65, 123-125]. A potential solution to this problem is 
engineering a suicide gene into the modified T cells. In 
this way, administration of a prodrug designed to activate 
the suicide gene during GVHD triggers apoptosis in the 
suicide gene-activated CAR-T cells. This method has been 
used safely and effectively in HSCT. Adoption of suicide 
gene therapy to the clinical application of CAR-T cells 
adoptive cell transfer has potential to alleviate GVHD 
while improving overall anti-tumor efficacy [66, 67, 126].

Early case reports of unexpected organ damage and 
deaths following CAR-T cells therapy first highlighted the 
possible dangers of this new treatment. CAR-T cells can 
potentially damage normal tissues by specifically targeting 
a tumor-associated antigen that is also expressed on those 
tissues.

Complications that require ICU admission for 
the CAR-T cells-treated patient

The main complications for patients that receive 
a CAR-T cells-based therapy are the CRS and B-cell 
aplasia, out of which CRS is one of the most severe, 
requiring ICU admission and treatment. It ranges 
from mild to life threatening and it is an oncologic 
emergency. CRS can be observed following the previous 
administration of immune-based therapy drugs, as is 
the case of rituximab or other monoclonal antibodies 
[127, 128]. This condition appears due to a massive 

release of cytokines (high levels of IL-6 and IL-12) into 
the bloodstream, followed clinically by high fever and 
a sudden fall in blood pressure, tachycardia, as well as 
hemophagocytic lymphohistiocytosis or macrophage-
activation syndrome [129], even multi-organ failure with 
potential fatal outcome [130, 131]. IL-6 is important 
in neutrophil trafficking, acute phase response, B-cell 
differentiation, angiogenesis and the production of 
autoantibodies and is produced by dendritic cells, 
monocytes, T cells, keratinocytes and fibroblasts. IL-
10 also plays an important role, being produced by 
monocytes/macrophages and it regulates both cell-
mediated and innate immunity after the inhibition of the 
activated macrophages. This interleukin is synthethised by 
B cells, mastocytes and T helper cells, but not by cytotoxic 
T cells, thus making it not the ideal target cytokine for 
treatment options in CRS. Other molecules involved 
in CRS are the TNF, IL-8 and IL-2, reported in patients 
treated with CAR-T cells and blinatumomab [132-135].

In a patient with newly developed fever, which is 
often the first sign, CRS is diagnosed as the day with the 
first fever over 38 °C related to the infusion of CAR-T 
cells and the recovery from CRS is diagnosed as 24 hours 
without fever or vasoactive medication [131, 136, 137]. 
The clinical management of CRS is oriented according to 
the grade, as presented in Table 1.

Cytokine elevations are measurable in most patients 
and a CRS approach may be by targeting elevated cytokine 
directly with anti-cytokine directed therapies, as is the 
case of tocilizumab. This drug is a humanized monoclonal 
antibody directed against the IL-6 receptor and its use 
has lead to a dramatic improvement of severe CRS for 
patients treated with CAR-T cells or blinatumomab 
(a drug used for Philadelphia chromosome-negative 
relapsed or refractory acute lymphoblastic leukemia). Still, 
tocilizumab comes with side-effects such as elevated liver 
enzymes and cytopenias. IL-6 is a potential target for other 
new inhibitors, as is the case of siltuximab and the IL-6 
trans-signalling blocker sgp130Fc. These small molecules 
are interesting at this point, but further phase I-III clinical 
trials are required [138-140].

Table 1: Clinical grading of cytokine release syndrome

Grade Clinical symptoms / Therapy

Grade 1 Not life-threatening symptoms. Only symptomatic therapy is advised – intravenous fluids, antipyretics

Grade 2 Symptoms that require moderate intervention. Oxygen requirement <40% or arterial hypotension treated with 
fluids or low dose vasopressor or grade 2 organ toxicity

Grade 3 Symptoms that require aggressive intervention. Oxygen requirement >40% or arterial hypotension treated high 
dose vasopressors or grade 3 organ toxicity or grade 4 transaminitis

Grade 4 Life-threatening symptoms, that require ventilator support or grade 4 organ toxicity, with the exception of 
transaminitis

Grade 5 Death of the patient
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The use of corticosteroids represents an obvious 
solution for CRS because they have proven their efficacy 
in inhibiting activated T cells, as is the case of GVHD. The 
major drawback that limits their use could be the potential 
to negatively affect the antitumor effects of the CAR-T 
cells. Corticosteroids have shown a partial response in 
a patient who received corticosteroids early after the 
infusion of CAR-T cells [132, 141, 142]. Brentjens et al 
have used short-term steroids for the therapy of severe 
CRS without compromising CAR-T cell proliferation and 
efficiency. At least in vitro, the steroids take down the 
cytokine levels without the reduction of T-cell activation, 
but in vivo the effects may be totally different. Thus, the 
use of corticosteroids should be reserved for neurological 
symptoms and CRS unresponsive to tocilizumab [71,  
143-145].

Steroids still represents the basic therapy for 
blinatumomab-induced CRS, as the Food and Drug 
Administration (FDA) recommends pretreatment with 20 
mg of intravenous dexamethasone before the first dose 
of blinatumomab, as well as before each intracycle dose 
escalation, as well as when restarting an infusion after the 
previous interruption of therapy.

CRS management should involve the entire 
healthcare professional team, not only the hematologist 
or the ICU doctor, but also the nursing team. Nurses 
must thus be familiar with the toxicity profile, the type 
of infusion and with the protocols used in monitoring 
the vital signs for any indication of a severe reaction  
[146-148].

Taking all this into consideration, patients receiving 
CAR-T cell therapies should have limited comorbidities so 
that they are able to tolerate potentially severe CRS.

CONCLUSIONS

T lymphocytes play an important role in the 
treatment of cancer. T cells behavior are influenced by 
the T-cell receptors complex and calcium signaling. 
CAR-T cells and DLI are novel diagnostic and treatment 
technologies for hematological malignancies in intensive 
care units. CAR-T cells are classified as first, second, third 
and fourth generation cells, depending on the intracellular 
signaling domain number of T cell receptors. Clinical 
trials utilizing the first generation CAR-T cells have 
failed to exhibit significant clinical benefits because lack 
of costimulatory signals so further generations of CAR-T 
cells have been developed by trying to overcome this 
limitation. Although CAR-T cells have presented great 
promise for clinical applications, there are significant 
safety concerns. The main complications are the cytokine 
release syndrome and B-cells aplasia. Another important 
protocol in lymphocyte engineering is the use of DLI 
which represents a form of adoptive therapy used after 
stem cell transplant for its anti-tumor and anti-infectious, 
thus aiding in the prophylaxis or treatment of relapse, in 

preventing infectious diseases and to establish full donor 
chimerism. The complications that occur after DLI include 
GVHD and marrow aplasia. Preventive strategies which 
could include using predictive biomarkers for predicting 
which patients will become critically ill should be 
researched.

Further studies are necessary to establish clear 
guidelines for treating hematological malignancies 
with these therapies and a better collaboration between 
hematologists and intensive care unit doctors.

Abbreviations

CAR-T cells: chimeric antigen receptor-T cells; 
DLI: donor lymphocyte infusion; ICU: intensive care 
unit; CRS: cytokine release syndrome; GVT: graft-versus-
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