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ABSTRACT

We investigated the relationship between hepatitis B virus (HBV)-related 
pathogenesis and single nucleotide polymorphisms (SNPs) in interleukin-21 (IL-
21)-JAK-STAT signaling pathway genes. We used the high resolution melting (HRM) 
method to genotype five SNPs (IL-21 rs2221903, IL-21 rs4833837, IL-21 receptor (IL-
21R) rs2285452, JAK3 rs3008 and STAT3 rs1053023) in 546 HBV-infected patients 
and 353 healthy Chinese subjects. The HBV-infected patients were further divided into 
subgroups based on three HBV-related pathologies: chronic hepatitis B (CHB), liver 
cirrhosis and hepatocellular carcinoma (HCC). There were no significant differences 
in the genotype and allele distributions of the five SNPs between the HBV-infected 
patients and healthy subjects. However, patients with the IL-21R rs2285452 AA 
genotype were more susceptible to HBV-related HCC than those with the IL-21R 
rs2285452 GA/GG genotype (P = 0.03, OR = 3.27, 95% CI = 1.16-9.20). The HBsAg+ 
HBeAg+ anti-HBcAb+ serological marker mode was predominant among the HBV-
infected patients. However, there was no association between the genotype and 
allelic distribution of the five SNPs with any of the eight serological marker modes.

These findings demonstrate that the IL-21R rs2285452 AA genotype increases 
the risk of HBV-related HCC in Chinese patients.

INTRODUCTION

Nearly 240 million people are chronically infected 
with hepatitis B virus (HBV) [1] and more than 686 
million deaths are reported due to hepatitis B-related 
cirrhosis and liver cancer every year [2]. In China, 
approximately 90 million people are infected with HBV 
each year and nearly 28 million require therapeutic 
intervention [3].

Interleukin-21 (IL-21) is a member of the 
interleukin-2 family, which is primarily secreted by 
activated CD4+ T cells and natural killer T cells [4]. IL-21 
promotes the proliferation and differentiation of NK cells, 
T cells and B cells; it also stimulates immunoglobulin 
production and induces apoptosis in both immune and 
non-immune cells [5]. IL-21 binds to its receptor, IL-21R, 
which is preferentially expressed in T-and B-lymphocytes, 
NK cells, certain myeloid cells and keratinocytes, but 
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is absent in other tissues and solid tumors [6]. IL-21 
binding to the IL-21 receptor regulates the activation and 
proliferation of T-, B-, and NK cells by stimulating the 
JAK-STAT signaling pathway [7-9]. JAK3 and STAT3 are 
the two key proteins that are integral to the JAK/STAT 
signaling pathway [10-13].

The broad immunomodulatory activity of IL-21 is 
critical in chronic viral infections [14]. IL-21 promotes 
proliferation of Tfh and Th17 lymphocytes, enhances the 
cytotoxicity of CD8+ T cells and NK cells, and induces 
differentiation of the B-lymphocytes into plasma cells 
[15]. Conversely, IL-21 inhibits dendritic cells, induces 
apoptosis of B cells and NK cells, and inhibits Treg cells. 
Based on these mechanisms, IL-21 regulates immune 
response to HBV [15]. IL-21 also plays a key regulatory 
role in HBV infection pathogenesis. High serum IL-21 
levels are associated with a high model for end-stage liver 
disease (MELD) score and mortality rates [14]. In the 
mouse model of HBV, IL-21 regulates specific CD8+ T- and 
B-lymphocyte responses that are crucial for the clearance of 
the viral antigens [16]. IL-21 also modulates CD4+ T-helper 
2 (Th2) response that promotes HBV clearance and in vivo 
fibrogenesis [17]. IL-21 is also involved in the development 
of severe liver inflammation [17].

Host genetic factors influence the extent of HBV-
related liver injury, fibrosis, and tumorigenesis [18]. 
Therefore, designing effective therapeutic strategies 
against chronic HBV infection requires a better 
understanding of the host and viral mechanisms that 
affect HBV replication and persistence [19]. IL-21 
polymorphisms are associated with systemic lupus 
erythematosus [20], Graves’ disease [21], ischemic stroke 
[22], chronic hepatitis B infection [23], breast cancer 
[24] and thyroid cancer [25]. Moreover, polymorphisms 
in the IL21-JAK-STAT signaling pathway are associated 
with cardiovascular disease [26], breast cancer [27], renal 
cell carcinoma [28] and chronic myelogenous leukemia 
[29]. IL-21 gene polymorphisms such as rs12508721 T/C 
and rs2221903 A/G are also recognized as risk factors for 
HBV-related HCC and chronic HBV infections [30].

In this study, we investigated the association of five 
SNPs in the IL21-JAK-STAT signaling pathway genes 
with HBV infection and related pathology.

RESULTS

Clinicopathological characteristics of study 
subjects and Hardy-Weinberg equilibrium 
(HWE) analysis

The basic clinicopathological features of both the 
patients and the healthy controls in different experimental 
groups are shown in Table 1. There were no differences 
in the mean age and gender distributions between HBV-
infected patients (p=0.60), CHB-patients (p=0.44), liver 
cirrhosis patients (p=0.36) and HCC patients (p=0.08) 

with their corresponding controls. Table 2 summarizes 
the Hardy-Weinberg equilibrium (HWE) analyses for the 
genotypes of the 5 SNPs in all groups. In the controls, 
the genotype distributions of all 5 polymorphism loci 
were according to HWE (P>0.05). However, in the HBV-
infected patients, as well as the CHB and HCC patient 
sub-groups, IL-21R rs2285452 SNP showed deviation 
from HWE (p=1.60e-6, 0.002 and 1.94e-8, respectively). 
Our findings support previous reports that suggest such 
deviations from HWE in the case group as a result of 
genetic drift influenced by the disease [17, 18].

Correlation between the gene polymorphisms 
and HBV infection

We genotyped 5 SNPs (IL-21 rs2221903, IL-21 
rs4833837, IL-21R rs2285452, STAT3 rs1053023 and JAK3 
rs3008) in the HBV-infected patients and control subjects. 
The distribution of genotypic and allelic frequencies of the 
5 SNPs is summarized in Table 3. The genotype and allele 
frequencies were similar in the patient and control groups 
for IL-21 rs2221903 (P = 0.83 and 0.67, respectively; OR 
= 0.86, 95% CI = 0.40-1.82), IL-21 rs4833837 (P = 0.80 
and 0.49, respectively; OR = 1.31, 95% CI = 0.61-2.77), 
IL-21R rs2285452 (P = 0.25 and 0.68, respectively; OR 
=0.93, 95% CI = 0.68-1.29), STAT3 rs1053023 (P = 1.00 
and 0.96, respectively; OR =1.01, 95% CI = 0.77-1.31) and 
JAK3 rs3008 (P = 0.32 and 0.54, respectively; OR =1.08, 
95% CI = 0.85-1.37) polymorphisms. Moreover, there were 
no significant differences between the patient and controls 
groups in the additive, dominant and recessive models for 
the 5 candidate SNPs as shown in Table 4.

Correlation between the gene polymorphisms 
and different HBV-related pathologies

Next, we investigated the correlation between the 5 
SNPs and different HBV-related pathologies such as CHB, 
cirrhosis and HCC (Tables 5-7). The allele and genotype 
distributions of the candidate 5 SNPs were similar in the 
CHB (Table 5) and the cirrhosis groups of HBV-infected 
patients (Table 6) relative to the control groups. However, 
HBV-infection was significantly different in the AA, GA 
and GG genotypes of the IL-21R rs2285452 SNP in the 
HCC and control groups (p=0.007; Table 7). However, we 
failed to confirm the protective and the risk genotypes. 
The data for the subgroup analysis based on the different 
genetic models is shown in Table 4. In the recessive model, 
subjects carrying the IL-21R rs2285452 AA genotype were 
associated with greater risk (2.27 fold) in developing 
HCC than the combined genotypes of GA and GG carriers 
(AA vs. GA + GG; P = 0.03, OR = 3.27, 95% CI = 1.16-
9.20). However, the additive model analysis of the IL-21R 
rs2285452 SNP (AA vs. GA vs. GG; P = 0.97, OR = 1.00, 
95% CI = 0.67-1.53) showed no differences for CHB and 
cirrhosis subgroups vs. control group (Table 4).
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Correlation analysis between the gene 
polymorphisms and the serological marker mode 
of HBV

The serological markers (HBsAg, anti-HBs 
Ab, HBeAg, anti-HBe Ab and anti-HBc Ab) are used 
to estimate the progression and outcomes of HBV 
infection. Therefore, we tested the serological markers 
of 257 randomly selected CHB patients and analyzed the 
relationship between candidate SNP genotypes and the 
status of the serological markers (Table 8). We identified 
eight serological modes. The most represented serological 
mode in the HBV-infected patients was HBsAg+ HBeAg+ 
anti-HBc+ (n=44.75%), followed by HBsAg+ anti-HBe+ 
anti-HBc+ (n=37.35%), and HBsAg+ HBeAg+ anti-HBe+ 
anti-HBc+ (n=8.2%). Among the 257 CHB patients, 
139 (54.09%) were HBeAg+. As shown in Table 9, the 
genotype and allele frequencies in the 8 serological 
marker modes were similar for IL-21 rs2221903 (p=0.46 
and 0.19, respectively), IL-21 rs4833837 (p=0.36 and 
0.21, respectively), STAT3 rs1053023 (p=0.81 and 0.95, 
respectively), JAK3 rs3008 (p=0.79 and 0.94, respectively) 
SNPs. However, the distribution of the IL-21R rs2285452 
alleles and genotypes showed significant differences 
among the 8 serological marker modes (p=0.00 and 
p=0.00, respectively).

DISCUSSION

In our study, we examined the association of 5 SNPs 
in the IL-21-JAK-STAT signaling pathway genes (IL-21 

rs2221903, IL-21 rs4833837, IL-21R rs2285452, STAT3 
rs1053023, and JAK3 rs3008) with HBV infection-related 
pathogenesis in a Chinese population.

There was no significant association between HBV 
infection and all the five SNPs based on our analysis of 
the patient and control subjects. However, in the recessive 
model, the IL-21R rs2285452 AA genotype was associated 
with HBV-related HCC (P=0.03). The subjects with the 
IL-21R rs2285452 AA genotype were at a higher risk (2.27 
times) for HBV-related HCC than subjects with IL-21R 
rs2285452 GA/GG genotypes. This implied that IL-21R 
was a susceptibility gene associated with the occurrence 
and progression of HBV and that the patients with the 
heterozygous IL-21R rs2285452 AA genotype were at a 
greater risk for developing HCC.

IL-21 modulates both T-cell and B-cell responses, 
which are critical in the immune response related to the 
pathogenesis of various diseases like type1 diabetes, 
autoimmune systemic lupus erythematosus (SLE) 
and multiple sclerosis [31], including chronic HBV 
infections [13, 23]. Previous reports showed that SNPs 
in the IL-21 gene, such as rs907715 and rs2221903, 
increased susceptibility to Grave’s disease [32, 33] and 
systemic lupus erythematosus (SLE) in the Europeans 
and Americans [34, 35], as well as the Chinese [20, 36, 
37]. Moreover, IL-21 rs4833837 SNP was identified 
as a protective factor for psoriasis [13]. Although most 
IL-21 gene-related SNPs were related to autoimmune 
diseases, the IL-21 rs2221903 genotype AG and allele 
G was identified as a protective factor against chronic 
HBV and the IL-21 rs2221903 genotype AA and allele A 

Table 2: The results of HWE analyses for the genotypes of 5 SNPs

Groups n p

rs2221903 rs4833837 rs2285452 rs1053023 rs3008

Patients 546 0.954 0.873 1.60e-6 0.544 0.546

 CHB 302 0.909 0.182 0.002 0.211 0.822

 Cirrhosis 115 0.148 0.054 0.599 0.413 0.920

 HCC 129 0.075 0.832 1.94e-8 0.693 0.368

Controls 353 0.503 0.850 0.191 0.533 0.160

Table 1: Basic characteristics of patients and controls

Groups n Males/females p Age p

Patients 546 388/158(2.46) 0.60a 31.05±13.65 0.40a

 CHB 302 218/84 (2.60) 0.44b 34.50±11.15 0.79b

 Cirrhosis 115 85/30 (2.83) 0.36c 33.31±11.29 0.50c

 HCC 129 100/29(6.59) 0.08d 32.69±12.12 0.60d

Controls 353 245/108(2.27) 34.76±13.30

a: Patients vs Controls; b: CHB vs Controls; c : Cirrhosis vs Controls; d: HCC vs Controls.
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Table 3: Comparison of genotype and allele frequencies between patient and control groups

Gene SNP Group Allele Allele n (%) OR (95%CI) P Genotype n (%) P

1 2 1 2 11 12 22

IL-21 rs2221903 Patient A G 961 (88.00) 131 (12.00) 0.86 [0.40-1.82] 0.67 423 (77.47) 115 (21.06) 8 (1.47) 0.83

Control 619 (87.68) 87 (12.32) 270 (76.49) 79 (22.38) 4 (1.13)

IL-21 rs4833837 Patient A G 965 (88.37) 127 (11.63) 1.31 [0.61-2.77] 0.49 426 (78.02) 113 (20.70) 7 (1.28) 0.80

Control 617 (87.39) 89 (12.61) 270 (76.49) 77 (21.81) 6 (1.70)

IL-21R rs2285452 Patient A G 117 (10.71) 975 (89.29) 0.93 [0.68-1.29] 0.68 17 (3.11) 83 (15.20) 446 (81.69) 0.25

Control 80 (11.33) 626 (88.67) 7 (1.98) 66 (18.70) 280 (79.32)

STAT3 rs1053023 Patient A G 742 (67.95) 350 (32.05) 1.01 [0.77-1.31] 0.96 249 (45.60) 244 (44.69) 53 (9.71) 1.00

Control 482 (68.27) 224 (31.73) 162 (45.89) 158 (44.76) 33 (9.35)

JAK3 rs3008 Patient T C 489 (44.78) 603 (55.22) 1.08 [0.85-1.37] 0.54 163 (29.86) 277 (50.73) 106 (19.41) 0.32

Control 395 (55.95) 311 (44.05) 117 (33.14) 161 (45.61) 75 (21.25)

CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.

Table 4: Association between IL-21-JAK/STAT Signaling Pathway polymorphisms and the risk of infecting with 
hepatitis B virus

Group Gene SNP Additive model Recessive model Dominant model

OR(95%CI) P OR(95%CI) P OR(95%CI) P

Patient
Vs
Control

IL-21 rs2221903A>G 0.97  [0.73-1.30] 0.86 0.77 [0.23-2.58] 0.77 1.06 [0.77-1.45] 0.73

IL-21 rs4833837A>G 0.91 [0.68-1.22] 0.53 1.33 [0.40-4.00] 0.61 1.09 [0.79-1.50] 0.59

IL-21R rs2285452G>A 1.10 [0.98-1.40] 0.70 0.86 [0.61-1.20] 0.38 1.59 [0.65-3.87] 0.30

STAT3 rs1053023A>G 1.02 [0.83-1.25] 0.88 0.96 [0.61-1.52] 0.86 0.99 [0.76-1.29] 0.93

JAK3 rs3008C>T 1.03 [0.85-1.24] 0.76 1.12 [0.80-1.56] 0.50 0.86 [0.64-1.14] 0.30

CHB
Vs
Control

IL-21 rs2221903A>G 0.84 [0.59-1.20] 0.32 1.11 [0.25-5.00] 1.00 1.22 [0.84-1.78] 0.30

IL-21 rs4833837A>G 0.87 [0.62-1.21] 0.41 0.85 [0.27-2.67] 0.79 1.22 [0.84-1.76] 0.31

IL-21R rs2285452G>A 1.12 [0.80-1.57] 0.50 0.82 [0.55-1.21] 0.31 1.35 [0.48-3.75] 0.57

STAT3 rs1053023A>G 0.90 [0.71-1.15] 0.40 1.31 [0.75-2.30] 0.34 1.10 [0.81-1.49] 0.57

JAK3 rs3008C>T 0.96 [0.78-1.20] 0.72 1.21 [0.82-1.79] 0.33 0.95 [0.69-1.33] 0.78

Cirrhosis
Vs
Control

IL-21 rs2221903A>G 1.16 [0.28-10.49] 0.10 1.31 [0.15-11.81] 1.00 0.65 [0.84-1.78] 0.07

IL-21 rs4833837A>G 1.26 [0.82-1.94] 0.30 1.01 [1.00-1.03] 0.34 0.70 [0.44-1.12] 0.14

IL-21R rs2285452G>A 0.96 [0.61-1.51] 0.87 1.21 [0.68-1.86] 0.66 0.43 [0.05-3.56] 0.67

STAT3 rs1053023A>G 1.22 [0.89-1.66] 0.22 0.59 [0.32-1.11] 0.10 0.88 [0.57-1.34] 0.54

JAK3 rs3008C>T 1.19 [0.89-1.60] 0.23 0.88 [0.53-1.45] 0.62 0.71 [0.44-1.14] 0.16

HCC
Vs
Control

IL-21 rs2221903A>G 0.97 [0.63-1.50] 0.90 0.36 [0.09-1.45] 0.22 1.16 [0.71-1.90] 0.55

IL-21 rs4833837A>G 0.72 [0.45-1.16] 0.17 2.21 [0.26-18.56] 0.68 1.35 [0.81-2.23] 0.27

IL-21R rs2285452G>A 1.00 [0.67-1.53] 0.97 3.27 [1.16-9.20] 0.03 0.75 [0.44-1.27] 0.28

STAT3 rs1053023A>G 1.12 [0.82-1.52] 0.48 0.85 [0.44-1.64] 0.62 1.14 [0.76-1.71] 0.53

JAK3 rs3008C>T 0.95 [0.71-1.26] 0.72 1.28 [0.82-2.00] 0.27 0.85 [0.51-1.41] 0.53

CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.
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was identified as a risk factor in chronic HBV infections 
[38]. We postulate that IL-21 modulates B-lymphocytes, 
which play a significant role in neutralizing and 
removing circulating HBV by producing effective 
antibodies [39]. In our study, the two SNPs in the IL-
21 gene, rs2221903 and rs4833837, were located in the 
intron and the 3rd exon of the IL-21 gene, respectively. 
However, they were not associated with HBV infection. 
The varying results between our study and others may 
be due to the differences in sample sizes and the study 
populations.

In the present study, we demonstrated that the IL-
21R rs2285452 SNP was associated with HBV-related 
HCC. The IL-21R rs2285452 polymorphism is located in 
the 3’-UTR. The patients with the AA genotype of IL-21R 
rs2285452 show higher risk of HBV-related HCC than 

those with the AG/GG genotype. In a previous study, the 
IL-21R rs2285452 polymorphism showed differential 
genotype distribution in Hashimoto’s thyroiditis (HT) 
and control subjects [40]. Moreover, the IL-21 rs2221903 
and IL-21R rs3093301 polymorphisms were associated 
with chronic HBV infection, an interactive role of 
IL21R rs3093301 CC with IL21 rs2221903 in inducing 
the elevation of IL-21 and IgE production in the HBV 
patients, thereby suggesting that the SNPs in the IL-
21 and IL-21R genes influence the susceptibility and 
persistence of HBV by affecting serum IL-21 and IgE 
levels [38].

Our finding suggests that the SNPs in IL-21R play 
an important role in HBV infection and HBV-related 
HCC. We postulate that IL-21 induces HBV-related HCC 
cells. On the other hand, IL-21 probably enhances the 

Table 5: Comparison of genotype and allele frequencies between CHB and control groups
Gene SNP Group allele Allele n (%) OR (95%CI) P Genotype n (%) P

1 2 1 2 11 12 22

IL-21 rs2221903 CHB A G 542 (89.74) 62 (10.26)
1.23 [0.87-1.74] 0.24

234 (80.47) 56 (18.54) 3 (0.99)
0.47

Control 238 (24.33) 87 (12.32) 270 (76.49) 79 (22.38) 4 (1.13)

IL-21 rs4833837 CHB A G 537 (88.91) 67 (11.09)
1.16 [0.83-1.62] 0.40

241 (79.80) 55 (18.21) 6 (1.99)
0.51

Control 617 (87.39) 89 (12.61) 270 (76.49) 77 (21.81) 6 (1.70)

IL-21R rs2285452 CHB A G 61 (10.10) 543 (89.90)
0.88 [0.62-1.25] 0.47

8 (2.65) 45 (14.90) 249 (82.45)
0.39

Control 80 (11.33) 626 (88.67) 7 (1.98) 66 (18.70) 280 (79.32)

STAT3 rs1053023 CHB A G 425 (70.36) 179 (29.64)
1.10 [0.87-1.40] 0.41

145 (48.01) 135 (44.70) 22 (7.29)
0.61

Control 482 (68.27) 224 (31.73) 162 (45.89) 158 (44.76) 33 (9.35)

JAK3 rs3008 CHB T C 344 (56.95) 260 (43.05)
0.96 [0.77-1.20] 0.72

97 (32.12) 150 (49.67) 55 (18.21)
0.50

Control 395 (55.95) 311 (44.05) 117 (33.14) 161 (45.61) 75 (21.25)

CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.

Table 6: Comparison of genotype and allele frequencies between cirrhosis and control groups

Gene SNP Group Allele Allele n (%) OR 
(95%CI)

P Genotype n (%) P

1 2 1 2 11 12 22
IL-21 rs2221903 Cirrhosis A G 192 (83.48) 38 (16.52)

0.48 [0.15-1.55] 0.22
78 (67.83) 36 (31.30) 1 (0.87)

0.15
Control 619 (87.68) 87 (12.32) 270 (76.49) 79 (22.38) 4 (1.13)

IL-21 rs4833837 Cirrhosis A G 195 (84.78) 35 (15.22)
1.70 [0.52-5.57] 0.38

80 (69.57) 35 (30.43) -
0.07

Control 617 (87.39) 89 (12.61) 270 (76.49) 77 (21.81) 6 (1.70)

IL-21R rs2285452 Cirrhosis A G 27 (11.74) 203 (88.26)
1.16 [0.68-1.97] 0.60

1 (0.87) 25 (21.74) 89 (77.39)
0.58

Control 80 (11.33) 626 (88.67) 7 (1.98) 66 (18.70) 280 (79.32)

STAT3 rs1053023 Cirrhosis A G 147 (63.91) 83 (36.09)
0.95 [0.62-1.46] 0.83

49 (42.61) 49 (42.61) 17 (14.78)
0.26

Control 482 (68.27) 224 (31.73) 162 (45.89) 158 (44.76) 33 (9.35)

JAK3 rs3008 Cirrhosis T C 118 (51.30) 112 (48.70)
1.28 [0.86-1.92] 0.23

30 (26.09) 58 (50.43) 27 (23.48)
0.37

Control 395 (55.95) 311 (44.05) 117 (33.14) 161 (45.61) 75 (21.25)

CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.



Oncotargets663www.impactjournals.com/oncotarget

antibody-dependent cytotoxicity of NK cells. IL-21 in 
combination with soluble programmed death receptor-1 
(PD-1) stimulated different periods of B lymphocyte, 

T lymphocyte and NK cell proliferation by IL-2, IFNγ, 
whereas, down-regulation of IL-10 significantly inhibited 
tumor growth [31, 41]. Furthermore, HBV infection 

Table 7: Comparison of genotype and allele frequencies between HCC and control groups

Gene SNP Group Allele Allele n (%) OR (95%CI) P Genotype n (%) P

1 2 1 2 11 12 22

IL-21 rs2221903 HCC A G 227 (87.98) 31 (12.02)
0.43 [0.13-1.45] 0.17

102 (79.07) 23 (17.83) 4 (3.01)
0.20

Control 619 (87.68) 87 (12.32) 270 (76.49) 79 (22.38) 4 (1.13)

IL-21 rs4833837 HCC A G 233 (90.31) 25 (9.69)
2.95 [0.85-10.25] 0.09

105 (81.40) 23 (17.83) 1 (0.77)
0.46

Control 617 (87.39) 89 (12.61) 270 (76.49) 77 (21.81) 6 (1.70)

IL-21R rs2285452 HCC A G 29 (11.24) 229 (88.76)
1.34 [0.78-2.30] 0.30

8 (6.02) 13 (10.08) 108 (83.72)
0.007

Control 80 (11.33) 626 (88.67) 7 (1.98) 66 (18.70) 280 (79.32)

STAT3 rs1053023 HCC A G 170 (65.89) 88 (34.11)
0.74 [0.47-1.17] 0.20

55 (42.64) 60 (46.51) 14 (10.85)
0.78

Control 482 (68.27) 224 (31.73) 162 (45.89) 158 (44.76) 33 (9.35)

JAK3 rs3008 HCC T C 141 (54.65) 117 (43.35)
1.14 [0.74-1.75] 0.55

24 (18.60) 69 (53.49) 36 (27.91)
0.31

Control 395 (55.95) 311 (44.05) 75 (21.25) 161 (45.61) 117 (33.14)

CI = confidence interval, OR = odds ratio, SNP = single nucleotide polymorphism.

Table 8: The correlation analysis between the genotype and the Serological marker mode of HBV patients

n(%) rs2221903 (IL-21) rs4833837 (IL-21) rs2285452 (IL-21R) rs1053023 (STAT3) rs3008(JAK3)

AA AG GG AA AG GG AA AG GG AA AG GG TT TC CC

Mode

135 115
(44.75)

88
(76.52)

26
(22.61)

1
(0.87)

87
(75.65)

26
(22.61)

2 
(1.74)

3
(2.61)

14
(12.17)

98
(85.22)

51
(44.35)

58
(50.43)

6
(5.22)

33 (28.70) 62 
(53.91)

20 
(17.39)

13 1
(0.39)

- 1
(100.00)

- - 1
(100.00)

- - - 1
(100.00)

- 1
(100.00)

- - 1
(100.00)

-

1345 21
(8.2)

18
(85.71)

3
(14.29)

- 18
(85.71)

3
(14.29)

- - 4
(19.05)

17
(80.95)

11
(52.38)

7
(33.33)

3
(14.29)

6
(28.57)

10
(47.62)

5
(23.81)

1235 1
(0.39)

- 1
(100.00)

- - 1
(100.00)

- - - 1
(100.00)

1
(100.00)

- - - 1
(100.00)

-

12345 1
(0.39)

1
(100.00)

- - 1
(100.00)

- - 1
(100.00)

- - - 1
(100.00)

- - 1
(100.00)

-

145 96
(37.35)

79
(82.29)

15
(15.63)

2
(2.08)

77
(80.21)

15
(15.63)

4
(4.16)

1
(1.04)

15
(15.63)

80
(83.33)

43
(44.79)

43
(44.79)

10
(10.42)

34
(35.42)

47
(48.96)

15
(15.62)

1245 4
(1.56)

4
(100.00)

- - 4
(100.00)

- - 1
(25.00)

- 3
(75.00)

2
(50.00)

2
(50.00)

- 2
(50.00)

2
(50.00)

-

15 18
(7.00)

16
(88.89)

2
(11.11)

- 16
(88.89)

2
(11.11)

- - 3
(16.67)

15
(83.33)

10
(55.56)

6
(33.33)

2
(11.11)

8
(44.44)

5
(27.78)

5
(27.78)

P 0.46 0.36 0.00 0.81 0.79

1: HBsAg; 2: anti-HBs; 3: HBeAg; 4: anti-HBe; 5: anti-HBc. 135: HBsAg(+), HBeAg(+), anti-HBc(+); 13: HBsAg(+), HBeAg (+); 1345: HBsAg(+), 
HBeAg(+), anti-HBe(+), anti-HBc(+); 1235: HBsAg(+), anti-HBs(+), HBeAg(+), anti-HBc(+); 12345: HBsAg(+), anti-HBs(+), HBeAg(+), anti-
HBe(+), anti-HBc(+); 145: HBsAg(+), anti-HBe(+), anti-HBc(+);1245: HBsAg(+), anti-HBs(+), anti-HBe(+), anti-HBc(+); 15: HBsAg(+), anti-
HBc(+).
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promotes HCC, whereas, activated CD4+ T lymphocytes 
and NK cells that produce IL-21 play a critical role in 
antitumor immunity [39]. Moreover, HBV infection 
suppresses NK cell proliferation, differentiation or 
activation [38]. Although we did not find a difference, 
previous studies have shown that IL-21 and IL-21R play 
an important role in promoting liver fibrosis. They are 
associated with a significant increase in HBV in patients 
with liver cirrhosis. Excessive IL-21 is produced by 
the peripheral Thl7 cells and liver cells, which further 
results in induced activation of hepatic stellate cells, 
which contributes to the severity of the disease and high 
expression of IL-17 and IL -21 by the Thl7 cells [42].

IL-21 activates the JAK-STAT, PI 3-kinase (PI3K), 
and MAPK signaling pathways [43]. The activation of 
the JAK-STAT signaling pathway by IL-21 has been 
extensively studied in this [44]. JAK3 and STAT3 are 
the key proteins in the JAK-STAT signaling pathway. 
Polymorphisms in the STAT3 gene are associated with a 
variety of tumors. The STAT3 rs1053023 SNP in the 3’-
UTR reduces the risk of B-cell non-Hodgkin’s lymphoma 
as well as other lymphoma subtypes such as Diffuse large 
B-cell lymphoma (DLBCL), Follicular lymphoma (FL) 
and Chronic lymphocytic leukaemia (CLL) [45, 46]. 
However, the relationship between STAT3 rs1053023 SNP 
and HBV is unclear. In our study, there was no association 

Table 9: The correlation analysis between the allele frequency and the Serological marker mode of HBV

SNPs Allele Serological marker mode P

135(n=230) 13(n=2) 1345(n=42) 1235(n=2) 12345(n=2) 145(n=192) 1245(n=8) 15(n=36)

rs2221903 
(IL-21)

A 202 (87.83) 1 (50.00) 39 (92.86) 1 (50.00) 2 (100.00) 173 (90.10) 8 (100.00) 34 (94.45) 0.19

G 28 (12.17) 1 (50.00) 3 (7.14) 1 (50.00) - 19 (9.90) - 2 (5.56)

rs4833837 
(IL-21)

A 200 (86.96) 1 (50.00) 39 (92.86) 1 (50.00) 2 (100.00) 169 (88.02) 8 (100.00) 34 (94.45) 0.21

G 30 (13.04) 1 (50.00) 3 (7.14) 1 (50.00) - 23 (11.98) - 2 (5.56)

rs2285452 
(IL-21R)

A 20 (8.70) - 4 (9.52) - 2 (100.00) 17 (8.85) 2 (25.00) 3 (8.33) 0.00

G 210 (91.30) 2 (100.00) 38 (90.48) 2 (100.00) - 175 (91.15) 6 (75.00) 33 (91.67)

rs1053023 
(STAT3)

A 160 (69.57) 1 (50.00) 29 (69.05) 2 (100.00) 1 (50.00) 129 (67.19) 6 (75.00) 26 (72.22) 0.95

G 70 (30.43) 1 (50.00) 13 (30.95) - 1 (50.00) 63 (32.81) 2 (25.00) 10 (27.78)

rs3008 
(JAK3)

T 128 (55.65) 1 (50.00) 22 (52.38) 1 (50.00) 1 (50.00) 115 (59.90) 6 (75.00) 21 (58.33) 0.94

C 102 (44.35) 1 (50.00) 20 (47.62) 1 (50.00) 1 (50.00) 77 (40.10) 2(25.00) 15 (41.67)

1: HBsAg; 2: anti-HBs; 3: HBeAg; 4: anti-HBe; 5: anti-HBc. 135: HBsAg(+), HBeAg(+), anti-HBc(+); 13: HBsAg(+), HBeAg (+);1345: 
HBsAg(+), HBeAg(+), anti-HBe(+), anti-HBc(+); 1235: HBsAg(+), anti-HBs(+), HBeAg(+), anti-HBc(+);12345: HBsAg(+), anti-
HBs(+), HBeAg(+), anti-HBe(+), anti-HBc(+); 145: HBsAg(+), anti-HBe(+), anti-HBc(+); 1245: HBsAg(+), anti-HBs(+), anti-HBe(+), 
anti-HBc(+); 15: HBsAg(+), anti-HBc(+).

Table 10: Primer sequences of the target SNPs

Gene SNPs Primer Length

IL-21 rs2221903 A/G F:5’-AGACACAGCTCTGCTGCTTG-3’ 116

R:5’-CACTGACGCCCATATTGATG-3’

rs4833837 A/G F:5’-TTTGTGGAAGGTGGTTTCCT-3’ 120

R:5’-TGAGTGGTCAGCTTTTTCCTG-3’

IL-21R rs2285452 G/A F:5’-CTGGGATAATGCCCATGGTA-3’ 126

R:5’-ACGGCTGTTGTCATCTGTTG-3’

JAK3 rs3008 T/C F:5’-GGCCTTATGAGGGTCCTCTACT-3’ 122

R:5’-ATGCCCATCTGTCTTGAACC-3’

STAT3 rs1053023 A/G F:5’-AGGGCTTCTCTGGAGCAGAT-3’ 135

R:5’-GCCTGAGGACCCTGTTCTTT-3’
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between HBV pathogenesis and STAT3 rs1053023 and 
JAK3 rs3008 SNPs. However, STAT3 promotes cell 
cycle progression and cell proliferation of hepatocytes 
in response to liver regeneration [47, 48]. Hence, further 
studies are needed to explore the role of SNPs in the JAK-
STAT pathway in susceptibility to infectious diseases.

The serological markers (HBsAg, anti-HBs Ab, 
HBeAg, anti-HBe Ab and anti–HBc Ab) are closely 
associated with the diagnosis of HBV infection [49]. 
In general, they are used to determine if a suspected 
individual is suffering from HBV infection and estimate 
the replication status of HBV. The serological markers 
showed variability probably due to individual variations. 
In our study, there was no association between the 
genotype and allele frequency of the 5 polymorphisms 
and the 8 serological marker modes. Although there was 
significant correlation between the serological marker 
modes and the distribution of the IL-21R rs2285452 
genotypes and alleles (P = 0.00, P = 0.00, respectively), 
the findings need to be confirmed by larger sample 
sizes because insufficient sample size may have caused 
a bias. Moreover, IL-21 serum levels modulate HBsAg 
seroconversion during treatment [45].

The main limitation of our study is the limited 
sample size. Hence, the functional consequences of the 
SNPs in the IL-21-JAK/STAT signaling pathway in HBV- 
related pathogenesis needs to be confirmed by large-scale 
studies in the future.

In summary, our study demonstrates that the IL-21R 
rs2285452 AA genotype is a risk factor for HBV infections 
and HBV-related HCC. Our study suggests that SNPs in 
the IL21-JAK-STAT signaling pathway modulate host 
immune responses to HBV infection and influence HBV-
related disease outcomes.

MATERIALS AND METHODS

Ethics statement

This study was approved by the Ethics Committee 
of West China Hospital, Sichuan University and conducted 
according to the World Medical Association Declaration of 
Helsinki guidelines. Signed informed consent forms were 
obtained from all the study subjects.

Study subjects

We recruited 546 HBV patients that were diagnosed 
at the West China Hospital of Sichuan University between 
May 2014 and December 2015. These patients were 
further divided into three subgroups based on the disease 
progression, namely, chronic hepatitis B (CHB; 302 
cases), cirrhosis (115 cases) and hepatocellular carcinoma 
(HCC; 129 cases). Two physicians independently 
diagnosed and evaluated each patient according to the 
following criteria: (1) CHB subgroup: patients with an 

HBV infection history based on HbsAg positivity for more 
than six months; patients were all HBsAg positive and in 
some cases HBV DNA positive; high serum ALT levels 
or histological examination showed inflammatory liver 
injury; (2) Cirrhosis subgroup: histological examination 
showed diffuse fibroplasias and pseudolobules in addition 
to CHB-related pathology; (3) HCC subgroup: HCC was 
diagnosed and staged considering the HBV infection 
history, clinical symptoms, imaging data, and AFP test 
results.

We excluded individuals with a history of other 
infectious diseases such as HIV and syphilis and other 
complex health problems, such as cardiomyopathy, 
hypertension or diabetes. We also enrolled 353 healthy 
subjects based on physical examination from the general 
population. Based on the HBV serological marker testing, 
the controls were divided into negative (253 cases) and 
anti-HBs positive (100 cases) subgroups.

Selection of SNPs

We searched the dbSNP (http://www.ncbi.nlm.nih.
gov/projects/SNP/), miRBase registry (http://microrna.
sanger.ac.uk) to identify SNPS in the IL-21, IL-21R, JAK3 
and STAT3 genes with a minor allele frequency (MAF) ≥ 
0.05. We identified 5 potential functional polymorphisms 
namely rs2221903 and rs4833837 in IL-21, rs2285452 in 
IL-21R, rs3008 in JAK3 and rs1053023 in STAT3 based 
on the following criteria: (1) reported MAF was ≥ 0.10 
for the SNPs in the Chinese Han population; (2) SNPs 
were located in potential functional regions such as 
exons, UTRs and promoters (within 2kb of the genes); (3) 
sequencing primers were available; and (4) SNPs were 
reported in previous studies.

Genomic DNA extraction

We collected 5-10 ml peripheral blood sample with 
disposable syringes under aseptic conditions from each 
study subject. Then, genomic DNA was extracted from 
200 μl of blood using the QIAamp® DNA Blood mini 
kit (Qiagen, Germany) according to the manufacturer’s 
instructions. The DNA was quantified in each sample and 
then diluted to 10 ng/μL with AE buffer(10 mM Tris-Cl 
0.5 mM EDTA; pH 9.0).

Genotyping by HRM analysis

The PCR primers used to detect the five SNPs by 
the high resolution melting (HRM) method are shown in 
Table 10. The primers were designed using Primer premier 
3.0 (http://bioinfo.ut.ee/primer3-0.4.0/) for the target gene 
sequences obtained from NCBI website (http://blast.ncbi.
nlm.nih.gov/).

PCR was performed in the LightCycler 480 Real-
Time PCR System (Roche Diagnostics). The total PCR 
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reaction mixture (10 μL) contained 5 μL of Roche PCR 
mix (DNA Polymerase, dNTP, buffer and fluorescent dye), 
2.5 μL of MgCl2 (Roche), 0.2 μL each of forward and 
reverse primers, 2.4 μL of double-distilled water and 1 
μL of purified genomic DNA. The PCR protocol included 
hot start at 95°C for 15 min followed by 55 cycles of 
denaturation at 95°C for 15 s, annealing at 63°C for 10 s, 
and extension at 72°C for 10 s. Then, HRM analysis was 
performed by denaturing at 95°C for 30 s, cooling to 65°C 
and then gradually increasing the temperature from 65°C 
to 95°C at a rate of 1°C/s in 30 s. Finally, the reaction was 
cooled to 40°C for 30 s. Data were collected and analyzed 
by the LightCycler® 480 Gene Scanning software v1.2 
(Roche Diagnostics, Germany). First, normalization 
was performed by selecting linear regions before (100% 
fluorescence) and after (0% fluorescence) the melting 
transition. Then, temperature shift was carried out by 
selecting a threshold using the LightCycler® 480 Gene 
Scanning software v1.2 (Roche Diagnostics, Germany). 
Finally, HRM curve’s calculations and automatic 
groupings were performed in each sample. Samples 
with delayed PCR amplification or with less than 60% 
fluorescence than the average were excluded. The samples 
were divided into various subsets based on the differences 
in the melting curve clusters, and then genotyping was 
determined relative to the reference samples of known 
genotypes. To improve the reliability of genotyping, three 
control samples of each SNP were run in all experiments 
[50]. Random samples were verified by sequencing.

DNA sequencing

The genotypes of some samples were previously 
confirmed by sequencing the control samples of the five 
SNPs. The PCR products were purified using 1 unit of 
Shrimp Alkaline Phosphatase. Then, the PCR samples 
were treated with Shrimp Alkaline Phosphatase (SAP) 
and sequenced using the same forward primers for the 
5 SNPs that were used for the PCR with the BigDye 
Terminator v3.1 Cycle Sequencing Kit and the sequence 
was determined using the ABI 3130 genetic analyzer 
(Applied Biosystems).

Detection of the HBV serological markers

We collected 3 mL peripheral vein blood samples 
from patients into vacuum tubes containing heparin. After 
separating out the blood cells, we determined the HBV 
serological markers in the plasma: 1:HBsAg; 2: anti-HBs; 
3: HBeAg; 4: anti-HBe; 5: anti-HBc by using the Modular 
Analytics E170 (Roche Diagnostics), and there are eight 
different modes. The most popular mode was “135” 
(HBsAg+, HBeAg+, anti-HBc +) which prompted the 
virus replication stage with serious infectivity, followed by 
the mode of “145” (HBsAg+, anti-HBe+, anti-HBc +), in 

addition to “135” and “145”, there were including six rare 
modes (“13”, “1345”, “1235”, “1245”, “15” and “12345”). 
“13” (HBsAg+, HBeAg+) usually appeared in chronic 
carriers with strong infection; the contagious capability of 
subjects with “15” (HBsAg+, anti-HBc +) was relatively 
weak; “1345” (HBsAg+, HBeAg+, anti-HBe+, anti-HBc 
+) prompted the chronic infection; “1235” (HBsAg+, anti-
HBs+, HBeAg+, anti-HBc +) and “1245” (HBsAg+, anti-
HBs+, anti-HBe+, anti-HBc +) prompted the subclinical 
or atypical infection; “12345” (HBsAg+, anti-HBs+, 
HBeAg+, anti-HBe+, anti-HBc +) may prompt that the 
anti-HBs generated by the bodies have mutated. [49].

Statistical analysis

The data regarding age and gender of the different 
patient subgroups and control subjects was analyzed by 
the t-test and Pearson χ2 test. The deviation of Hardy-
Weinberg equilibrium (HWE) for each group was assessed 
using the online SHEsis software (http://analysis2.bio-x.
cn/SHEsisMain.htm). The assessment of the genotype and 
the allele frequencies as well as their association with the 
subgroup pathology was determined as follows: (a) Binary 
Logistic Regression model was used to compare HBV-
infected patients as well as cirrhosis and HCC subgroup 
patients with their corresponding controls; (b) Pearson χ2 
analysis was used to compare HBV-infected patients and 
the CHB subgroup with their controls. The effect of SNPs 
was tested for odds ratio (OR), 95% confidence interval 
(CI). All statistical analyses were performed by the SPSS 
17.0 software. P < 0.05 was considered statistically 
significant.
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