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The development of CAR design for tumor CAR-T cell therapy
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ABSTRACT
In recent years, the chimeric antigen receptor modified T cells (Chimeric 

antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has 
been considered the most promising therapy. Efforts to enhance the efficacy of CAR-
based anti-tumor therapy have been made, such as the improvement of structures of 
CAR-T cells, including the development of extracellular antigen recognition receptors, 
intracellular co-stimulatory molecules and the combination application of CARs and 
synthetic small molecules. In addition, effects on the function of the CAR-T cells that 
the space distance between the antigen binding domains and tumor targets and the 
length of the spacer domains have are also being investigated. Given the fast-moving 
nature of this field, it is necessary to make a summary of the development of CAR-T 
cells. In this review, we mainly focus on the present design strategies of CAR-T cells 
with the hope that they can provide insights to increase the anti-tumor efficacy and 
safety.

INTRODUCTION

Today the risk to develop cancer is quite high and 
the number of tumor patients unfortunately is still even 
increasing [1, 2]. If not slowed down, it is expected that 
the global annual new cases will reach 15 million by 
2020 [3]. As a form of cancer treatment, the emergence of 
chimeric antigen receptors (CARs) T cell therapy brings 
hope to tumor patients. The CAR-T cells can target tumor 
antigens independent of MHC restriction [4, 5], which 
include an extracellular antigen binding domain, a trans-
membrane portion and an intracellular signalling domain 
(Figure 1) that is very important to the complete activation 
of CAR-T cells [5, 6]. Upon the recognition of specific 
antigens, CAR-T cells are activated to proliferate and 
secrete cytokines. CAR-T cells can promote cancer killing 
and has shown promise for the immunotherapy of some 
human malignancies [7, 8]. But, the treatment efficacy of 
solid tumors utilizing CAR-T cells is unsatisfactory and 

a set of challenges still are not solved, such as antigen 
specificity, mechanisms of exhaustion and safety issues 
[9, 10]. 

EXTRACELLULAR ANTIGENIC TARGETS  

The identification of targets happens before and is 
a prerequisite of CAR-T cell therapy. In order to avoid 
damage to healthy tissues caused by CAR-T cell therapy, 
the targets must be restricted on tumor cells [11, 12]. So 
far, a variety of tumor associated antigens (TAAs) have 
been targeted to achieve ideal therapeutic effect [13, 14].

Hematological malignancies 

Within the past few years, clinical trials of CAR-T 
cell therapy were tested in hematological malignancies. 
For example, CD19-targeted CARs to treat B cell cancers 
are up to 70%–90% response rate in acute and chronic 
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leukemias [15–18]. Although the great success with 
CD19 specific CARs, CD19 escape variants have been 
confirmed after therapy and responding patients with 
subsequent target loss have a recurrence of the disease 
[19–21]. To overcome such antigen target issues about 
escape variants, one method is to investigate other tumor 
antigen targets, such as CD22 [22], CD20 [23], CD138 
[24], CD33 [25], CD123 [26], inactive tyrosine-protein 
kinase transmembrane receptor ROR1 (ROR1) [27], 
immunoglobulin kappa chain (Igκ) [28], B-cell maturation 
antigen (BCMA) [29], and Lewis Y antigen (LeY) [30, 
31] (Table 1). Another way is to develop new strategies to 
design CAR-T cells, such as bi-specific chimeric antigen 
receptors. For example, the design of CD19/CD20 tandem 
CAR-T cells that can kill tumor cells efficiently when 
encountering either of the antigens [32, 33]. In addition to 
the methods above, the concepts of double CARs or dual 
receptors within one T cell, switchable CARs mentioned 
below also can be used here to prevent the development of 
antigen escape variants (Figure 2). Besides CD19 escape 
variants, the missing of HVEM (Herpes Virus Entry 
Mediator) also is reported, which caused lymphomas 
in vivo due to the destruction of inhibitory interactions 
between the HVEM and BTLA (B and T lymphocyte 
attenuator) receptors. CAR-T cells that secrete HVEM 
have shown great therapeutic efficacy against xenografted 
lymphomas in vivo [34]. 

Solid tumors 

With the comforting results of CD19 CARs, much 
attention has been paid to the development of CARs to look 
for effective methods to treat solid tumors successfully. 
About solid tumors, many tumor-associated antigens are 
also targeted to get the optimal efficacy (Table 2). 

Epidermal growth factor receptor (EGFR) and 
EGFR variant (EGFRvIII) are over-expressed in many 
cancer types and are commonly associated with the 
malignancy of glioblastoma [35, 36]. The expression of 
EGFRvIII within a cell is often associated with survival, 
invasion, angiogenesis and resistance against radiation and 
chemotherapy [37, 38]. EGFRvIII specific CAR-T cells 
have shown great antitumor efficacy in preclinical studies 
and now they have been being evaluated in clinical trials 
[39, 40]. EGFR also could be modified as a useful tool, 
which retains a cetuximab binding site and lacks domains 
I and II and its cytoplasmic tail. Cetuximab can recognize 
the truncated EGFR (huEGFRt) so that CAR-T cells 
expressing the truncated EGFR can be selected, tracked 
and ablated in vivo after administration of cetuximab [41]. 

Interleukin 13 receptor α2 (IL13Rα2) is a glioma-
associated antigen and also is associated with a reduced 
survival rate of patients [42, 43]. In a study, after 
CAR-T cell treatment, regression of tumors along with 
corresponding increases of cytokines and immune cells 
was observed [44, 45]. However, the IL13Rα2 specific 

CARs can also recognize interleukin 13 receptor α1 
(IL13Rα1). To solve the problem, IL13Rα2 specific 
single-chain variable fragment (scFv) 47 is used as an 
antigen binding domain and the specificity indeed has 
been enhanced [46]. Specificity could also be improved 
by a CAR targeting two or more antigens. IL13Rα2 
and human epidermal growth factor receptor-2 (HER2) 
specific CARs are designed with CD3z and CD28 domains 
to make tandem CARs (TanCARs) [47]. These CAR-T 
cells can distinctively and effectively recognize tumors, 
mitigate antigen escape and have also shown enhanced 
persistence in the presence of the both targets.

Mesothelin is a TAA expressed by many malignant 
cancers [48]. CARs specific for mesothelin have been 
investigated in clinical trials to treat patients with 
pancreatic cancer and malignant pleural mesothelioma [49, 
50]. In the terms of persistence, patients with pancreatic 
cancer have been treated with T cells that simultaneously 
express two CARs targeting mesothelin and CD19 in 
clinical trials [50]. Thus, the influence of antibodies on 
the mesothelin directed CARs can be blocked due to the 
eradication of B cells by the CD19-specific CARs and 
then these CAR-T cells can function for a long time.

Aberrant expression of glycoform has been 
found on the cell membrane mucin-1 (MUC1), a large 
protein carrying O-glycan over-expressed by most 
adenocarcinomas [51, 52]. CARs targeting the MUC1 
glycopeptide epitope are designed based on a monoclonal 
antibody (5E5) and these CAR-T cells have shown ability 
to eliminate pancreatic tumors [53–55]. Interleukin-4 
(IL-4) has several pathophysiologic and therapeutic 
links to cancers and can promote the function of CAR-T 
cells. MUC1 specific CAR-T cells engineered with IL-4 
receptor ectodomain have shown enhanced resistance to 
immunosuppressive cytokines and improved anti-tumor 
efficacy [56, 57].

HER2 is a member of receptor tyrosine-protein 
kinase family, which is over-expressed by many tumor 
cells and also is expressed by some epithelial cells [58, 
59]. In clinical trials, patients with tumors expressing 
HER2 have been treated with second generation HER2 
targeted CARs (CD28/CD3z) [60, 61]. Several research 
groups are attempting to design two CARs in a single 
T cell, which can specially recognize tumor cells. In a 
trial, HER2 and MUC1 specific CARs with CD3z and 
co-stimulatory molecule respectively within one T cell 
have been designed, which can eliminate tumor cells 
efficiently and offset tumor antigen escape variants when 
encountering target cells co-expressing MUC1 and HER2 
[62]. 

Most prostate-cancer cells and many tumor-
associated neo-vasculatures express prostate specific 
membrane antigen (PSMA) [63, 64]. Thus anti-
angiogenic effects together with direct anti-tumor 
effects might be able to get by PSMA specific CARs 
[65]. To improve the specificity of CAR-T cells, PSMA 
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expressed by normal tissues  is targeted to provide 
negative signaling to the PSMA specific dual targets 
CAR-T cells with the co-stimulatory molecule of 
programmed death-1 (PD1) or cytotoxic T lymphocyte 
associated antigen 4 (CTLA4) [66, 67]. The strategy 
of inhibitory chimeric antigen receptors (iCARs) above 
can be used not only to enhance antigen recognition, 
but also to increase safety. 

Neural cell adhesion molecule L1, also named 
CD171, is expressed on many tumors, but also on normal 
tissues [68]. However, the expression pattern of CD171 by 
cancers is glycosylated, different from that of normal cells. 
CARs have been developed to target the glycosylated 
CD171 expressed on malignant cells and these T cells 
have been demonstrated safety without on-target off-
tumor toxicity [69]. Moreover, clinical trials using CD171 
specific CARs are also in progress [70]. In addition to 
targeting tumor antigens, receptors or ligands can also be 
targeted to enhance specificity of CARs, such as the use of 
Natural Killer Group 2D (NKG2D) [71, 72]. 

Tumor microenvironment 

Infiltration and trafficking

T cells must be able to traffic to tumor sites in order 
to exert their effector functions in vivo. Extracellular 
matrix (ECM) is the main barrier of transport, which 
contains the heparan sulfate proteoglycans (HSPGs), 
the main component of ECM [73]. T cells must 
get rid of obstacle of HSPGs in stroma-rich tumor 

microenvironment to reach tumor sites. However, T 
cells have no ability to express the enzyme heparanase 
(HPSE) to degrade heparan sulfate proteoglycans. 
Therefore, CAR-T cells that can secrete heparanase are 
engineered, which can promote infiltration and anti-
tumor activity [74]. Chemokine receptors can also be 
used to enhance traffic. For example, CD30-directed 
CAR-T cells engineered with CC-chemokine receptor 
4 (CCR4) have enhanced migratory capacity in murine 
Hodgkin’s lymphoma xenograft models [75]. CAR-T 
cells expressing CC chemokine receptor 2b (CCR2b) 
also have improved migration in mesothelioma and 
neuroblastoma that naturally secrete large quantities of 
CC chemokine ligand 2 (CCL2) [76, 77]. 

Target tumor vasculatures 

Abundant blood vessels in tumor tissues can express 
immunosuppressive molecules and promote the growth of 
tumors. Thus, targeting tumor vasculature is a strategy to 
improve cell immunotherapy with CARs. Studies have 
confirmed that poor prognosis and metastasis of tumors is 
due to the over-expression of vascular endothelial growth 
factor (VEGF) and their receptors (VEGFR) in the tumor 
microenvironment [78]. Now vascular endothelial growth 
factor receptor-2 (VEGFR2) has been targeted to treat 
patients with metastatic tumors and enhanced efficacy 
has been achieved by these T cells [79]. Anti-angiogenic 
therapy also can lead to increased expression of adhesion 
molecules and chemokines that can enhance infiltration 
[80]. 

Figure 1: CAR-T-cell design. Chimeric antigen receptors (CARs) are composed of an extracellular domain, a transmembrane domain 
and an intracellular signaling domain. First generation CARs only have a CD3z signalling domain. By contrast, second generation CARs 
have a costimulatory signalling domain to enhance the signal function of the CD3z signalling domain. In third generation CARs, two 
costimulatory signalling domains are added to amplify anti-tumor effect of secondgeneration CARs. While in the fourth generation CARs 
(TRUCKs), cytokine genes are added.
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Target immunosuppressive cells and factors

At present, the main targets of CAR-T cell therapy 
for tumors are PSMA, Mesothelin, HER2, EGFR, 
and so on. To date, it lacks methods to overcome the 
inhibitory effect of tumor microenvironment on CAR-T 
cells. Therefore, novel CARs need to be developed to 
improve inhibition of tumor microenvironment and 
enhance anti-tumor abilities. It has been pointed that 
PD1 or CTLA4 can inhibit the function of T cells in the 
tumor microenvironment [81, 82]. However, checkpoint 
inhibiting antibodies can block the inhibitory signal 
to the T cells and have achieved successful results for 
the treatment of different tumor types [83–86]. Now, 
CARs that can secrete PD1 and/or CTLA4 antibodies 
have been designed to improve immunosuppression and 
enhance anti-tumor effect in clinical trials and it has been 
demonstrated that tumor volume can be decreased by PD1 
specific CARs [87–89]. Our research group is designing 
CTLA4-specific CAR-T cells to study the effects of 
improving immunosuppressive microenvironment and 
enhancing anti-tumor cytotoxicity. Adenosine, as a potent 

immunosuppressive factor, is regarded as a potential target 
[90]. It is reported that adenosine A2A receptors (A2ARs) 
can be up-regulated by CAR-T cells to exert a negative 
immune reaction when combining adenosine. Blockade 
of A2ARs has achieved great responses significantly, 
particularly in the help of PD-1 blockade [91]. Thus, new 
CARs may be designed to secrete adenosine antagonists 
or adenosine antagonists and PD1 antibodies to enhance 
anti-tumor efficacy.

SPATIAL DISTANCE AND SPACER REGION 

Some studies have reported that the distance between 
antigen recognition domains and the specific antigen targets 
can affect the function of CARs. It has been demonstrated 
that the epitope near a more-proximal position on the 
membrane can activate CAR-T cells more efficiently [92–
94]. In a trial, CARs can greatly recognize and attack tumor 
cells in vitro through targeting an epitope in a distal position 
on the membrane with a shortened extracellular spacer 
region compared with a longer one [46, 95]. It is a question 

Table 1: CAR-T-cell targets for the treatment of hematological tumors
Target CAR structure Malignancy Reference
BCMA CD3ζ and 41BB MM NCT02215967 [29]    

CD19
CD3ζ and CD28;
CD3ζ and 41BB
KIR2DS2 and DAP12-

Lymphoma;
Leukemia

NCT01044069 [17]
NCT01626495 [18]
NCT02685670 [105]
[114]

CD22 CD3ζ and CD28 FL; NHL; DLBCL; ALL NCT02315612 [22]    

CD20 CD3ζ; 
CD3ζ and 41BB- CD20positive malignancies NCT01735604 [23]   

CD138 CD3ζ and 41BB MM NCT01886976 [24]   
CD33 CD3ζ and 41BB AML NCT01864902 [25]    
CD123 CD3ζ and CD28 AML NCT02159495 [26]     
CD19
CD20 CD3ζ and 41BB Leukemia;  Lymphoma NCT03097770 [32]

CD19
PSMA

CD3ζ and CD28
PD-1 or CTLA4 Leukemias [67]

FITC-CD19 Ab CD3ζ and CD28 CD19 positive cancers [126]
Igκ CD3ζ and CD28 CLL NCT00881920 [28]   
LeY CD3ζ and CD28 AML NCT01716364 [30]    
ROR1 CD3ζ and 41BB CLL; SLL NCT02194374 [27]   

AML, acute myeloid leukaemia; ALL, acute lymphoblastic leukaemia; BCMA, Bcell maturation antigen; CLL, chronic 
lymphocytic leukaemia; CTLA4, Cytotoxic T lymphocyte associated antigen 4; DLBCL, diffuse large Bcell lymphoma; 
DAP12, DNAX-activating protein of 12 kDa; FL, follicular lymphoma; FITC, fluoresceine isothiocyanate; Igκ, 
immunoglobulin kappa chain; KIR2DS2, stimulatory killer immunoglobulin-like receptor 2DS2; LeY, Lewis Y antigen; 
MM, multiple myeloma; NHL, nonHodgkin lymphoma; PSMA, prostatespecific membrane antigen; PSMA-CAR 
(iCAR) [67], inhibitory chimeric antigen receptor; PD-1, programmed death 1; ROR1, inactive tyrosineprotein kinase 
transmembrane receptor ROR1; SLL, small lymphocytic lymphoma.
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whether the CAR-T cells without a hinge domain can 
enhance tumor killing. Therefore, two kinds of CARs, with 
or without a hinge domain, have been designed to study the 
problem. Finally, it is concluded that a hinge can enhance 

the expansion and anti-tumor efficacy for some specific 
CAR-T cells [96, 97]. Thus, the antigen target location and 
hinge length should be taken into account when designing 
CARs, which are critical for the activity of CAR-T cells.

Table 2: CAR-T-cell targets for the treatment of solid tumors
Target CAR structure Malignancy Reference

Biotin CD3ζ, CD28 and 41BB EGFRvIII 
positive cancer [125]

CD171 CD3ζ and 4-1BB;
CD3ζ, CD28 and 4-1BB Neuroblastoma NCT02311621 [70]  

EGFRvIII CD3ζ and 41BB
CD3ζ and ICOS- Glioma NCT02209376 [40]

[107]

FAP CD3ζ and CD28
KIR2DS2 and DAP12-

Mesothelioma;
Lung cancer [114]

FR CD3ζ and CD27 Ovarian cancer;
Breast cancer [98]

Glypican-3 CD3ζ, CD28 and 41BB Hepatocellular carcinoma NCT02395250 [112]

HER2 CD3ζ and CD28 HER2 positive cancer;
Sarcoma

NCT02713984 [61]
NCT00902044 [60]  

HER2
MUC1 CD3ζ and CD28 Breast cancer [62]

HER2
IL13Rα2 CD3ζ and CD28 Glioblastoma [47]

IL13Rα2

CD3ζ;
CD3ζ and 41BB
CD3ζ and CD28
CD3ζ, CD28 and 41BB
CD3ζ, CD28 and OX40-

Glioma NCT02208362 [45]
[46]

Mesothelin

CD3ζ;
CD3ζ and CD28
CD3ζand 41BB
CD3ζ and ICOS
KIR2DS2 and DAP12-

Mesothelioma;
Pancreatic cancer;
Non-small cell lung cancer

NCT01355965 [49]  NCT02465983 
[50] 
[106]
[114]

Mesothelin 
CD19 CD3ζand 41BB Pancreatic cancer NCT02465983[50]

MUC1 CD3ζ and 41BB MUC1 positive solid tumor NCT02587689 [54]

NKG2D

CD3ζ;
CD3ζ and DAP10
CD3ζ and 41BB
CD3ζ and CD28

Ovarian cancer
Ewing sarcoma [71, 72]

PSMA CD3ζ and CD28 Prostate cancer NCT01140373 [64]  
NCT00664196 [65]   

PD1 and CD19;
PD1 and Mesothelin;

CD3ζ and CD28
CD3ζ, CD28 and 41BB PD-L1 positive cells [87]

DAP12, DNAX-activating protein of 12 kDa; DAP10, DNAX-activating protein of 10 kDa; EGFRVIII, epidermal growth 
factor receptor variant III; FAP, fibroblast activation protein; FR, folate receptor; FL, follicular lymphoma; HER2, human 
epidermal growth factor receptor 2; IL13Rα2, interleukin 13 receptor α2; KIR2DS2, stimulatory killer immunoglobulin-
like receptor 2DS2; MUC1, mucin 1; NKG2D, Natural Killer Group 2D; PSMA, prostatespecific membrane antigen; PD-1, 
programmed death 1; PD-L1, programmed death ligand 1.
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INTRACELLULAR SIGNALLING DOMAINS

Many co-stimulatory molecules have been 
investigated, including CD28, 4-1BB (CD137), CD27 and 
OX40 (CD134), which have been incorporated into CARs 
to further enhance therapeutic effect [98, 99] (Table 2). 
With the development of co-stimulatory molecules, CAR-T 
cells have experienced four generations of development 
(Figure 1). The first generation only utilizes CD3z chain 
typically to provide an activation signal. Early studies 

show that the persistence of the first generation CARs is 
superior, but the expansion ability and anti-tumor efficacy 
are unsatisfactory [99]. Subsequently, a co-stimulatory 
molecule is added into the structures of CARs to augment 
the proliferation and responses, which is so-called second 
generation CARs [100]. It has been pointed that CD28 
can enhance the telomere length, which can affect the 
persistence and anti-tumor efficacy of T cells [101, 102]. 
Thus, senescent T cells can be regenerated by restoration 
of CD28 expression [103]. CAR-T cells with CD28 or 

Figure 2: Different design strategies of CAR T cells. (A) A bi-specific CAR targeting two different antigens. (B) A CAR that target 
tumor antigens through synthetic small molecule drugs, such as the avidin-CAR, sCAR or UniCAR. (C) A CAR designed with huEGFRt. 
(D) The design of multi-chain CAR based on FcεRI receptor scaffold (E) A suboptimal CAR and a chimeric co-stimulatory receptor (CCR) 
expressed by one T cell. (F) The expression of a CAR induced by a synNotch receptor within one T cell.  



Oncotarget13997www.impactjournals.com/oncotarget

4-1BB signaling domain have shown potent anti-tumor 
efficacy in vivo for B cell malignancies [104, 105]. ICOS 
co-stimulatory domain also has been used and CARs with 
ICOS tend to have enhanced survival time than CARs with 
CD28 or 4-1BB co-stimulatory domain [106, 107]. In order 
to further strengthen the function of the second generation 
CARs, the third generation has been designed that has two 
co-stimulatory molecules [108]. CAR-T cells with CD28 
and 4-1BB domains have shown enhanced functionality 
and increased persistence [109–112]. In addition to these 
co-stimulatory molecules mentioned above, some other 
molecules are also being studied, such as CTLA-4 or 
PD-1. Antigen specific suppression of CAR-T cells with 
CTLA-4 or PD-1 can be achieved to prevent the damage 
of inadequate T cell specificity to normal tissues [67, 
113]. Stimulatory killer immunoglobulin-like receptor 
(KIR) KIR2DS2 and DNAX-activating protein of 12 kDa 
(DAP12) also are used to replace CD3z and co-stimulatory 
molecule to enhance the proliferation and function of 
CAR-T cells, which can destroy immunotherapy-resistant 
solid tumors efficiently [114]. Different from the first 
three generation CARs, cytokine genes that can improve 
the activation and expansion of T cells and promote the 
resistance to immunosuppression have been introduced 
into the fourth generation CARs (TRUCKs) and these 
CAR-T cells modified with cytokine genes can use some 
valid components of the tumor microenvironment to 
amplify anti-tumor efficacy [115–117].   

SAFETY

Although remarkable clinical efficacy, it is still 
difficult to apply the current CAR-T therapy generally 
due to the restriction of serious treatment-related toxicities 
[118]. Bi-specific chimeric antigen receptors and dual 
CARs strategies mentioned above can help to reduce 
the risk of development of side effects. Besides, dual 
receptors in one T cell also can prevent the development 
of side effects and increase specificity. For instance, a 
CAR and a chimeric co-stimulatory receptor (CCR) or a 
CAR and a synthetic Notch receptor are designed in one 
T cell to target two different antigens. These T cells only 
eliminate tumors with both antigens but do not destroy 
cells with either antigen alone [119, 120]. Multi-chain 
CARs based on FcεRI receptor scaffold also have been 
investigated to increase safety. FcεRI receptor scaffold 
has three different polypeptide chains (alpha, beta and 
gamma) and these polypeptide chains are substituted by 
an antigen recognition domain, a co-stimulatory molecule 
and CD3z respectively. Between the antigen binding 
domain and a hinge domain, FKBP domains and/or 
FRB are incorporated, which have a high affinity to the 
rapamycin and FKBP-rapamycin complex respectively. 
With the application of a small molecule of rapamycin 
or analog of rapamycin, antitumor cytotoxicity and 
advantage for safety are shown by these designed CAR-T 

cells [121]. A split-receptor design has been used to 
engineer CAR-T cells, which have antigen binding and 
intracellular signaling domains on separate polypeptides. 
These T cells can be activated only on the presence of 
the heterodimerizing small molecule and tumor antigens. 
Moreover, the activity of these T cells is titratable by the 
dose of the small molecules, which increase the safety of 
CAR-T cells application [122] (Figure 2). 

It is highly desirable to design universal CARs that 
have the ability to recognize multiple TAAs and minimize 
the risk of treatment-related toxicities. A study reported 
a novel and universal CAR strategy that can extend the 
specificity and safety potential of CAR-T cells by using 
a biotin-avidin system [123, 124]. EGFRvIII+ gliomas 
were targeted by biotinylated monoclonal antibody 
(biotin-4G1) and then avidin-CARs were used against the 
biotin-4G1. This therapeutic strategy is proved valid by 
EGFRvIII+ glioma-bearing mice [125]. Other analogous 
“switch” molecules also have been explored to regulate 
CAR-T cells activity in vivo to minimize toxicities, while 
maintaining potent anti-tumor activity, such as the switch 
molecules modified with fluoresceine isothiocyanate 
(FITC) or peptide neo-epitopes (PNE). FITC or PNE 
-specific CAR-T cells kill tumors dependent on the 
presence of switch molecule, which can enhance the 
activity of the CAR-T cells by dose titration [126–129]. 
To reduce the risk of side effects and broaden the range 
of application of CAR-T cells, a modular CAR platform 
(UniCAR) was developed to target different tumor 
antigens through different specific targeting modules 
(TMs) that have incorporated a peptide epitope E5B9. 
The function of E5B9 specific CAR-T cells is completely 
dependent on the presence of specific TMs and specific 
targets. Moreover, the activity of these cells can be 
turned on and off by the TMs [130–132]. However, it is 
a problem whether these synthetic small molecules are 
absolutely safe after long-term application. We need to 
think about the problems that whether similar elements to 
these molecules will be produced in the body and whether 
the body will be resistance to these molecules. 

The development of gene editing technology has 
also helped to improve safety. The activity of CAR-T 
cells can be eliminated by activating the suicide gene 
caspase-9 (iCasp9) that can effectively induce apoptosis 
of CAR-T cells to overcome side effects [133]. Another 
elimination gene is the truncated EGFR mentioned above. 
The activity of CAR-T cells can be rapidly eliminated 
with administration of cetuximab to prevent the events of 
serious toxicities [41]. However, suicide gene strategies 
can result in terminating therapeutic responses because 
of eliminating T cells indiscriminately. Moreover, gene 
editing also is capable of producing CAR-T cells that 
have ability to avoid graft versus host disease (GvHD) 
induced by allogeneic CAR-T cells through eliminating 
the expression of the endogenous T cell receptor (TCR) to 
enhance safety [134, 135]. 
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CONCLUSIONS

In recent years, CAR-T cell immunotherapy has 
achieved highly effective results in treating hematological 
malignancies and achieved much progress on the aspects 
of antigen targets, intracellular signal domains and the 
combined application of immune cells and synthetic small 
molecule drugs. Despite significant progress, some major 
challenges still have not been solved in engineered T cells 
to treat solid tumors and have remain significant barriers 
to its broader clinical application, especially in terms of 
specificity, persistence, safety, and immunosuppressive 
microenvironment [136]. We expect the reliable, safe, and 
effective CAR-T cells and extend it toward the treatment 
of a broad range of tumors in the future.
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