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Exon 3 mutations of CTNNB1 drive tumorigenesis: a review
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ABSTRACT

The canonical Wnt/β-catenin signaling pathway, an important modulator 
of progenitor cell proliferation and differentiation, is highly regulated for the 
maintenance of critical biological homeostasis. Decades of studies in cancer genetics 
and genomics have demonstrated that multiple genes encoding key proteins in this 
signaling pathway serve as targets for recurrent mutational alterations. Among 
these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. 
β-catenin contributes in transporting extracellular signals for nuclear programming. 
Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of 
cancers. These mutations alter the spatial characteristics of the β-catenin protein, 
leading to drastic reprogramming of the nuclear transcriptional network. Among 
the outcomes of this reprogramming are increased cell proliferation, enhanced 
immunosuppression, and disruption of metabolic regulation. Herein we review the 
current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss 
their possible therapeutic implications for cancer.

INTRODUCTION

Cancer is a systems disease with a complicated 
pathogenesis. Tumorigenesis is characterized by abnormal 
regulation of cell growth and cell death. Mutations in 
proto-oncogenes and tumor suppressor genes underlie 
tumorigenesis by dysregulation of intracellular signaling 
pathways that are critical for the normal physiology of 
organisms [1]. The canonical Wnt/β-catenin signaling 
pathway is one such prominent pathway, being tightly 
regulated for maintenance of biological homeostasis. 
Frequently, this pathway is aberrantly activated in 
numerous cancers, including gastrointestinal, prostate, 
breast, and ovarian cancer [2–5]. Over the past several 
decades, studies of cancer genetics and genomics have 

demonstrated that multiple genes encoding key proteins 
in this signaling pathway are targets for recurrent 
mutational alterations. Among these proteins, β-catenin 
and Adenomatous polyposis coli (APC) are two key nodes 
that physically combine with each other in a complex. The 
tumor suppressor gene, APC, is one frequently mutated 
gene of Wnt signaling in human cancers [6]. As one of 
the central nodes, β-catenin contributes in transporting 
extracellular signals for nuclear programming [7]. 
β-catenin mutations may lead to constitutive activation of 
the Wnt/β-catenin signaling pathway and reprogramming 
of downstream nuclear transcriptional networks [8, 9]. 
In this review, we provide a focused overview of the 
integrated Wnt/β-catenin signaling pathway and the 
basic structure and biological roles of β-catenin. We 
also summarize the current understanding of β-catenin 
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mutations in tumorigenesis and discuss their possible 
therapeutic implications for cancer.

OVERVIEW OF THE CANONICAL WNT/
β-CATENIN SIGNALING PATHWAY

The Wnt gene was first discovered in 1982 by Nusse 
and Varmus while studying the transcription mechanisms 
for a tumor virus in a murine mammary tumor [10]. 
Initially identified as Int1, the gene was determined to 
encode proteins that transfer growth and development 
signals between cells. Further studies demonstrated that 
this gene could make Drosophila flies wingless in normal 
embryonic development, and it was renamed Wnt [11, 
12]. The Wnt protein family is cysteine-rich secreted 
glycoprotein with both autocrine and paracrine functions 
[13]. There are currently 19 identified members, including 
wnt1, wnt3A, and wnt5A [14–16]. Wnt signaling has 
proven to contribute on the embryonic development. 
The three highly characterized Wnt signaling pathways 
are the noncanonical Wnt-Ca2+ pathway, noncanonical 
planar cell polarity pathway, and canonical Wnt/β-catenin 
signaling pathway [13, 17–19]. In general, these pathways 
can be placed in two categories according to the presence 
or absence of β-catenin: canonical or noncanonical, 
respectively. Several other signal transduction pathways 
involve Wnt, such as the Wnt/Rac, Wnt/cAMP, and Wnt/
Rho pathways [18, 20, 21].

The complexity of the canonical Wnt/β-catenin 
pathway derives from the high number of ligands and 
receptors involved in signaling that can elicit a variety of 
intracellular responses [22, 23]. As the key intracellular 
transducer of this pathway, β-catenin plays important 
roles in the entire process (Figure 1). Activity of β-catenin 
is controlled by the destruction complex, consisting 
of APC, AXIN-1, AXIN-2, casein kinase-1ɑ (CK-1), 
protein phosphatase 2A (PP2A), and glycogen synthase 
kinase (GSK)-3β [7, 24–26]. This pathway has two states 
dependent upon the presence or absence of Wnt ligands.

In the absence of Wnt ligands, cytoplasmic 
β-catenin is phosphorylated at N-terminal serine-threonine 
residues by the destruction complex and degraded by the 
proteasome via the ubiquitin-proteasome pathway [7, 27]. 
In general, the ubiquitin-proteasome pathway involves 
three parts: a ubiquitin-activating enzyme, a ubiquitin-
conjugating enzyme, and a ubiquitin ligase [28]. Without 
nuclear accumulation of β-catenin, nuclear T-cell factor/
lymphoid enhancer factor (TCF/LEF) transcription factors 
associate with co-repressor proteins via their high-mobility 
group domains and act as transcriptional repressors. 
Authors reported that the co-repressor proteins contain 
Groucho/transducin-like enhancer of split and CREB-
binding protein (CBP) [29–31].

Alternatively, in the presence of Wnt, ligand 
binds to the cell-surface receptor Frizzled and acts on 
Dishevelled protein [32, 33]. Frizzled is a seven-pass 

transmembrane protein with a long amino terminal 
extension called a cysteine-rich domain. The cysteine-
rich domain is a special structure where Wnt proteins 
bind directly [15, 16, 34]. In addition to Frizzled, a long 
single-pass transmembrane molecule named low-density 
lipoprotein receptor-related protein (LRP) is bound 
to Wnt ligands. The identity of this protein is LRP5 or 
LRP6 in vertebrates and in Drosophila, a similar protein 
is derived from the arrow gene [35]. The cytoplasmic tail 
of LRP may combine with Axin directly [36, 37]. Other 
single-pass transmembrane proteins, such as receptor-like 
tyrosine kinase and receptor tyrosine kinase-like orphan 
receptor-1/2, can function as co-receptors, influencing 
Wnt signaling [38–40]. Moreover, numerous studies 
have suggested that the R-Spondin proteins also play 
potential roles in Wnt signaling and could stabilize the 
levels of cytosolic β-catenin and dramatically synergize 
with wnt3A [41–43]. Following Wnt binding, the protein 
kinases (A, B, and C), phosphoinositide 3-kinase (PI3K)/
Akt, and mitogen-activated protein kinase (MAPK) 
inhibit the phosphorylation of GSK-3β. The destruction 
complex then becomes inactive, preventing β-catenin 
phosphorylation and destruction. Hypophosphorylated 
β-catenin accumulates in the cytoplasm and eventually 
translocates to the nucleus to function as a transcriptional 
factor, despite lacking a nuclear localization signal 
[44–47]. Thus, the networks of a broad spectrum of Wnt 
downstream target genes are programmed [7]. These target 
genes, such as cyclin D1, insulin-like growth factor-1, and 
CD44, are critical to some hallmarks of cancer such as 
epithelial-to-mesenchymal transition and metastasis [48, 
49].

OVERVIEW OF β-CATENIN AND ITS 
GENE MUTATIONS IN TUMORIGENESIS

The primary and three-dimensional structures of 
β-catenin

β-catenin is a multifunctional cytoplasmic protein 
composed of a polypeptide chain [50]. It is encoded by 
the gene CTNNB1, which maps to 3p21 [27] and with 
a size of 23.2 kb. CTNNB1 has 16 exons according to 
restricted mapping and partial sequence analysis [51]. The 
primary structure of β-catenin consists of three domains: 
a 550-amino-acid central repeat, an approximately 
150-amino-acid N-terminal domain, and an approximately 
100-amino-acid C-terminal domain on both sides (Figure 
2) [52–56]. The central repeat domain is also known as 
armadillo repeats [57]. The armadillo repeat domain 
consists of 12 armadillo repeats [58], each of which 
contains approximately 42 residues that form three helices 
arranged in a triangular shape. A superhelix, formed by 
these 12 contiguous repeats, features a long, positively 
charged groove. The third helix of each repeat constitutes 
the floor of this groove [58]. Generally, the N-terminal 



Oncotarget5494www.impactjournals.com/oncotarget

domain is the phosphorylation site for GSK-3β and casein 
kinase-1 as well as the binding site for ɑ-catenin with the 
C-terminal domain involved in combination with nuclear 
(TCF/ LEF) [59, 60]. The N- and C-terminal domains 
may combine with the armadillo repeat domain via a fold-
back mechanism that may regulate the partner-binding 
properties of the armadillo repeat [61–64].

The basic biological function of β-catenin

β-catenin is crucial for two important 
developmental processes: 1) establishment and 
maintenance of cell-type-specific cell-to-cell adhesion 
and 2) regulation of target gene expression via the 
Wnt signaling pathway [52, 65]. It also regulates the 
stem cell transcriptome via the Wnt, Notch, Hippo, and 
Hedgehog pathways [66–69]. In most cases, β-catenin 
needs to associate with several other proteins to perform 
its functions. Under normal physiological conditions, 

β-catenin is mainly present in the cell membrane and 
can participate in a complex with E-cadherin via the 
armadillo repeats [70–72]. E-cadherin, also known as 
uvomorulin, is the major cadherin molecule expressed 
by epithelial cells [73–75]. This complex can mediate 
the connection of E-cadherin with the cytoskeleton 
and is involved in cell adhesion. The complex can 
function to maintain normal cell morphology and 
inhibit tumor cell invasion and metastasis. E-cadherin 
can also inhibit β-catenin’s transcriptional activities by 
recruiting β-catenin from its transcriptional complexes 
[76]. Furthermore, in adherens junctions, β-catenin 
combines with ɑ-catenin. ɑ-catenin can link adherens 
junctions with the actin cytoskeleton by associating with 
filamentous actin directly or indirectly; this cytoskeletal 
linkage is crucial for the adhesion of cells [52, 77]. In 
summary, β-catenin provides obvious connections among 
extracellular signals, cell-cycle management, and gene 
transcription [23, 78].

Figure 1: The biological roles of β-catenin in the Wnt/β-catenin signaling pathway. This pathway has two states dependent 
upon the presence or absence of Wnt ligands. When Wnt ligands are absent, β-catenin is phosphorylated by the destruction complex and 
degraded. When Wnt ligands are present, β-catenin is not degraded and translocates to the nucleus and functions as a transcription factor.
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Hot-spot exon mutations of CTNNB1 can drive 
tumorigenesis

Exon 3 of CTNNB1 is a key exon encoding serine-
threonine phosphorylation sites for GSK-3β that activates 
degradation of β-catenin [79]. The CTNNB1 mutations 
are frequently missense mutations [27]. Nearly all of 
them have been localized in this hot-spot exon 3, and 
most of them have occurred at S33, S37, S45, T41, D32, 
and G34 [6, 57, 80–82]. Of these, S33, S37, and T41 
are the phosphorylation sites for GSK-3β; S45 is the 
phosphorylation site for casein kinase-1; and D32 and G34 
are essential for the interaction of β-catenin with Fbw1.

Gene mutations leading to constitutive activation 
of the Wnt/β-catenin signaling pathway, especially 
the canonical one, are early events in the development 
of some cancer cases [83]. Moreover, a high level 
of β-catenin activity is required for cancer initiation 
[84]. Initial characterization of mutations of CTNNB1 
and deregulation of the canonical Wnt pathway were 
in colorectal cancer cases [85, 86]. Since then, these 
mutations have been described and studied in several other 
types of malignancies [87–92]. Paul Polakis (2000) has 

summarized CTNNB1 mutation spots and rates in human 
cancers in detail [93]. For example, a mutation of β-catenin 
(S37F) activates Wnt signaling in several melanoma cell 
lines [87]. Such mutations have been shown to result in 
the accumulation of nuclear β-catenin and stabilization of 
the protein and tumorigenesis [94, 95]. These mutations 
stabilize β-catenin by abrogating the phosphorylation-
dependent interaction of β-catenin with Fbw1 [57]. Fbw1 
is a type of F-box protein that is a component of the 
ubiquitin ligase for β-catenin that associates with β-catenin 
phosphorylated by casein kinase-1ɑ and GSK-3β resulting 
in ubiquitination and degradation of β-catenin [57, 96]. In 
addition, other relatively benign tumors, such as desmoid-
type fibromatosis, also have CTNNB1 mutations and 
abnormal nuclear β-catenin expression [97, 98].

As described above, under normal physiological 
conditions, β-catenin is expressed mainly in the cell 
membrane. In contrast, the expression level of dissociative 
β-catenin in the cytoplasm is quite low owing to the 
combination with the destruction complex [7]. Whether 
the genes upstream from β-catenin are altered, or CTNNB1 
mutates, once a threshold of β-catenin accumulates in 
the cytoplasm and nucleus, this status reflects abnormal 

Figure 2: The primary structure of β-catenin and its relevant binding sites. β-catenin has three domains: a 550-amino-acid 
central repeat domain, an approximately 150-amino-acid N-terminal domain, and an approximately 100-amino-acid C-terminal domain. 
They are binding sites for E-cadherin, GSK-3β/CK-1, and TCF/LEF, respectively, and exert different roles.
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expression of β-catenin [99]. When degradation of 
β-catenins inhibited the level of dissociated β-catenin in the 
cytoplasm increases, the protein will then accumulate at 
high levels in the nucleus. Of all the molecular alterations 
that lead to disruptions of β-catenin degradation, the 
most common are mutations that activate β-catenin or 
inactivate APC [94]. For example, a report suggests APC 
mutations can correlate with high expression levels of 
β-catenin whereas wild-type APC expression can reduce 
β-catenin levels in colorectal cancer cells [93, 100]. The 
accumulated β-catenin in the nucleus can then combine 
with TCF/LEF transcription factors [101–104]. The 
TCF/β-catenin complex can activate the transcription of 
proto-oncogenes in humans [105]. The result is activated 
transcription of downstream cell-proliferation related 
genes such as c-myc and cyclin D1. This process promotes 
cell proliferation [106]. Thus, abnormal expression of 
β-catenin in the cytoplasm and nucleus is regarded as an 
important indicator of malignancy [6, 79].

For some cancers, such as endometrioid endometrial 
carcinoma (EEC), studies have demonstrated that 40-60% 
of cases exhibited nuclear accumulation of β-catenin 
in tumor cells [107, 108]. Other studies identified an 
increase in CTNNB1 mutations in EEC compared to 
nonendometrioid endometrial carcinoma cases (NEEC) 
[27, 109, 110]. Detailed mutational rates are in Table 1. 
CTNNB1 mutations seemingly occurr in the early stages 
of endometrial carcinogenesis [110]. Additionally, authors 
have described nuclear accumulation of β-catenin and 
mutations in exon 3 of CTNNB1 in endometrioid ovarian 
carcinoma [111–116]. From these aspects, at least in part, 
both nuclear expression and mutations of β-catenin are 
characteristic of the endometrioid phenotype [9]. Liu and 
colleagues (2014) conducted a systematic, comprehensive 
study of CTNNB1 mutations in EEC [117]. They 
performed an integrated analysis including whole-exome 
sequencing, RNA sequencing, and reverse-phase protein 
array profiling. The clinical study population consisted of 
two groups: 271 EEC patients whose data were obtained 
from The Cancer Genome Atlas and a validation group 
of 184 EEC patients from The University of Texas MD 
Anderson Cancer Center. One of the four genes expression 
clusters in The Cancer Genome Atlas group, cluster II, 
was enriched with the highest proportion of CTNNB1 
gene mutations. Eighty-seven percent of the tumors in 
this cluster carried CTNNB1 mutations. This cluster 
was associated with young, obese patients with grade 
1 or 2 tumors that were early stage at diagnosis (stages 
I or II) and had decreased expression of estrogen and 
progesterone receptors. Importantly, this cluster was also 
associated with decreased overall survival. Table 1  lists 
the rates of CTNNB1 mutations in these cases.

Although CTNNB1 mutations have been shown 
to induce the accumulation of nuclear β-catenin and 
activate the canonical Wnt pathway, some studies 
demonstrated that this accumulation can occur without 

CTNNB1 mutations [9, 106]. This may indicate that 
alterations of other molecules or signaling pathways, 
such as APC, AXIN1, AXIN2, γ-catenin, and the PI3K/
AKT signaling pathway, can modulate the Wnt pathway. 
Mutations in AXIN1 and AXIN2 can activate the Wnt 
pathway and have been associated with the development 
of a subset of colon, hepatic, and ovarian carcinomas and 
medulloblastomas [114, 118–120]. Overexpression of 
γ-catenin has been demonstrated to stabilize and increase 
the nuclear localization of β-catenin [121]. In addition, 
activation of PI3K/AKT by different mechanisms, such as 
GSK-3β inhibition and Ras activation, has been associated 
with nuclear accumulation of β-catenin in some cancers 
[122–124]. In some cancer cell lines, PI3K/AKT signaling 
activated β-catenin–mediated transcription [125]. 
Inhibition of PI3K/AKT signaling reduced Wnt signaling 
in medulloblastoma cells [126]. Similarly, in colon 
cancers, hepatocyte growth factor and MAPK signaling 
pathway may be regulators of Wnt signaling to mediate 
tumor progression [124, 127–130].

There are also critical upstream regulators of 
β-catenin, specifically p53 and microRNAs (miRNAs), 
that impact canonical Wnt signaling. As a tumor 
suppressor, loss of p53 function can activate canonical 
Wnt pathway by its transcriptional activity [131]. 
miRNAs are small and non-coding RNAs that can 
interact with untranslated regions of mRNA targets; 
repressing gene expression post-transcriptionally [132, 
133]. Studies in recent years have found that several 
miRNAs could regulate the canonical Wnt pathway. 
For example, miRNA-34 suppressed the transcriptional 
activity of β-catenin/TCF complexes by targeting the 
untranslated regions of Wnt pathway-regulated genes 
[131]. Additionally, miRNA-370-3p could inhibit 
downstream genes of Wnt pathway, like cyclin D1 
and c-myc, by binding with the 3’-untranslated region 
of β-catenin mRNA directly [134]. Roman Anton and 
colleagues (2011) performed a systematic screen of 470 
miRNAs and identified 38 miRNAs that either activate, 
or repress the canonical Wnt pathway [135]. miRNA-1 
and miRNA-613 acted upstream of β-catenin while 
miRNA-25 functioned at the level of β-catenin. From 
these studies, we can conclude that other factors in 
addition to CTNNB1 mutation can activate the canonical 
Wnt pathway.

THE CONNECTION BETWEEN β-CATENIN 
EXPRESSION AND IMMUNOSUPPRESSION 
IN THE CANCER MICROENVIRONMENT

Many types of tumors, including hematological 
malignancies and melanoma have been treated with 
immunotherapy [136, 137]. However, this approach 
often has insufficient antitumor effects [138, 139]. 
One important obstacle of this treatment approach is 
immunoescape through localized immunosuppression 
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and immunoresistance, which is one of the major 
malignant characteristics of cancer cells [140]. Cancer 
cells can activate some immunosuppressive cells such as 
regulatory dendritic cells (DCs), and regulatory T cells 
(Tregs) through production of many immunosuppressive 
molecules such as transforming growth factor (TGF)-β, 
interleukin (IL)-10 [140]. Researchers have found that 
β-catenin correlated to the infiltration of immune cells 
in the tumor microenvironment (Figure 3) [141, 142]. 
Tumor-intrinsic β-catenin signaling could inhibit T-cell 
infiltration in melanoma models and in patient-derived 
biopsies [141]. Melanoma gene microarray data have 
suggested that an activated Wnt/β-catenin signal in 
the cancer microenvironment can be correlated with a 
lack of an immune cell infiltration [143]. Additionally, 
overexpression and mutations of β-catenin can cause 
the production of IL-10 at high levels in melanoma cells 
[138]. Investigators have observed similar events in EC. 
In the immune microenvironment of EC, cancer cells 
can secrete many immunosuppressive molecules, such 
as IL-10, TGF-β, and indoleamine 2,3-dioxygenase [140, 
144] that could suppress the differentiation, maturation, 
and function of DCs and effector T cells [145]. Other 
immunosuppressive cells, such as regulatory DCs and 
Tregs, can be induced not only by TGF-β, IL-10 and 
other immunosuppressive molecules, but also by EC 
directly [140, 146]. Regulatory DCs also can induce 
Tregs. In addition, Tregs can potently suppress T-cell-
mediated immune responses [147–150]. According to a 
statistical analysis, CTNNB1 mutations were associated 
with TGF-β2, which contributes to tumor progression. 
These mutations also influenced the numbers of cytotoxic 
cells that can kill tumor cells, such as lymphocytes and 
macrophages [117]. From these data we may conclude that 

β-catenin has some connections with immunosuppresion 
in the cancer environment.

THE CONNECTION BETWEEN β-CATENIN 
EXPRESSION AND METABOLIC 
REGULATION

Metabolic regulation is essential to tumorigenesis, 
and metabolic reprogramming is one of the hallmarks of 
tumor cells [151]. Metabolic reprogramming in cancer 
cells may contribute in targeting therapy resistance [152]. 
Via the Warburg effect, glucose metabolism can confer a 
powerful growth advantage to tumor cells from oxidative 
phosphorylation to glycolysis regardless of the oxygen 
supply [153–155]. Tumor cells need more glucose than 
normal cells to meet their elevated anabolic and energy 
demands, and are more sensitive to glucose deprivation, 
a phenomenon known as glucose addiction, [155, 156]. 
Tumor cells seem to prefer the glycolytic pathway to 
oxidative phosphorylation to produce ATP to support 
their anabolic production of biomass [157–159]. This 
preference may be a protective strategy against reactive 
oxygen species. Hence, glycolysis can protect genome 
integrity during DNA replication [160–162].

The Wnt/β-catenin signaling pathway can induce 
the Warburg effect and establish metabolic zonation 
(Figure 4) [153, 163–165]. However, once this signaling 
pathway is blocked, the free: bound NADH ratio and 
lactate production decrease. Decreases in both can 
indicate decreased glycolysis. In addition, the expression 
of two downstream target genes, the lactate transporter 
MCT-1 (SLC16A1) and pyruvate dehydrogenase kinase, 
isozyme 1, are also downregulated due to this blockage 

Table 1: Frequency of CTNNB1 mutation in different types of EEC and EOC

Histology Mutation rate (%) Frequency (N) Reference

EEC 52 15/29 27

EEC 19 88/454 109

EEC 37 71/192 117

EEC 19 35/183 117

NEEC 0 0/14 27

AEH 14 3/21 110

EOC 50 3/6 111

EOC 54 7/13 112

EOC 16 10/63 114

EOC 31 14/45 114

EOC 26 6/23 115

EOC 38 8/21 116
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[166]. Pyruvate dehydrogenase kinase, isozyme 1 can 
phosphorylate and inhibit the pyruvate dehydrogenase 
complex in mitochondria, inhibiting the conversion of 
pyruvate to acetyl-CoA. This means that the next step, 
oxidative phosphorylation is blocked [167]. Therefore, 
pyruvate dehydrogenase kinase, isozyme 1 plays an 
important role in promotion of the glycolytic phenotype. 
Pyruvate kinase M2, one of the key enzymes in glucose 
metabolism, is highly expressed in human cancer cells 
and can stimulate glycolysis [168]. Authors have reported 
that nuclear pyruvate kinase M2 can activate β-catenin 
transactivation upon epidermal growth factor receptor 
activation [168].

Metformin has been used to treat hyperglycemia and 
type 2 diabetes mellitus [169]. This drug mainly increases 
insulin sensitivity, suppresses hepatic glucose production, 
reduces glucose absorption from the intestines, and 
reduces the incidence of lipolysis in adipocytes [170, 
171]. Metformin also has antineoplastic efficacy [172]. 
It can activate adenosine monophosphate-activated 
protein kinase (APMK), which maintains cellular energy 
homeostasis in response to various stimuli [173, 174]. 
In addition, sustained AMPK activation has been linked 

with apoptosis [175]. AMPK inhibits the expression of 
bone morphogenic protein and the activin membrane-
bound inhibitor (Bambi), which can induce Wnt/β-
catenin signaling pathway leading to cell proliferation and 
survival [173, 176]. Also, a positive feedback loop exists 
between Bambi and this pathway [173]. Taken together, 
these findings indicate that the Wnt/β-catenin signaling 
pathway has a relationship with the metabolicnetwork. 
Metabolic control can regulate the progression of tumors, 
which is accomplished by regulating the Wnt/β-catenin 
signaling pathway.

TARGETED APPLICATIONS OF β-CATENIN 
FOR CANCER TREATMENT

Researchers revealed that β-catenin was required 
for the development of triple-negative breast cancer that 
is estrogen-dependent [177]. In their study, they found 
that cell migration, colony formation, and epithelial-to-
mesenchymal transition in vitro and tumorigenesis in 
vivo were regulated by β-catenin in triple-negative breast 
cancer. In addition, they proved that the transcriptional 
activity of β-catenin was quite important for the 

Figure 3: The relationship between β-catenin and immunosuppression in the tumor microenvironment. Cancer cells can 
induce relevant immunosuppressive molecules and cells, such as TGF-β, IL-10, indoleamine 2,3-dioxygenase (IDO), Tregs, and regulatory 
DCs. They can inhibit T cells, which have toxic effects on cancer cells. Also, cancer-intrinsic β-catenin signaling can decrease T-cell 
infiltration. β-catenin also helps cancer cells secrete immunosuppressive molecules.



Oncotarget5499www.impactjournals.com/oncotarget

chemosensitivity of triple-negative breast cancer cells. 
So at least in part, β-catenin can be considered as one of 
therapeutic targets for this cancer.

Past studies have elaborated that antagonists of 
β-catenin or other proteins in the Wnt pathway could 
block this pathway and inhibit cell proliferation in many 
different tumor types [47, 95, 178–185]. Table 2 lists these 
antagonists and their possible mechanisms of action. For 
example, PKF115-584 is a small-molecule antagonist of 
the TCF/β-catenin complex [183]. It can decrease both 
cytoplasmic and nuclear β-catenin expression levels 
[186–188]. This antagonist downregulated the mRNA and 
protein expression levels for the critical proliferative genes 
of pancreatic neuroendocrine tumor cells [95]. Fiskus and 
colleagues (2015) used BC2059 to treat acute myeloid 
leukemia cells and found induction of apoptosis of the 
leukemia cells [47]. BC2059 is a small molecule that is 
considered to be an anthraquinone oxime analog. It can 
disrupt the binding of β-catenin to transducin β-like 1 and 
promote β-catenin degradation.

Besides the specific antagonists, hormones can 
influence the expression of β-catenin. For example, 
progesterone can counteract the accumulation of β-catenin 
in the nucleus and inhibit the Wnt/β-catenin signaling 
pathway [44, 108]. This hormone can also induce 
the expression of two inhibitors of the Wnt/β-catenin 
signaling pathway, DKK1 and FOXO1 [189–191]. DKK1 
can inhibit Wnt/β-catenin signaling by binding to the 

Wnt co-receptors LRP5 and LRP6 [192]. For FOXO1, 
investigators found that it could inhibit this signaling by 
binding to β-catenin [191–193].

CONCLUSION

In summary, the important canonical Wnt/β-catenin 
signaling pathway exerts potent biological functions. 
As evidence, induction of tumorigenesis occurs when 
any step in this pathway is deregulated. β-catenin is the 
key intracellular transducer of this signaling pathway. 
Abnormal expression and mutations of β-catenin have 
been regarded as important signs of malignancy [6, 79]. 
Researchers have described and studied its mutations in 
many cancers, including colon cancer, melanoma, cervical 
carcinoma, endometrial cancer (EC), hepatoblastoma, 
and primitive neuroectodermal brain tumors. β-catenin 
mutations also can be considered to be the initiating 
factors for tumorigenesis and are positively related to 
poor survival, although the specific mechanism of this 
tumorigenesis deserves further study [8, 9, 112, 194]. 
Hence, we conclude that if we specifically inhibit the 
abnormal expression of β-catenin, cancers could be treated 
more effectively.

Another noteworthy problem about β-catenin is 
that some studies demonstrated that β-catenin activation 
alone could not induce spontaneous development of 
hepatocellular carcinoma in mouse models [195]. 

Figure 4: The relationship between Wnt/β-catenin signaling pathway and glucose metabolism in cancer cells. The Wnt/
β-catenin signaling pathway can induce the Warburg effect and then promote cancer cell survival. Cancer cells prefer to use the Warburg 
effect to satisfy their energy demands regardless of the presence or absence of oxygen.
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β-catenin`s role of tumor promotion requires the 
participation of other proteins, such as constitutive 
androstane receptor, which is a primary regulator of drug 
metabolism and detoxification. As a multifunctional 
protein, β-catenin can participate in a variety of 
physiological activities. As we described above, β-catenin 
can enhance the survival of Tregs and induce the secretion 
of immunosuppressive cytokines such as IL-10 and 
TGF-β. Treatments focusing on immunosuppression in the 
cancer microenvironment resulting from β-catenin should 
deserve more attention. The Warburg effect is well known 
to be one of the hallmarks of tumor cells. These cells prefer 
to use glycolysis rather than oxidative phosphorylation for 
producing ATP regardless of the sufficiency of oxygen. 
Once the Wnt/β-catenin signaling pathway is blocked, the 
production of some downstream metabolites of glycolysis, 
such as lactate, will decrease. Given this, we can conclude 
that the progression of tumors can be limited by regulating 
their glucose metabolism. β-catenin, therefore, seems 
to be an ideal therapeutic target for cancer. Besides the 
antagonists of β-catenin, hormones such as progesterone 
can also be of worth for cancer treatments. Certainly, more 
effective antagonists of β-catenin should be developed 
and applied in the clinic for cancer treatment. In the near 
future, early carcinogenesis may be initially inhibited by 
controlling abnormal β-catenin activity.
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Table 2: The antagonists of β-catenin or other proteins in Wnt pathway and their possible mechanisms

Name Possible mechanisms

PKF115-584183 Antagonist of the TCF/β-catenin complex Decreases both 
cytoplasmic and nuclear β-catenin expression

BC205947
Anthraquinone oxime analog Disrupts the binding of 
β-catenin to transducin β-like 1; Promotes β-catenin 
degradation

LF3180

Inhibits the β-catenin/TCF4 interaction Suppresses cell 
motility, cell-cycle progression, and the overexpression of 
Wnt target genes; Blocks the self-renewal capacity of cancer 
stem cells

ICG-001181 Inhibits β-catenin/CREBBP interaction Downregulates Wnt 
target genes

Salinomycin185 Small molecule inhibitor of LRP6 Downregulates Wnt 
target genes and cause cancer cell death

Calphostin C182 Antagonist of the TCF/β-catenin complex Degrades 
β-catenin via a proteasome-dependent

Xanthothricin182 Antagonist of the TCF/β-catenin complex Degrades 
β-catenin via a proteasome-dependent

FH535184 Suppresses β-catenin /TCF-mediated transcription
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