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ABSTRACT
Background: Diffusion-weighted imaging (DWI) is increasingly used to identify 

pathological complete responses (pCRs) to neoadjuvant chemotherapy (NAC) in 
breast cancer. The aim of the present study was to assess the utility of DWI using a 
pooled analysis. 

Materials and Methods: Literature databases were searched prior to July 2017. 
Fifteen studies with a total of 1181 patients were included. The data were extracted 
to perform pooled analysis, heterogeneity testing, threshold effect testing, sensitivity 
analysis, publication bias analysis and subgroup analyses.

Result: The methodological quality was moderate. Remarkable heterogeneity 
was detected, primarily due to a threshold effect. The pooled weighted values were 
a sensitivity of 0.88 (95% confidence interval (CI): 0.81, 0.92), a specificity of 0.79 
(95% CI: 0.70, 0.86), a positive likelihood ratio of 4.1 (95% CI: 2.9, 5.9), a negative 
likelihood ratio of 0.16 (95% CI: 0.10, 0.24), and a diagnostic odds ratio of 26 (95% 
CI: 15, 46). The area under the receiver operator characteristic curve was 0.91 
(95% CI: 0.88, 0.93). In the subgroup analysis, the pooled specificity of change in 
the apparent diffusion coefficient (ADC) subgroup was higher than that in the pre-
treatment ADC subgroup (0.80 [95% CI: 0.71, 087] vs. 0.63 [95% CI: 0.52, 0.73], 
P = 0.027). 

Conclusions: DWI may be an accurate and nonradioactive imaging technique for 
identifying pCRs to NAC in breast cancer. Nonetheless, there are a variety of issues 
when assessing DWI techniques for estimating breast cancer responses to NAC, and 
large scale and well-designed clinical trials are needed to assess the technique’s 
diagnostic value.

INTRODUCTION

Neoadjuvant chemotherapy (NAC) has been used 
as a standard treatment for both initially operable and 

initially inoperable locally advanced breast cancer [1]. 
Patients who achieve a pathologic complete response 
(pCR; defined as no residual tumour or a minimal residual 
tumour on histologic analysis) demonstrate significantly 
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longer disease-free and overall survival rates [2]. The 
early prediction of outcome and identification of the pCR 
to NAC are important for individualised therapies and 
avoiding the use of additional toxic therapies and provide 
a greater chance of achieving a pCR [3, 4]. 

Determining how to predict the pCR to NAC 
accurately remains a challenging clinical problem with 
no consensus approach. Based on their quantitative and 
noninvasive characteristics, several imaging tools, such 
as magnetic resonance imaging (MRI), mammography, 
and ultrasound, are used to monitor tumour size change 
after NAC [5]. However, these imaging techniques, 
which focus on monitoring changes in morphological 
features, are unable to distinguish potential residual 
cancer from fibrotic scar tissue in a stable tumour [6]. 
These limitations have led many researchers to explore 
other functional techniques, such as positron emission 
tomography, quantitative perfusion MRI, magnetic 
resonance spectroscopy and diffusion-weighted imaging 
(DWI). Based on the diffusion of water molecules through 
tumour tissue, DWI is a new means of predicting tumour 
responses to treatment [7]. The Brownian motion of 
water molecules in cancer is restricted, which results in 
a decreased apparent diffusion coefficient (ADC) value. 
Previous studies [8–10] have shown that the ADC is 
highly negatively correlated with tumour cellularity 
and could be used to estimate the tumour pathological 
response to therapy.

Many studies [11–25] have reported the accuracy 
of DWI in predicting pathological responses to NAC 
in breast cancer against a histopathologic reference 
standard. However, the findings of these studies have been 
incongruent, as different DWI techniques have been used, 
and most of the sample sizes have been small. Therefore, 
we conducted a meta-analysis to assess the diagnostic 
performance of DWI for monitoring pathological 
responses to NAC in breast cancer.

RESULTS

Medical and scientific literature databases were 
searched and reference lists were cross-checked for 
original articles published prior to July 2017 (Figure 
1), 166 articles were found in the primary result. There 
were 15 studies [11–25] with a total of 1181 breast cancer 
patients that met the inclusion criteria for quantitative 
synthesis. 

The data extracted from these included studies are 
summarised in Tables 1, 2 and Supplementary Table 1. 
The mean number of patients per study was 74.6 (range 
20–195), and the mean age of the patients in each study 
was 48.7 years (range 23–83). A variety of NAC regimens, 
definitions of pCR, MRI devices, DWI methods of 
measurement, analyses, and cutoff values were observed. 
Of the 15 studies, 9 studies [11–16, 22–24] evaluated both 
DWI and conventional contrast-enhanced MRI (CE-MRI) 

techniques in the same cohort, 6 studies [14, 16–18, 23, 
25] were performed using 3T scanners, 5 studies [12–
14, 22, 24] were performed with a b value ≥1000 s/m2, 
and 2 studies [14, 25] were performed using intravoxel 
incoherent motion (IVIM) models. There were 4 studies 
[12, 15, 16, 25] that enrolled patients prospectively, 
and 8 studies [11, 13, 17, 19–23] that enrolled patients 
retrospectively, while the remaining studies did not report 
this parameter. A total of 7 studies [11–13, 18, 19, 23, 24] 
used the change in ADC as a biomarker, while 3 studies 
[15, 21, 25] used the pre-treatment ADC, 2 studies [17, 20] 
used the post-treatment ADC, and 3 studies [14, 16, 22] 
used all three conditions. 

According to QUADAS-2 items, the quality 
assessment of 15 studies was moderate. Only 3 studies 
[11–13] set a pre-specified threshold. The results of the 
distribution are shown in Figure 2. 

As there was notable heterogeneity in the present meta-
analysis (I2 = 93%, P < 0.001), we used a random-effects 
coefficient binary regression model. The pooled weighted 
values for DWI were a SEN of 0.88 (95% confidence interval 
(CI): 0.81, 0. 92), a SPE of 0.79 (95% CI: 0.70, 0.86), a 
positive likelihood ratio (PLR) of 4.1 (95% CI: 2.9, 5.9), an 
negative likelihood ratio (NLR) of 0.16 (95% CI: 0.10, 0.24), 
a diagnostic odds ratio (DOR) of 26 (95% CI: 15, 46), and 
an area under the ROC curve (AUC) of 0.91 (95% CI: 0.88, 
0.93). Forest plots and HSROC curves of the 15 studies are 
shown in Figures 3, 4, Supplementary Figures 1, and 2. After 
the sensitivity analysis, 3 studies [17, 22, 24] were detected 
(Supplementary Figure 3). However, there was no effect on 
the results of the pooled weighted values when these studies 
were excluded. The proportion of heterogeneity likely due 
to a threshold effect was 95% in the accuracy estimates 
among individual studies. The results of meta-regression also 
indicated that b values, study design, MRI field strength, and 
DWI model were not strongly associated with accuracy. 

The results of the subgroup analysis are presented 
in Table 3. In the subgroup analysis of b value, MRI field, 
study design and DWI model, no notable differences 
were observed. In the subgroup analysis of different 
biomarkers of DWI, the performance of the ΔADC 
subgroup was equivalent to that of the post-NAC ADC 
subgroup in assessing the pCR to NAC with comparable 
pooled sensitivity (0.88 [95% CI: 0.75, 0.94] vs. 0.91 
[95% CI: 0.78, 0.96], P = 0.527) and pooled specificity 
(0.80 [95% CI: 0.71, 087] vs. 0.78 [95% CI: 0.58, 0.90], 
P = 0.398). However, the pooled specificity of theΔADC 
subgroup was higher than that of the pre-NAC ADC 
subgroup (0.80 [95% CI: 0.71, 087] vs. 0.63 [95% CI: 
0.52, 0.73], P = 0.027).

The results of the Deeks funnel plot asymmetry test 
showed no evidence of notable publication bias (P = 0.50); 
see in Figure 5.

To compare the accuracy between DWI and CE-
MRI effectively, we performed a pooled analysis using 
head-to-head comparative diagnostic accuracy studies 
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(Table 4, Figure 6). The pooled weighted values for DWI 
were a SEN of 0.89 (95% CI: 0.81, 0. 93), a SPE of 0.81 
(95% CI: 0.71, 0.89), a DOR of 33.72 (95% CI: 13.93, 
81.59), and an AUC of 0.91 (95% CI: 0.88, 0.93). The 
pooled weighted values for CE-MRI were a SEN of 0.84 
(95% CI: 0.74, 0. 91), a SPE of 0.76 (95% CI: 0.64, 0.85), 
a DOR of 16.57 (95% CI: 9.80, 28.02), and an AUC of 
0.88 (95% CI: 0.84, 0.90).

DISCUSSION

Although breast MRI has been recommended as a 
clinical tool for NAC response evaluation for operable breast 
cancer, DWI has emerged as a potential imaging modality 
providing an early response biomarker based on ADC [26]. 
In this meta-analysis, we aimed to provide an overview of 
current strengths and weaknesses of DWI and to evaluate 
its accuracy for predicting the pCR to NAC in breast cancer 
using available data. The AUC of 15 studies concerning the 
new modality for estimating the pCR after NAC in breast 
cancer was 0.91 (95% CI: 0.88, 0.93), which indicated good 
diagnostic performance. However, the homogeneity test of 
sensitivity and specificity showed notable heterogeneity. The 
threshold effect might be a source of heterogeneity, as most 
of the studies included in the present analysis set a threshold 
but did not pre-specify the threshold. The results of threshold 

effect assessment indicated that the threshold effect was 
indeed the most important factor and likely contributed to 
95% of the heterogeneity. 

In addition to the threshold effect, certain putative 
factors might enhance heterogeneity, for example the 
choice of the b value may affect the ADC calculated by 
multiple pools diffusing at different rates [27]. The ADCs 
tend to be higher due to the contribution of perfusion in 
low b values and may also be preferable for differentiating 
malignant from benign tissues exclusively based on their 
water diffusion characteristics at high b values. However, 
the higher the b value is, the worse the signal-to-noise ratio 
becomes; this relationship restricts the clinical application 
of a high b value. To date, there is no consensus regarding 
the optimal b value in DWI studies [9]. In our subgroup 
analysis (Table 3), the results demonstrated that higher 
b value subgroups might outperform lower b value 
subgroups in assessing the pCR to NAC, with a higher 
pooled specificity (0.85 vs. 0.76) and a comparable pooled 
sensitivity (0.89 vs. 0.88). However, there were no notable 
differences between these two subgroups.

It has been shown that the change in diffusion 
coefficients is inversely correlated with therapeutic 
responses, and several studies [11–13, 18, 19, 23, 24] have 
noted that the change in ADC is an optimal biomarker 
for predicting the pCR in breast cancer. However, some 

Table 1: Cohort and tumour characteristics of the included studies
Variables Studies No. Patients No. Mean Range

Cohort characteristics
No., all tests 15 1081 74.6 20–225
pCR 15 297 27.1% 12.9%-85.0%
non-pCR 15 783 72.9% 15.0%-87.1%
Age (years) 14 1011 48.7 23–83
Tumour characteristics
Stage II 7 173 31.5% 10.0%-63.3%

III 8 355 64.5% 36.7%-100%
IV 1 22 18.4% -

Histology IDC 12 799 88.0% 74.5%-97.2%
ILC 10 85 9.8% 3.3%-22.6%
MC 3 6 3.1% 2.9%-3.3%

Other 8 33 4.2% 1.1%-11.7%
Receptor ER (+) 6 133 32.7% 24.3%-46.9%

PR (+) 5 134 32.8% 25.0%-39.1%
HER-2 (+) 11 185 21.0% 6.3%-37.9%

LA 4 109 26.5% 12.5%-38.1%
LB 4 106 41.9% 25.6%-81.3%
TN 7 138 19.5% 7.4%-33.9%

Note: ER = oestrogen receptor; PR = progesterone receptor; HER-2 = human epidermal growth factor receptor 2; IDC = 
invasive ductal carcinoma; ILC = invasive lobular carcinoma; LA = luminal A; LB = luminal B; MC = mucinous carcinoma; 
NAC = neoadjuvant chemotherapy; pCR = pathologic complete response; TN, triple negative.
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studies [15, 21, 25] have shown that the pre-NAC ADC 
value is higher in subjects achieving a pCR compared 
with those showing residual disease, while other studies  
[17, 20] have suggested using post-NAC ADC. Therefore, 
we performed a subgroup analysis of different biomarkers 
of DWI. The performance of the ΔADC subgroup 
appeared to be equivalent to that of the post-NAC ADC 
subgroup, with a comparable pooled sensitivity and 
pooled specificity. Moreover, both subgroups had a higher 
pooled specificity than did the pre-NAC ADC subgroup 
(0.80 vs. 0.63). Thus, the breast cancer cells of responders 
are reduced and become necrotic in the form of a sieve 
during NAC, resulting in more significant changes in the 
diffusion parameters than observed for the breast cancer 
cells of non-responders.

Using a traditional monoexponential model, the 
ADC value can be calculated and used to quantitatively 
reflect the diffusion of water molecules in cancer tissue 

[27]. However, both pure molecular diffusion and 
perfusion in microcapillary circulation contribute to the 
ADC value. This contribution weakens the ability of ADC 
to characterise tissue microstructure [25]. Therefore, 
an IVIM model was developed to separate molecular 
diffusion from perfusion by using a wide range of low and 
high b values [28]. Only 2 of the 15 studies included in our 
meta-analysis followed the IVIM model. Che et al. [14] 
demonstrated that the best biomarker was the change in 
the true molecular diffusion coefficient (D), which yielded 
a high sensitivity of 1.00 and a specificity of 0.79. Bedair  
et al. [25] further suggested that the pre-treatment 
distributed diffusion coefficient (DDC) could potentially 
predict the pCR in breast cancer treatment with a 
sensitivity of 0.79 and a specificity of 0.73. In our 
subgroup analysis, we found that the IVIM model 
subgroup appeared to be equivalent to the ADC model 
subgroup, with a similar pooled sensitivity (0.86 vs. 0.88) 

Figure 1: Flowchart illustrating the selection of the studies.
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and pooled specificity (0.76 vs. 0.79). Based on the small 
number and sample size of the studies, additional clinical 
trials focused on the ability IVIM to predict the pCR in 
breast cancer treatment are required. 

Classically, the response to NAC has been identified 
by CE-MRI alone with Response Evaluation Criteria in 
Solid Tumours (RECIST) during NAC [29]. Compared 
with CE-MRI, DWI is able to obtain both anatomic and 

Table 2: Principal characteristics of the included studies

Study Year Design Time of 
scan Field Type b value Evaluate 

index Cut-off Sen Spe

An, Y 2015 Retro B/A(post 
NAC) 1.5T DWI 0, 750 ΔADC 15.2% 0.67 0.71

Belli 2011 Pro B/A(NR) 1.5T DWI 0, 1000 ΔADC 68.0% 0.80 0.85

Bufi 2014 Retro B/A(4–6 
cycles) 1.5T DWI 0, 1000 ΔADC NR 0.87 0.59

Che 2016 NR B/A(2–3 
cycles) 3.0T IVIM 0, 800 ΔD Δ0.163a 1.00 0.79

pre-D 0.874a 0.69 0.65
post-D 0.971a 1.00 0.63

Fangberget 2011 Pro B/A(4 
cycles) 3.0T DWI 100, 250, 800 pre-ADC 1.420a 0.91 0.81

Li 2015 Pro B/A(1 
cycles) 3.0T DWI 0, 600 ΔADC 5.5% 0.50 0.76

pre-ADC 1.2a 1.00 0.54
post-ADC 1.4a 0.83 0.67

Liu 2015 Retro B/A(post 
NAC) 3.0T DWI 0, 800 post-ADC NR 0.69 0.94

Luo 2014 NR B/A(post 
NAC) 3.0T DWI 0, 800 ΔADC 42.5% 0.89 0.74

Park 2010 Retro B/A(post 
NAC) 1.5T DWI 0, 750 post-ADC 1.17a 0.94 0.71

Park S 2012 Retro B/A(3–6 
cycles) 1.5T DWI 0, 750 ΔADC 54.9% 1.00 0.70

Richard† 2013 Retro B/A(post 
NAC) 1.5T DWI 50, 700 pre-ADC 1.29a 1.00 0.38

Shin 2012 Retro B/A(post 
NAC) 1.5T DWI 100,500, 

800,1000 ΔADC 40.7% 1.00 0.91

pre-ADC 0.92a 0.80 0.65
post-ADC 1.19a 1.00 0.70

Weis 2015 Retro B/A(1 
cycles) 3.0T DWI 0, 500/600 ΔADC NR 0.92 0.84

Woodhams 2010 NR B/A(4 
cycles) 1.5T DWI 0, 1500 ΔADC Category 

1b 0.97 0.89

Bedair 2017 Pro B/A(3 
cycles) 3.0T IVIM 0, 60, 120, 300, 

600, 900 DDC 1.14a 0.79 0.73

ADC 1.01a 0.79 0.67

Note: a, ADC or D or DDC (×10−3 mm2/s); b, DWI was classified into 4 categories: category 1 indicated no residual disease. 
†, the analysis was available in the triple-negative subtype.
Abbreviations: ADC, apparent diffusion coefficient; ΔADC, change in apparent diffusion coefficient; B/A , before NAC and 
after NAC; D, true molecular diffusion coefficient; DDC, distributed diffusion coefficient; ΔD, change in true molecular 
diffusion coefficient; IVIM, intravoxel incoherent motion; Pro, prospective; Retro, retrospective; NR, not reported; Sen, 
sensitivity; Spe, specificity.
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functional information simultaneously. Two previous 
meta-analyses [30, 31] compared the accuracy of DWI and 
CE-MRI for indirectly evaluating the pCR to breast cancer 
NAC, with only 6 [30] and 8 [31] studies available. Both 
meta-analyses congruously reported that DWI had a higher 
pooled sensitivity but a lower pooled specificity than CE-
MRI. As direct comparisons provide the best effects of the 
diagnostic test accuracy of the two techniques [32, 33], 
we included exclusively head-to-head comparative studies 
that evaluated these two techniques in the same cohort. 
Our results showed that the pooled sensitivity, specificity 
and AUC of DWI were slightly higher than those of CE-

MRI, in contrast to the results of the previous studies. 
Based on the data of the DOR value shown in Table 4, 
we observed an underlying trend that DWI is increasingly 
superior to CE-MRI with an increase in the number of 
DWI studies.

Some intrinsic limitations should be considered in 
the present study. First, because different tumour subtypes 
of breast cancer receive different NAC regimens with 
different histopathological responses, a quantitative 
analysis based on tumour subtype is highly desirable. 
However, only two studies [17, 21] on breast cancer 
subtypes were identified in the present meta-analysis. 

Figure 2: Risk of bias and applicability concerns summary of the 15 included studies. 
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Liu et al. [17] showed that post-NAC ADC appears to 
be a promising tool for determining the pCR to NAC 
in breast cancer subtypes. The AUCs of the luminal A, 
luminal B, HER2-enriched, and triple-negative subtypes 

were 0.86, 0.86, 0.79, and 0.75, respectively. However, 
Richard et al. [21] found that the pre-NAC ADC of the 
triple-negative subtype was significantly higher in non-
responders than in the pCR group, but no significant 

Table 3: Sensitivity and specificity estimates for each subgroup
Subgroup No. of studies Mean SEN (%) Mean SPE (%) DOR AUC (%)

b value (s/m2)
 ≥1000 5 89 (79–95) 85 (69–93) 45 (13–160) 91 (89–94)
 <1000 10 88 (79–93) 76  (64–85) 22 (12–41) 90 (87–92)
Biomarker  
 ΔADC 10 88 (75–94) 80 (71–87) 29 (10–83) 91 (88–93)
 Pre-NAC ADC 6 90 (74–96) 63 (52–73) 15 (5–41) 79 (75–82)
 Post-NAC ADC 5 91 (78–96) 78 (58–90) 34 (13–87) 92 (90–95)
Study design
 Retrospective 8 91 (80–96) 75  (60–86) 30 (12–77) 92 (89–94)
 Prospective 4 82 (71–84) 76 (66–84) 15 (7–34) 86 (83–89)
Magnetic field
 1.5T 9 91 (83–95) 77  (63–87) 33 (13–80) 93 (90–95)
 3.0T 6 85 (70–91) 82 (71–89) 22 (10–47) 89 (86–91)
Model
 ADC 13 88 (81–93) 79 (69–87) 27 (15–50) 91 (88–93)
 IVIM 2 86 (64–97) 76 (63–87) 14 (3–60) NA

Note: Numbers in parentheses are the 95% CIs. NA = not applicable. 

Figure 3: Forest plots of the SEN and SPE and corresponding 95% CIs for DWI as an assessor of the pathologic 
response to NAC. 
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differences were observed in the luminal A and B 
subtypes. Second, diagnostic test accuracy estimates could 
also be influenced by the definition of pCR [34]. As there 
were too many pCR definitions (e.g., Chevallier-Sataloff 
classification, Miller-Payne Grading System, Mandard’s 
TRG classification, RCB Index, or classification by 
user-defined) to perform a subgroup analysis, we did 
not assess pCR in our analyses. Third, there is notable 
heterogeneity in this meta-analysis. Many other factors, 
such as standards of DWI measurement, analysis, and 

cutoff values of diagnosis in DWI techniques, should be 
investigated. However, no consensus has been reached 
regarding those standards, making it difficult to summarise 
these factors in a meta-analysis. 

In summary, this meta-analysis, which included 15 
studies and 1081 patients, showed that DWI may be an 
accurate and nonradioactive imaging technique and might 
even be superior to conventional CE-MRI with respect to 
identifying the pCR to NAC in breast cancer. However, 
considering the notable heterogeneity and existing inherent 

Table 4: Summary of meta-analyses focused on CE-MRI and DWI for the assessment of breast 
cancer responses to NAC

Study Search date Comparative No. Technique PSEN(95% CI) PSPE(95% CI) DOR(95% CI) rDOR AUC (95% CI)

Wu [30] 2000 to 
2012

Indirect 
comparative 30 CE-MRI 0.68 (0.57, 0.77) 0.91 (0.87, 0.94) 55.59 (21.80, 141.80) NR

6 DWI 0.93 (0.82, 0.97) 0.79 (0.74, 0.83) 20.99 (13.24, 33.25) 0.38 NR 

Liu [31] 1992–2015 Indirect 
comparative 54 CE-MRI 0.68 (0.66, 0.78) 0.84 (0.80, 0.88) 13.82 (7.28,26.23) 0.88 (NR)

8 DWI 0.79 (0.68, 0.88) 0.75 (0.70, 0.80) 18.68 (6.88–50.73 1.35 0.87 (NR)

Our 2000 to 
2017

Direct comparative 9 CE-MRI 0.84 (0.74, 0.91) 0.76(0.64, 0.85) 16.57 (9.80, 28.02) 0.88(0.84, 0.90)

9 DWI 0.89 (0.81, 0.93) 0.81(0.71, 0.89) 33.72 (13.93, 81.59) 2.04 0.91 (0.88, 0.93)

Notes: No.= no. of studies; PSEN = pooled sensitivities; PSPE = pooled specificities; DOR = diagnostic odds ratio; AUC= areas under the ROC curve; DWI = diffusion weighted 
imaging; CE-MRI = contrast-enhanced MRI; rDOR = the ratio of DOR value of DWI divided by DOR value of CE-MRI; NR = not reported.

Figure 4: Hierarchical summary receiver operating characteristic (HSROC) curves from the bivariate model of DWI. 



Oncotarget7096www.impactjournals.com/oncotarget

Figure 5: Funnel plot of publication bias. The results showed no evidence of notable publication bias (P = 0.50). 

Figure 6: Pairs of observed sensitivity and specificity values for DWI and CE-MRI in HSROC curves.
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limitations, this technique should be applied cautiously. 
In addition, there are a variety of issues concerning the 
assessment of DWI techniques for estimating breast 
cancer responses to NAC. Therefore, using a clear pCR 
definition, appropriate standards of DWI measurement, 
analysis, cutoff values, and large scale/multi-centred and 
well-designed clinical trials are necessary to assess the 
diagnostic value of DWI in breast NAC.

MATERIALS AND METHODS

We employed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses statement [35] to 
enhance the reporting of the present study (Figure 1).

Search strategy 

A structured approach was followed to detect the 
patient population, interventions, comparators, outcomes, 
and study design (PICOS criteria) [35]. Two authors 
searched the data sources (PUBMED, EMBASE, Web of 
Science, and the Cochrane Library) independently. The 
search strategy (Appendix A) comprised both subject 
headings (MeSH terms) and keywords for the target 
condition (breast cancer), the imaging under investigation 
(DWI), and the interventions (neoadjuvant therapy). We 
limited our search to studies published no later than July 
2017. Review articles, letters, comments, case reports, 
and unpublished articles were excluded. Extensive cross-
checking of the references in all the retrieved articles was 
performed.

Criteria for inclusion in the study

Studies were considered available if the 
following PICOS criteria were met: (a) the patient 
population consisted of primary breast cancer confirmed 
histologically, (b) the imaging response to NAC was 
assessed using DWI, (c) histopathologic analysis was 
eligible as a gold standard, (d) a pCR or a near-pCR 
to NAC was described as an outcome and (e) both 
prospective and retrospective design were included.

We excluded studies if a 2 × 2 table could not 
be extracted from the data, if a full-text translation or 
evaluation for Non-English and non-Chinese articles could 
not be obtained, and if multiple reports were published for 
the same cohort. In the latter case, the most detailed or 
recent publication was extracted.

Selection of articles

The selection of articles was performed 
independently by two authors, who initially screened 
the search results in titles and abstracts and further 
retrieved the full text of all potentially relevant reports. 
Next, the authors reviewed all relevant items according 

to the predefined inclusion criteria. Disagreements were 
arbitrated by a third author, who assessed all involved 
issues.

Quality assessment and data extraction

For each included study, the methodological quality 
was evaluated independently by the three aforementioned 
authors, who extracted data from the selected reports 
using the standard quality assessment of diagnostic 
studies (QUADAS-2) items [36–38]. Additionally, 
associated data, including author, study nation, 
population and tumour characteristics, descriptions of 
definition of pCR and NAC regimens, study design, 
magnetic field strength, standards of DWI techniques, 
evaluation time, and descriptions of interpretations of 
the diagnostic tests, were also extracted from each study. 
The true-positive, false-positive, true-negative, and false-
negative data were extracted and derived to construct 
2×2 contingency tables.

Meta-analysis

We constructed forest plots to demonstrate the 
variations of the sensitivity (SEN) and specificity (SPE) 
estimates together for DWI in each study and calculated 
the SEN, SPE, PLR, NLR and DOR values with 95% CIs. 
Hierarchical summary receiver operating characteristic 
(HSROC) curves were generated to assess SEN and SPE 
[39]. Standard χ2-testing and the inconsistency index 
(I-squared, I2) were used to estimate the heterogeneity 
of the individual studies using Stata software (version 
14.0, Stata Corporation, College Station, TX, USA). If 
notable heterogeneities were detected (P < 0.1 or I2 > 50% 
[40]), the performance was pooled using a random-effects 
coefficient binary regression model; otherwise, a fixed-
effects coefficient binary regression model was used [32]. 
Threshold effect testing, sensitivity analysis and meta-
regression were used to explore heterogeneity.

The following subgroup analyses were carried 
out: (a) comparisons of studies using different b values: 
lower b value subgroup (≥ 1000 s/m2) or higher b value 
subgroup (< 1000 s/m2); (b) comparisons of studies with 
different biomarkers: ΔADC subgroup, pre-treatment 
subgroup or post-treatment subgroup; (c) comparisons 
of studies using a different magnetic field: 1.5 T 
subgroup or 3.0 T subgroup; (d) comparisons of studies 
with a different study design: retrospective subgroup or 
prospective subgroup; and (e) comparisons of studies 
using different diffusion models: ADC subgroup or IVIM 
subgroup.

Deeks funnel plots were generated and an 
asymmetry test was performed to assess publication 
bias. The existence of a nonzero slope coefficient  
(P < 0.05) was considered evidence of notable 
publication bias [41].



Oncotarget7098www.impactjournals.com/oncotarget

Abbreviations

AUC: area under the ROC curve; ADC: apparent 
diffusion coefficient; CE: contrast enhanced; CI: 
confidence interval; DOR: diagnostic odds ratio; DWI: 
diffusion-weighted imaging ; HSROC: hierarchical 
summary receiver operating characteristic; IVIM: 
intravoxel incoherent motion; MRI: magnetic resonance 
imaging; NAC: neoadjuvant chemotherapy; NLR: 
negative likelihood ratio; pCR: pathologic complete 
response; PLR: positive likelihood ratio; QUADAS: 
quality assessment of diagnostic studies; SEN: sensitivity; 
SPE: specificity.

Author contributions

Chen Lihua and Huang Xuequan contributed to the 
conception and design of the study and the editing of the 
manuscript; Chu Wei and Jin Weiwei contributed to data 
acquisition, the analysis and interpretation of the data, and 
the editing of the manuscript; and Liu Daihong, Wang 
Jian, and Geng Chengjun contributed to the statistical 
analysis.

CONFLICTS OF INTEREST

The authors declare no competing financial interests.

FUNDING

This study was supported by Wuxi Young Medical 
Talents (QNRC061).

REFERENCES

1. Goldhirsch A, Glick JH, Gelber RD, Coates AS, Senn HJ. 
Meeting highlights: International Consensus Panel on the 
Treatment of Primary Breast Cancer. Seventh International 
Conference on Adjuvant Therapy of Primary Breast Cancer. 
J Clin Oncol. 2001; 19:3817–27. 

2. von Minckwitz G, Rezai M, Loibl S, Fasching PA, Huober 
J, Tesch H, Bauerfeind I, Hilfrich J, Eidtmann H, Gerber 
B, Hanusch C, Kuhn T, du Bois A, et al. Capecitabine in 
addition to anthracycline- and taxane-based neoadjuvant 
treatment in patients with primary breast cancer: phase III 
GeparQuattro study. J Clin Oncol. 2010; 28:2015–23.

3. Thomas E, Holmes FA, Smith TL, Buzdar AU, Frye DK, 
Fraschini G, Singletary SE, Theriault RL, McNeese MD, 
Ames F, Walters R, Hortobagyi GN. The use of alternate, 
non-cross-resistant adjuvant chemotherapy on the basis of 
pathologic response to a neoadjuvant doxorubicin-based 
regimen in women with operable breast cancer: long-term 
results from a prospective randomized trial. J Clin Oncol. 
2004; 22:2294–302.

 4. Yankeelov TE, Atuegwu N, Hormuth D, Weis JA, Barnes 
SL, Miga MI, Rericha EC, Quaranta V. Clinically relevant 
modeling of tumor growth and treatment response. Sci 
Transl Med. 2013; 5:187ps9.

 5. Lee CI, Gold LS, Nelson HD, Chou R, Ramsey SD, 
Sullivan SD. Comparative effectiveness of imaging 
modalities to determine metastatic breast cancer treatment 
response. Breast. 2015; 24:3–11.

 6. Choi JH, Lim HI, Lee SK, Kim WW, Kim SM, Cho E, 
Ko EY, Han BK, Park YH, Ahn JS, Im YH, Lee JE, Yang 
JH, et al. The role of PET CT to evaluate the response to 
neoadjuvant chemotherapy in advanced breast cancer: 
comparison with ultrasonography and magnetic resonance 
imaging. J Surg Oncol. 2010; 102:392–7.

 7. Abdel Razek AA, Gaballa G, Denewer A, Tawakol I. 
Diffusion weighted MR imaging of the breast. Acad Radiol. 
2010; 17:382–6.

 8. Hatakenaka M, Soeda H, Yabuuchi H, Matsuo Y, Kamitani 
T, Oda Y, Tsuneyoshi M, Honda H. Apparent diffusion 
coefficients of breast tumors: clinical application. Magn 
Reson Med Sci. 2008; 7:23–9.

 9. Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L, Huang 
X, Wang J. The correlation between apparent diffusion 
coefficient and tumor cellularity in patients: a meta-
analysis. PLoS One. 2013; 8:e79008.

10. Woodhams R, Kakita S, Hata H, Iwabuchi K, Umeoka S, 
Mountford CE, Hatabu H. Diffusion-weighted imaging of 
mucinous carcinoma of the breast: evaluation of apparent 
diffusion coefficient and signal intensity in correlation with 
histologic findings. AJR Am J Roentgenol. 2009; 193:260–6.

11. An YY, Kim SH. Treatment Response Evaluation of Breast 
Cancer after Neoadjuvant Chemotherapy and Usefulness of 
the Imaging Parameters of MRI and PET/CT. J Korean Med 
Sci. 2015; 30:808–15.

12. Belli P, Costantini M, Ierardi C, Bufi E, Amato D, Mule 
A, Nardone L, Terribile D, Bonomo L. Diffusion-weighted 
imaging in evaluating the response to neoadjuvant breast 
cancer treatment. Breast J. 2011; 17:610–9.

13. Bufi E, Belli P, Di Matteo M, Terribile D, Franceschini 
G, Nardone L, Petrone G, Bonomo L. Effect of breast 
cancer phenotype on diagnostic performance of MRI in 
the prediction to response to neoadjuvant treatment. Eur J 
Radiol. 2014; 83:1631–8.

14. Che S, Zhao X, Ou Y, Li J, Wang M, Wu B, Zhou C. Role 
of the Intravoxel Incoherent Motion Diffusion Weighted 
Imaging in the Pre-treatment Prediction and Early Response 
Monitoring to Neoadjuvant Chemotherapy in Locally 
Advanced Breast Cancer. Medicine (Baltimore). 2016; 
95:e2420.

15. Fangberget A, Nilsen LB, Hole KH, Holmen MM, 
Engebraaten O, Naume B, Smith HJ, Olsen DR, Seierstad 
T. Neoadjuvant chemotherapy in breast cancer-response 
evaluation and prediction of response to treatment using 



Oncotarget7099www.impactjournals.com/oncotarget

dynamic contrast-enhanced and diffusion-weighted MR 
imaging. Eur Radiol. 2011; 21:1188–99.

16. Li X, Abramson RG, Arlinghaus LR, Kang H, Chakravarthy 
AB, Abramson VG, Farley J, Mayer IA, Kelley MC, 
Meszoely IM, Means-Powell J, Grau AM, Sanders M, et al. 
Multiparametric magnetic resonance imaging for predicting 
pathological response after the first cycle of neoadjuvant 
chemotherapy in breast cancer. Invest Radiol. 2015; 
50:195–204.

17. Liu S, Ren R, Chen Z, Wang Y, Fan T, Li C, Zhang P. 
Diffusion-weighted imaging in assessing pathological 
response of tumor in breast cancer subtype to neoadjuvant 
chemotherapy. J Magn Reson Imaging. 2015; 42:779–87.

18. Luo Y, Yu J, Xu Z, Zeng H, Chen H. [Evaluation of 
pathologic response of breast cancer to neoadjuvant 
chemotherapy with magnetic resonance diffusion weighted 
imaging]. [Article in Chinese]. Sheng Wu Yi Xue Gong 
Cheng Xue Za Zhi. 2014; 31:1336–41.

19. Park SH, Moon WK, Cho N, Chang JM, Im SA, 
Park IA, Kang KW, Han W, Noh DY. Comparison of 
diffusion-weighted MR imaging and FDG PET/CT to 
predict pathological complete response to neoadjuvant 
chemotherapy in patients with breast cancer. Eur Radiol. 
2012; 22:18–25. 

20. Park SH, Moon WK, Cho N, Song IC, Chang JM, Park 
IA, Han W, Noh DY. Diffusion-weighted MR imaging: 
pretreatment prediction of response to neoadjuvant 
chemotherapy in patients with breast cancer. Radiology. 
2010; 257:56–63.

21. Richard R, Thomassin I, Chapellier M, Scemama A, de 
Cremoux P, Varna M, Giacchetti S, Espie M, de Kerviler 
E, de Bazelaire C. Diffusion-weighted MRI in pretreatment 
prediction of response to neoadjuvant chemotherapy in 
patients with breast cancer. Eur Radiol. 2013; 23:2420–31. 

22. Shin HJ, Baek HM, Ahn JH, Baek S, Kim H, Cha JH, Kim 
HH. Prediction of pathologic response to neoadjuvant 
chemotherapy in patients with breast cancer using 
diffusion-weighted imaging and MRS. NMR Biomed. 2012; 
25:1349–59.

23. Weis JA, Miga MI, Arlinghaus LR, Li X, Abramson V, 
Chakravarthy AB, Pendyala P, Yankeelov TE. Predicting the 
Response of Breast Cancer to Neoadjuvant Therapy Using 
a Mechanically Coupled Reaction-Diffusion Model. Cancer 
Res. 2015; 75:4697–707.

24. Woodhams R, Kakita S, Hata H, Iwabuchi K, Kuranami M, 
Gautam S, Hatabu H, Kan S, Mountford C. Identification 
of residual breast carcinoma following neoadjuvant 
chemotherapy: diffusion-weighted imaging--comparison 
with contrast-enhanced MR imaging and pathologic 
findings. Radiology. 2010; 254:357–66. 

25. Bedair R, Priest AN, Patterson AJ, McLean MA, Graves MJ, 
Manavaki R, Gill AB, Abeyakoon O, Griffiths JR, Gilbert 
FJ. Assessment of early treatment response to neoadjuvant 
chemotherapy in breast cancer using non-mono-exponential 
diffusion models: a feasibility study comparing the baseline 

and mid-treatment MRI examinations. Eur Radiol. 2017; 
27:2726–36.

26. Leong KM, Lau P, Ramadan S. Utilisation of MR 
spectroscopy and diffusion weighted imaging in predicting 
and monitoring of breast cancer response to chemotherapy. 
J Med Imaging Radiat Oncol. 2015; 59:268–77.

27. Partridge SC, McDonald ES. Diffusion weighted magnetic 
resonance imaging of the breast: protocol optimization, 
interpretation, and clinical applications. Magn Reson 
Imaging Clin N Am. 2013; 21:601–24.

28. Cho GY, Gennaro L, Sutton EJ, Zabor EC, Zhang Z, 
Giri D, Moy L, Sodickson DK, Morris EA, Sigmund EE, 
Thakur SB. Intravoxel incoherent motion (IVIM) histogram 
biomarkers for prediction of neoadjuvant treatment response 
in breast cancer patients. Eur J Radiol Open. 2017; 4:101–7. 

29. Marinovich ML, Macaskill P, Irwig L, Sardanelli F, 
von Minckwitz G, Mamounas E, Brennan M, Ciatto S, 
Houssami N. Meta-analysis of agreement between MRI 
and pathologic breast tumour size after neoadjuvant 
chemotherapy. Br J Cancer. 2013; 109:1528–36.

30. Wu LM, Hu JN, Gu HY, Hua J, Chen J, Xu JR. Can 
diffusion-weighted MR imaging and contrast-enhanced 
MR imaging precisely evaluate and predict pathological 
response to neoadjuvant chemotherapy in patients with 
breast cancer? Breast Cancer Res Treat. 2012; 135:17–28.

31. Gu YL, Pan SM, Ren J, Yang ZX, Jiang GQ. Role of 
Magnetic Resonance Imaging in Detection of Pathologic 
Complete Remission in Breast Cancer Patients Treated With 
Neoadjuvant Chemotherapy: A Meta-analysis. Clin Breast 
Cancer. 2017; 17:245–55.

32. Leeflang MM, Deeks JJ, Gatsonis C, Bossuyt PM. 
Systematic reviews of diagnostic test accuracy. Ann Intern 
Med. 2008; 149:889–97.

33. Brazzelli M, Sandercock PA, Chappell FM, Celani MG, 
Righetti E, Arestis N, Wardlaw JM, Deeks JJ. Magnetic 
resonance imaging versus computed tomography for detection 
of acute vascular lesions in patients presenting with stroke 
symptoms. Cochrane Database Syst Rev. 2009: CD007424. 

34. Marinovich ML, Houssami N, Macaskill P, Sardanelli F, 
Irwig L, Mamounas EP, von Minckwitz G, Brennan ME, 
Ciatto S. Meta-analysis of magnetic resonance imaging in 
detecting residual breast cancer after neoadjuvant therapy. J 
Natl Cancer Inst. 2013; 105:321–33.

35. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred 
reporting items for systematic reviews and meta-analyses: 
the PRISMA statement. PLoS Med. 2009; 6:e1000097. 

36. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen 
J. The development of QUADAS: a tool for the quality 
assessment of studies of diagnostic accuracy included in 
systematic reviews. BMC Med Res Methodol. 2003; 3:25.

37. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, 
Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for 
the quality assessment of diagnostic accuracy studies. BMC 
Med Res Methodol. 2006; 6:9. 



Oncotarget7100www.impactjournals.com/oncotarget

38. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks 
JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM. 
QUADAS-2: a revised tool for the quality assessment 
of diagnostic accuracy studies. Ann Intern Med. 2011; 
155:529–36.

39. Menke J. Bivariate random-effects meta-analysis of 
sensitivity and specificity with SAS PROC GLIMMIX. 
Methods Inf Med. 2010; 49:54–62, 62–4.

40. Higgins JP, Thompson SG, Deeks JJ, Altman DG. 
Measuring inconsistency in meta-analyses. BMJ. 2003; 
327:557–60.

41. Deeks JJ, Macaskill P, Irwig L. The performance of tests of 
publication bias and other sample size effects in systematic 
reviews of diagnostic test accuracy was assessed. J Clin 
Epidemiol. 2005; 58:882–93. 


