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ABSTRACT

Many cancer therapeutic agents have shown to be effective for treating multiple 
cancer types. Yet major challenges exist toward introducing a novel drug used in 
one cancer type to different cancer types, especially when a relatively small number 
of patients with the other cancer type often benefit from anti-cancer therapy with 
the drug. Recently, many novel agents were introduced to different cancer types 
together with companion biomarkers which were obtained or biologically assumed 
from the original cancer type. However, there is no guarantee that biomarkers from 
one cancer can directly predict a therapeutic response in another. To tackle this 
challenging question, we have developed a concordant expression biomarker-based 
technique (“CONCORD”) that overcomes these limitations. CONCORD predicts drug 
responses from one cancer type to another by identifying concordantly co-expressed 
biomarkers across different cancer systems. Application of CONCORD to three 
standard chemotherapeutic agents and two targeted agents demonstrated its ability 
to accurately predict the effectiveness of a drug against new cancer types and predict 
therapeutic response in patients.

INTRODUCTION

Cancers harbor genetic aberrations and epigenetic 
changes that lead to considerable heterogeneity among 
patients with the same malignancy [1]. Accordingly, their 
response to a specific treatment can vary, depending on 
a variety of factors. Example includes tumor-specific 
factors (e.g. subtype, stage, genotype/phenotype, and 
heterogeneity) and patient-specific factors (e.g. pre-
existing conditions and environment). Oncologic drugs 
currently do not have regulatory approval to be used 
across a broad range of cancer subtypes, due to historic 
developments and regulatory requirements of validation 
studies in a cancer body site rather than in a cancer 
genotype. Nevertheless, we now know that both cytotoxic 
and targeted drugs can work across different cancer 

sites and subtypes. Even some targeted small molecule 
inhibitors have unexplained activity in tumors that lack 
the target biomarker. These observations—combined with 
the myriad of novel cytotoxic and targeted drugs in the 
pipeline—indicate an urgent need to develop strategies 
for understanding how tumors respond to drugs more 
comprehensively than traditional single-site studies [2]. 
In fact, introducing novel drugs used in one cancer type 
to another has been one of the most successful strategies 
to date [3–5]. However, the practice of introducing 
drugs to different types of cancer is mostly performed 
on a trial-and-error basis (instead of being guided by 
objective metrics such as biomarkers) or rely on markers 
only from the original cancer type, which may not be 
relevant [6–9]. Consequently, even if a novel drug may 
show efficacy across different sites of cancer origin for 
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subsets of patients, these results are often not applicable 
to the broader population [10, 11]. Ideally, the provision 
of anticancer therapies across various tumor types would 
be guided by an objective, biomarker-based model. 
This model would incorporate data from the original 
malignancy to identify accurate therapeutic enrichment 
biomarkers for other cancer types. Such a tool would 
significantly improve the success rates of introducing a 
new drug to different cancer types [12, 13].

Recent studies have demonstrated the ability 
to predict responses to anticancer therapies based on 
molecular biomarker signatures [14–21]. While most 
of these studies are still limited to predictions within 
single cancer type, a large number of cancer data 
sets are now available for examining biomarkers for 
the same therapeutic agents across different cancer 
types. This information potentially offers a strategy to 
identify concordant drug biomarkers across multiple 
malignancies [22, 23]. Here, we introduce a prediction 
methodology (“CONCORD”) designed to predict a drug’s 
therapeutic efficacy across different cancer types based 
on concordantly coexpressed markers. We obtained and 
validated CONCORD expression signatures on more than 
20 patient cohorts across a diverse range of cancer types, 
for which we simultaneously predicted a particular drug’s 
effectiveness in (i) patients with original cancer and (ii) 
those with different cancer types. By applying CONCORD 
to standard chemotherapy and targeted therapies used 
across multiple malignancies, this work highlights the 
potential of our approach to objectively inform the 
implementation of existing anticancer therapies in novel 
and effective ways.

RESULTS

Pipeline of CONCORD biomarker development

Our methodology consisted of six sequential steps: 
1) discovery of initial drug sensitivity biomarkers on 
diverse cancer cell lines (Figure 1A), 2) identification of 
different cancer types that can be concordantly informed 
by the original cancer type (Figure 1B), 3) selection of 
three-way CONCORD biomarkers co-expressed across 
three inputs: cultured cancer cells, an original cancer, and 
new cancer sites (Figure 1C), 4) using gene expression of 
CONCORD biomarkers and drug activity data in vitro to 
train multigene expression models in the original cancer 
(Figure 1D), 5) validation on independent patient cohorts 
in the original cancer type (Figure 1E; top panel), and 6) 
prospective prediction of a patient’s response to the drug in 
other cancer types (Figure 1E; middle and bottom panels). 
A detailed description of the CONCORD algorithm is 
summarized in Materials and Methods.

We assessed the predictive ability of CONCORD 
for three cytotoxic chemotherapeutic agents used in 
multiple cancer types: Paclitaxel, 5-FU, and adriamycin. 

This approach allowed us to compare the predictive 
performance of CONCORD on outcomes and survival for 
these drugs in patients harboring the original cancer type 
versus new cancer types. CONCORD was also applied to 
two targeted kinase inhibitors, erlotinib and vermurafenib, 
to explore its applicability for targeted therapies. For 
instance, using paclitaxel, in step 1 we derived a set of 
drug sensitivity biomarkers from NCI-60 cancer cell line 
panel for nine different cancer types. In step 2, the original 
cancer type was breast cancer, for which paclitaxel is a 
standard chemotherapeutic agent. In step 3, the new cancer 
site was ovarian cancer, which we deemed suitable for 
cross-cancer prediction from breast cancer through an 
examination of within-COXEN (wCOXEN) and between-
COXEN (bCOXEN) statistics in step 2. In step 4, principal 
component-based regression models were built on the 
basis of gene expression and paclitaxel activity profiles of 
the NCI-60 and tested on the largest breast cancer cohort, 
Hess-133, treated with paclitaxel. In steps 5 and 6, an 
optimal prediction model was validated on external breast 
cancer and ovarian cancer cohorts that were completely 
independent of the previous steps.

Discovery of in vitro drug sensitivity biomarkers

In order to discover an initial set of biomarkers 
that predict response to a single therapeutic agent, we 
examined gene expression and pharmacological drug 
activity data of NCI-60, GDSC, and CCLE cancer cell 
lines [22–24]. When drug activity data was available on 
multiple cancer cell line panels, we chose a cancer cell 
line panel which yielded the largest number of genes 
whose expression levels were significantly associated 
with the drug activity data. While each cancer cell line 
panel was subject to its specific experimental conditions, 
the rationale for this cancer cell line panel selection 
strategy was based on the ability to statistically show the 
richest information for each drug. For paclitaxel, NCI-60 
cancer cell line panel was found to be most informative. 
We identified 202 probe sets with significantly 
differential expressions between sensitive and resistant 
cell lines by the two-sample t-test under false discovery 
rate (FDR)<0.05. In comparison, only four and two 
significant probe sets were identified from GDSC and 
CCLE, respectively. Similarly, CCLE was the most 
informative cancer cell line panel for erlotinib response 
prediction with 96 differentially expressed probe sets 
while the NCI-60 and GDSC yielded 83 and 55 probe 
sets, respectively. For adriamycin, drug activity data were 
available on the GDSC and NCI-60. 499 probe sets had 
significantly differential expressions in GDSC versus only 
two in NCI-60. For 5-FU and vemurafenib, drug activity 
data existed only on NCI-60, for which we identified 611 
and 125 probe sets with significant correlations between 
gene expression and drug activity data, respectively 
(Supplementary Table 1).
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Identification of other cancer types for 
CONCORD prediction

We compared wCOXENs within breast cancer and 
bCOXENs between breast cancer and different cancer 
types for the three chemotherapy drugs. For instance, the 
medians of bCOXENs were 0.514, 0.474, 0.463, 0.456, 
0.394, and 0.384 with non-small cell lung (NSCLC), 
ovarian, lymphoma, gastric, colorectal cancer, and 
melanoma for paclitaxel biomarkers, which showed no 
significant difference from the lowest median wCOXEN 
within breast cancer (lowest median 0.43) (Figure 2). This 
implied that interactive gene expression patterns of this 
drug’s CONCORD biomarkers in the first six cancer types 
were concordant with those in breast cancer. Therefore, we 
expected that there would be reliable subsets of patients 

with these cancer types for which this drug’s CONCORD 
prediction model for breast cancer could be applicable. On 
the other hand, the bCOXENs between breast and other 
six cancer types such as glioblastoma (GBM), head and 
neck squamous cell carcinoma (HNSCC), and pancreatic 
cancer (PCC) were significantly lower than the wCOXENs 
within breast cancer. These were not expected applicable 
to this drug’s CONCORD model derived from breast 
cancer (Wilcoxon rank sum test p-value < 0.01). As for 
5-FU, breast cancer showed high bCOXEN with NSCLC 
(median=0.548), lymphoma (0.481), gastric (0.47), 
and ovarian cancer (0.464) compared to the wCOXENs 
(lowest median 0.465) (Supplementary Figure 1). 5-FU 
is currently being used only in breast and gastric cancer 
treatment as standard therapies, but not in the other three 
cancer types. We thus performed our CONCORD analysis 

Figure 1: Overview of CONCORD drug response prediction. (A) A heatmap of gene expression subset of NCI-60 cancer cell 
line panel and in vitro drug response profile, log GI-50, attached on the left side (top) and a bar graph showed positive (green) or negative 
correlation (red) between each gene expression and log GI-50 (bottom). (B) wCOXEN (left) and bCOXEN distributions (right): green 
boxes on bCOXEN indicate new cancer types suitable for cross-cancer type prediction from an original cancer. (C) A conceptual example 
of 3-way COXEN analysis: 4 genes resulted in 3 concordantly co-expressed genes across cell line and two human cancer subtypes. Solid 
and dotted line arrows indicate strong and weak correlation coefficients between connected genes, and red and green colored arrows 
represent positive and negative correlations, respectively. (D) Principal components of gene expression of drug sensitivity genes (left), 
multiple linear regression of GI-50 values on the principal components (middle), selecting a final predictor though testing performances of 
multiple candidate models (right). (E) Assessment of suitability of cohorts in new cancer types for cross-cancer prediction and validation 
(top), distribution of CONCORD prediction scores in original cancer (red) and new cancer cohort (black) (middle), comparisons of ROC 
or survival curves for external validation of cross-cancer type prediction (bottom).
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between breast and gastric cancer from available patient 
data. Similarly, the adriamycin bCOXENs were high with 
NSCLC (median=0.498), melanoma (0.469), thyroid 
cancer (0.414), lymphoma (0.412), and ovarian cancer 
(0.41) (Supplementary Figure 2). Adriamycin is known 
to be the most effective and most commonly used single 
cytostatic agent against thyroid carcinomas [25] and is still 
being used to treat lymphoma, ovarian, and NSCLC in 
combination with other drugs [26–28]. Among these, we 
were able to perform this drug’s CONCORD prediction 
for lymphoma since relevant data on gene expression and 
clinical outcomes were publicly available.

Selection of three-way CONCORD biomarkers

To obtain each drug’s consistent CONCORD 
prediction model from one cancer type to another—
as well as from cancer cell lines to human cancers—
we further triaged the initial in vitro drug sensitivity 
biomarkers into those with concordant expression 
patterns across three cancer sets:cell line and two 
different human cancers. For this analysis we performed 
the COXEN analysis for three paired sets—cell line 
to the first cancer, cell line to the second cancer, and 
the first cancer to the second cancer. For example, 159 
(78.7%) of 202 initial paclitaxel biomarkers showed 
highly concordant COXEN coefficients between NCI-
60 and breast cancer, 177 (87.6%) biomarkers between 

NCI-60 and ovarian cancer, and 184 (91.1%) biomarkers 
between breast and ovarian cancer (Supplementary 
Table 1). Intersecting all three COXEN analyses, 142 
biomarkers (70.3%) were found to be concordantly co-
expressed among the three sets simultaneously. The 
effects of this three-way COXEN biomarker selection 
can be visualized well in a clustering analysis of 
gene-gene correlation matrix as shown in Figure 3. 
The clustering heatmaps of initial top 100 paclitaxel 
sensitivity biomarkers showed quite heterogeneous 
patterns among three cancer sets: cancer cell line panel, 
breast cancer, and ovarian cancer. However, clustering 
heatmaps of 54 CONCORD biomarkers showed 
considerably homogeneous patterns with two distinct 
clusters. Therefore, the selection of the CONCORD 
biomarkers helped us obtain drug sensitivity biomarkers 
that were more consistently expressed across all three 
cancer sets. Similarly, for 5-FU and adriamycin, 475 
(77.7% of the initial biomarkers) and 377 (75.6%) 
CONCORD biomarkers were identified, respectively.

Functional annotation of CONCORD 
biomarkers

Using the Ingenuity Pathway Analysis (IPA) tool 
(Qiagen, Inc., Redwood City), comprehensive functional 
annotation of CONCORD biomarkers was explored for 
their gene networks and biological functions known to 

Figure 2: wCOXEN and bCOXEN of paclitaxel chemo-sensitivity biomarkers. Distribution of COXENs within breast cancer 
(wCOXEN; left panel) and that of COXEN between breast cancer and each of other cancer types (bCOXEN; right panel). bCOXEN boxplots 
were sorted by Wilcoxon rank sum test p-values. Green bCOXEN boxplots represent cancer types relevant to cross-cancer prediction by 
having statistically insignificant difference from the lowest wCOXEN (** Bonferroni-adjusted Wilcoxon rank sum test p-value < 0.025).



Oncotarget1095www.impactjournals.com/oncotarget

be associated with human diseases. For paclitaxel we 
found that three genes were reported to be associated with 
ovarian cancer (HOXB2, MYC, and TFPI2; p=0.024) and 
two genes were strongly associated with tumorigenesis 
of breast cancer (DUSP2 and ITGA3; p<0.001) [29–31]. 
Also, five genes were identified in the gene pathways of 
estrogen-mediated S-phase and tumoricidal function. As 
for 5-FU biomarkers, 29 biomarkers were found to be 
involved in the cell cycle networks of RNA transcription. 
Additionally, several canonical pathways such as 
eIF2 signaling and cell cycle control of chromosomal 
replication were identified [32]. As for adriamycin 
biomarkers, 101 (29.4%) biomarkers were involved in cell 
death and survival. In particular, 4 genes (TP53, E2F1, 
NPM1, and SENP3) were identified in p14/p19ARF tumor 
suppression network (Full annotated predictor lists are 
available in Supplementary Table 2, 3, and 4) [33, 34].

CONCORD biomarker-based in vitro multigene 
prediction modeling

Multiple competing multi-gene prediction models 
were built by gradually increasing the number of each 

drug’s CONCORD biomarkers by degree of drug 
sensitivity. These competing models were evaluated and 
compared for their ability to predict patient outcomes 
in the original cancer type. A threshold score of each 
CONCORD prediction model was then selected to classify 
future patients into responsive (positive) or nonresponsive 
(negative) patients to the drug by maximizing the 
Youden’s J index from ROC analysis. For paclitaxel, a 
final CONCORD prediction model with 16 biomarkers 
was selected from the evaluation against the Hess-
133 breast cancer cohort. This provided AUC of 0.724 
(Mann-Whitney-Wilcoxon test p<0.001) and threshold 
score of 0.541 for predicting a patient’s pathologic 
complete response (pCR) after a systematic neoadjuvant 
chemotherapy with this drug. Similarly, CONCORD 
prediction models were selected with 7 and 56 biomarkers 
for 5-FU and Adriamycin by evaluating the following 
two breast cancer cohorts treated with these drugs 
(respectively): Tabchy-178 and Horak-265. The lists of the 
final biomarkers of these drug predictors were provided 
in the Supplementary Table 5. ROC analysis also showed 
significant AUCs of 0.657 and 0.63 on these evaluation 
cohorts (Supplementary Figure 3).

Figure 3: Heatmaps of gene-gene correlation matrices of initial drug sensitivity biomarkers and CONCORD 
biomarkers. The top three clustering heatmaps display patterns of gene-gene correlations of the top 100 biomarkers of paclitaxel in three 
different cancer systems, NCI-60 cancer cell lines (top left), breast cancer (BR-251) (top middle), and ovarian cancer (OV-99) cohorts (top 
bottom). The bottom three panels show gene-gene correlation patterns of 54 concordantly co-expressed genes in the three-way COXEN 
analysis. Genes in breast and ovarian cancer heatmaps were sorted by the same order of genes in hierarchical cluster of NCI-60 correlation 
matrix.
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CONCORD prediction of ovarian cancer 
response to paclitaxel

The CONCORD prediction model of paclitaxel 
derived from breast cancer was used to stratify patients' 
drug responses and survival outcomes simultaneously for 
three ovarian cancer cohorts and two other independent 
breast cancer cohorts. We first compared wCOXENs 
(within breast cancer sets) with bCOXENs between breast 
and ovarian cancers (Figure 4A). Two ovarian cancer sets-
--Dressman-119 [35] and TCGA-388 [36] and two breast 
cancer sets-Horak-127 [37] and Tabchy-91 [14] showed 
concordant COXEN distributions by confirming that their 
bCOXENs were not statistically lower than wCOXENs 
within breast cancer. However, an ovarian cancer cohort, 
UVA-51 [38], whose microarray data were obtained 
from archived formalin-fixed paraffin-embedded (FFPE) 
tumor samples, showed a significantly lower bCOXEN 
with breast cancer. As the COXEN distributions were 
concordant, we then used the optimal cutoff derived from 
the original cancer type (breast cancer) to classify patient 
response in the second cancer type (ovarian cancer). That 
is, we stratified each of the three ovarian cancer cohorts 

into the predicted responder and non-responder groups 
at threshold value predefined in breast cancer. We found 
that overall survival of two ovarian cancer cohorts---
TCGA-388 and Dressman-119 were significantly different 
between the predicted responder and non-responder 
groups at the threshold (Log rank test p-value=0.011 for 
TCGA-388; p=0.041 for Dressman-119) (Figure 4B and 
4C). Therefore, the paclitaxel CONCORD predictor and 
threshold value which were derived from breast cancer 
were able to consistently stratify patient outcomes in 
ovarian cancer. We could not find a significant survival 
difference for the third ovarian cancer cohort UVA-51 at 
the same threshold, which showed a poor bCOXEN with 
breast cancer (Figure 4D). We also derived the positive 
predictive values (PPVs) at the predefined threshold for 
all the breast and ovarian cancer cohorts. PPVs were 81%, 
83.6%, and 70.8% for the ovarian cancer cohorts TCGA-
388, Dressman-119, and UVA-51, and 37.2% and 33.3% 
for the two independent breast cancer cohorts---Horak-127 
and Tabchy-91, respectively (Figure 4E). Therefore, 
PPVs for the patients with the CONCORD prediction 
scores were significantly higher than the actual pCR rates 

Figure 4: Cross-cancer type prediction of response to paclitaxel. (A) wCOXEN and bCOXEN of final paclitaxel biomarkers 
in breast cancer and ovarian cancer cohorts: a red boxplot represents an ovarian cancer cohort, UVA-51, with significantly poor bCOXEN 
distribution, indicating unfitted for cross-cancer prediction. (B) Kaplan-Meier (KM) survival curves were calculated in predicted-positive 
(responsive) and predicted-negative (nonresponsive) groups of patients after outcome stratification in ovarian cancer cohorts and there are 
significant survival difference between the two groups in TCGA-388 (log rank-test p=0.011) and (C) Dressman-199 cohort (p=0.041) (D) 
but not in UVA-51 cohort (p=0.734) (E) positive predictive value of paclitaxel predictor (green) and pathological complete response rate 
(red) in breast cancer and ovarian cancer cohorts (** p<0.05, ***p < 0.01).
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in these studies, implying that an enrichment strategy 
based on the CONCORD prediction scores could result 
in significantly higher response rates for these patients. 
We also evaluated overall prediction performance of 
this predictor on the three ovarian cancer cohorts by an 
ROC analysis independent of the pre-specified threshold 
value derived from breast cancer. From this analysis 
we found that the CONCORD model was significantly 
predictive for all three cohorts, including UVA-51 (Table 
1 and Supplementary Figure 4). Therefore, the paclitaxel 
CONCORD predictor retained an overall predictive 
power for all ovarian cancer sets. However, the breast 
cancer-derived threshold value did not provide significant 
stratification for patient’s overall survival when a patient 
set such as UVA-51 showed significantly lower bCOXEN 
distributions with breast cancer.

CONCORD prediction of gastric cancer 
response to 5-FU

Gastric cancer was identified as one of the 
top candidate cancer types for our CONCORD 
prediction derived from breast cancer response to 5-FU 
(Supplementary Figure 1). Therefore, a CONCORD model 
of 5-FU was obtained between breast and gastric cancers, 
and applied simultaneously to two independent breast 
cancer cohorts (Hess-133 [39] and Iwamoto-82 [40]) and 

one gastric cancer cohort (Kim-97 [41]) (Supplementary 
Figure 5A). Data on clinical response was available for 
these studies, but long-term survival information was 
unavailable. Thus our prediction validation was performed 
only for stratifying clinical response. For the gastric cancer 
patient cohort (Kim-97), the predictor provided the PPV 
of 91.2%, which was again significantly higher than its 
observed pCR rate of 77.3% (p<0.01) at the threshold 
value derived from breast cancer (Supplementary Figure 
5B). In breast cancer PPVs were 37% and 41.4% for Hess-
133 and Iwamoto-82, compared to their observed pCR 
rates 25.6% (p=0.022) and 29.3% (p=0.051), respectively. 
Thus, these results also showed that this 5-FU CONCORD 
model could be effectively used for predicting both breast 
and gastric cancer patient responses at the same threshold 
value of the drug predictor. The ROC analysis for overall 
prediction performance also showed that it performed well 
in all three cancer cohorts (Table 1 and Supplementary 
Figure 6).

CONCORD prediction of adriamycin for 
lymphoma

From the initial COXEN analysis (Step 2), 
lymphoma was identified as one of the top candidate 
cancer types for predicting response to adriamycin based 
on the CONCORD model for breast cancer. Thus, we 

Table 1: Receiver operating characteristic curves of CONCORD prediction on independent validation cohorts

Drug Cancer
Type

Validation 
Cohort AUC (SE) P-value 95% Confidence 

Interval of AUC

Paclitaxel

Breast
Hess-133 0.724  (0.048) < 0.001 [0.629, 0.818]

Horak-127 0.663 (0.055) 0.005 [0.556, 0.77]
Tabchy-91 0.681 (0.066) 0.016 [0.552, 0.81]

Ovarian
TCGA-448 0.602 (0.035) 0.004 [0.534, 0.671]

UVA-51 0.725 (0.072) 0.006 [0.584, 0.867]
Dressman-119 0.647 (0.054) 0.013 [0.54, 0.753]

5-FU
Breast

Tabchy-178 0.626 (0.06) 0.041 [0.509, 0.743]
Hess-133 0.620 (0.057) 0.037 [0.508, 0.733]

Iwamoto-82 0.644 (0.066) 0.041 [0.514, 0.774]
Gastric Kim-97 0.671 (0.065) 0.015 [0.543, 0.799]

Adriamycin
Breast

Horak-265 0.605 (0.047) 0.035 [0.513, 0.696]
Tabchy-178 0.628 (0.062) 0.038 [0.505, 0.75]
Hess-133 0.654 (0.058) 0.008 [0.539, 0.768]

Iwamoto-82 0.72 (0.061) 0.002 [0.6, 0.84]

Lymphoma
Steidl-130 0.601 (0.052) 0.07 [0.5, 0.703]

Hummel-110 0.666 (0.051) 0.003 [0.565, 0.767]
Sensitivity and specificity of CONCORD prediction scores for predicting complete response outcomes in patients of each 
validation cohort were used to calculate the area under a receiver operating characteristic curve (AUC), standard error (SE),  
and 95% confidence interval of AUC. P-value is a result of significance test of AUC against a null hypothesized AUC of 
0.5, which means a random prediction.
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derived a CONCORD prediction model of adriamycin 
from breast cancer and applied it simultaneously to four 
lymphoma cohorts and three independent breast cancer 
cohorts. We found that one lymphoma set, Dave-24 [42], 
showed a relatively low bCOXEN with breast cancer 
(p<0.001, Supplementary Figure 7A). We confirmed that 
there were, at least, marginally significant differences 
in overall survival for Hummel-110 [43] (p=0.072) and 
Lenz-414 [44] (p=0.036). On the other hand, for Dave-
24, which showed a significantly lower bCOXEN, the 
overall survival difference was not significant (p=0.817) 
(Supplementary Figure 8). When clinical responses of the 
two lymphoma cohorts were classified at the predefined 
threshold, PPVs were significantly higher with 81.6% for 
Steidl-130 [45] and 63.4% for Hummel-110 than their 
actual pCR rates 70.8% (p=0.019) and 49.1% (p=0.015), 
respectively (Supplementary Figure 7B). As for the breast 
cancer cohorts, PPVs were 38% for Hess-133 and 48.4% 
for Iwamoto-82; their pCR rates were 25.6% (p=0.014) 
and 29.3% (p=0.005). The Tabchy-178 cohort showed 
a marginally significant difference at the threshold 
(PPV=20.9%, pCR=14.6%, and p=0.06). However, 
ROC analysis provided significant AUCs for all breast 
cancer and lymphoma cohorts in predicting pCR, with 
the exception of Steidl-130, which showed a marginally 
significant result (AUC=0.601; p=0.07) (Table 1 and 
Supplementary Figure 9). Therefore, the CONCORD 
prediction model of adriamycin retained an overall 
predictive power for all lymphoma sets. However, patient 
stratification based on the threshold score predefined from 
breast cancer did not perform well when the bCOXEN was 
poor as compared to the wCOXEN between breast cancer 
patient sets.

CONCORD prediction from a reverse direction

In the CONCORD applications above, we used 
breast cancer as the original cancer system because it 
allowed analysis on a relatively abundant set of patient 
data. However, we next sought to examine whether 
the “directionality” of our predictions was important. 
Specifically, since four independent cohorts of ovarian 
cancer patients having data on gene expression and 
pathological response to paclitaxel were available, we 
examined applicability of CONCORD for paclitaxel from 
ovarian cancer to breast cancer. It is worthwhile to note 
that for this reverse direction, most CONCORD analysis 
steps were identical, including initial drug sensitivity 
biomarker discovery on the cancer cell lines, three-way 
COXEN analysis on three cancer systems, and multigene 
prediction model training on the cell line panel. The major 
difference was the final CONCORD model selection step, 
which was based on the largest ovarian cancer cohort, 
TCGA-338. We found that the predictive performances 
for each direction were very similar. First, in the second 
step of CONCORD, breast cancer was uniquely selected 
with the highest bCOXEN (median=0.474) as the most 
relevant cancer type for a cross-cancer type prediction 
from ovarian cancer. This was after excluding wCOXEN 
of UVA-51, which used FFPE tumor tissue specimens 
and had consistently low wCOXENs with other ovarian 
cancer cohorts using frozen tumor tissues (Supplementary 
Figure 10a). In the CONCORD model selection step, 
multiple competing models were tested on TCGA-338. 
16-CONCORD biomarkers model was very parsimonious 
and significantly predictive of pathological response 
(Supplementary Figure 10b). This model was exactly 

Figure 5: wCOXEN and bCOXEN of erlotinib and vemurafenib biomarkers. (A) wCOXEN of 96 erlotinib sensitivity 
biomarkers in 6 NSCLC cohorts (left) and bCOXEN between NSCLC with mutant EGFR (IRG-mtEGFR) and each of twelve different 
types of cancer (B) wCOXEN of 125 vemurafenib sensitivity biomarkers in 5 melanoma cohorts (left panel) and bCOXEN between 
melanoma cohort with BRAF V600E mutation (VU-V600E) and other types of cancer (right panel) (** p<0.05).
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the same with the final model of CONCORD analysis 
from breast cancer because the same model training set 
and CONCORD biomarkers were used. The threshold 
value for patient stratification derived from TCGA-388 
was 0.529. This value was almost identical to that of the 
breast cancer cohort (0.541). After stratifying patients 
into predicted responder and non-responder groups at 
the threshold value, significant survival differences were 
found in TCGA-388 and Dressman-119, but not in UVA-
51. PPVs of prediction scores were consistently higher 
than pCR rates in all ovarian and breast cancer cohorts 
(Supplementary Figure 11).

Application of CONCORD to targeted 
therapeutics

To explore cross-cancer predictive potential for 
targeted therapeutics, we applied CONCORD to two 
targeted therapeutic agents: Erlotinib (an epidermal growth 
factor receptor (EGFR) tyrosine kinase inhibitor) and 
Vemurafenib (a B-RAF inhibitor). These drugs are currently 
approved for treating advanced NSCLC with EGFR 
mutations and melanoma with B-RAF V600E mutation, 
respectively [46, 47]. For Erlotinib, we first derived 96 
drug sensitivity biomarkers from the CCLE cancer cell 
line panel and used gene expression data of NSCLC 
patients’ tumors with mutant EGFR in the calculation of 
wCOXEN. Interestingly, three gastrointestinal cancer types 
including pancreatic, gastric, and colorectal cancer, and 
bladder cancer were then identified as the most promising 
cancer types for cross-cancer prediction from EGFR-
mutant NSCLC by our CONCORD analysis (Figure 5A). 
As these targeted drugs have not been used in the other 
cancer types, no patient data sets were available for our 
direct validation of CONCORD predictions on these 
cancer types. However, we found that the efficacy of the 
drug has already been confirmed for these cancer types 
by several ongoing studies. Erlotinib has been approved 
for the advanced pancreatic cancer patients who have not 
received previous chemotherapy [48]. A phase 2 study 
of erlotinib in patients with metastatic colorectal cancer 
reported that more than one third of evaluable patients had 
stable disease with favorable toxicity profiles [49]. A recent 
randomized, open-label, phase 3 trial explored erlotinib 
plus Bevacizumab as a new non-chemotherapy-based 
maintenance option as a first line treatment for patients 
with unresectable metastatic colorectal cancer previously 
exposed to bevacizumab-based induction therapy [50]. 
Furthermore, a recent phase 2 study of bladder cancer 
reported that Erlotinib had beneficial effects in short-term 
clinical outcomes for patients with invasive bladder cancer 
[51]. As for vemurafenib, we derived 125 drug sensitivity 
biomarkers from NCI-60 cancer cell line panel and used 
gene expression of 19 melanoma patients bearing the target 
mutation of Vemurafenib (B-RAF V600E mutation) to 
calculate bCOXEN between melanoma and other cancer 

types. All cancer types evaluated showed high CONCORD 
cross-cancer predictive value for this drug from melanoma. 
NSCLC was the most plausible cancer type followed by 
HNSCC and breast cancers among others (Figure 5B). 
Again, no patient set treated with this drug was available 
for our direct validation with these selected cancer types. 
However, promising clinical efficacy of Vemurafenib 
has been reported in a recent phase 2 “basket” trial of 
vemurafenib in patients with non-melanoma cancers 
harboring BRAF V600E mutations. In the clinical trial, 
the second highest overall response rate of 42% was 
observed in NSCLC after 43% in Erdheim-Chester disease 
or Langerhans’-cell histiocytosis. Furthermore, there 
were anecdotal responses among patients with anaplastic 
thyroid cancer, ovarian cancer, and colorectal cancer 
[52]. Therefore, these studies suggest that CONCORD 
identification of cross-cancer types is consistent with 
current applications.

Connectivity map application of CONCORD 
biomarkers with independent drug signatures

We also evaluated functional connections between 
drugs and their final CONCORD biomarkers by using 
the Connectivity Map (CMap), which has been widely 
used for drug repositioning analysis [11]. The CMap had 
reference profiles for paclitaxel and doxorubicin out of 
chemotherapy drugs. Thus, we queried our final sixteen 
paclitaxel biomarkers as a gene signature, which resulted 
in paclitaxel as top 107th out of 6,100 instances (top 1.7 
percentile) with a marginally significant connectivity 
score of -0.498 (p=0.067) and 66% non-null percentage 
(a measure of support for connection between a set 
of paclitaxel instances and input gene signature). In 
subsequent query of 50 final doxorubicin biomarkers, 
doxorubicin also ranked high at top 73rd (1.2 percentile), 
with a statistically significant enrichment score of -0.772 
and non-null percentage of 100% (p=0.024), implying that 
CONCORD gene signatures were associated with these 
drug activities (Supplementary Figure 12).

DISCUSSION

We here introduced CONCORD, a novel biomarker 
prediction technique to forecast a drug’s therapeutic 
response for patients with a new cancer type for which 
the drug has not yet been used. We showed that the 
cross-cancer CONCORD prediction of several standard 
chemotherapy agents were significantly predictive 
for patient responses in different cancer types in an 
independent, prospective manner. In particular, when its 
bCOXEN was similar to wCOXEN in the original cancer 
type, we were able to directly use the predefined threshold 
from the original cancer to stratify patient outcomes in the 
second cancer type. We believe that there were several 
important components for our cross-cancer CONCORD 
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prediction. First, we used in vitro cancer cell line panels 
consisting of diverse cancer types to discover each drug’s 
initial sensitivity biomarkers that could reflect its single 
drug effects across different cancer types. Second, we 
evaluated and compared the COXEN distributions to 
triage each drug’s biomarkers in a manner consistent 
with genetic co-expression patterns among three cancer 
systems—cell lines, patients with the initial cancer type 
and patients with the second cancer type. We found that 
such biomarkers could retain a concordant predictive 
power across different cancer types based on their 
consistent gene (co-expression) networks across the three 
cancer systems.

In our CONCORD applications to targeted 
therapeutics, several new cancer types such as 
pancreatic cancer and NSCLC were also identified as 
the highest potential cross-cancer types for Erlotinib and 
Vemurafenib. It was reported that overall response rate 
with BRAF therapy was 53% and disease control rate 
was 85% in BRAF-mutant lung cancer [53]. Hence, it 
will be interesting to examine novel opportunities to use 
these drugs on those cancer types by using CONCORD to 
predict patients with highest probabilities of responding.

There have been studies to effectively infer potential 
drug indications by either matching drug or disease gene 
expression profiles. The CMap is, for instance, a well-
established systematic computational approach in which 
differential gene expression patterns were compared before 
and after each drug’s treatment on cancer cell lines. Our 
CONCORD has two distinct advantages over CMap. First, 
CONCORD is designed to provide not only new target 
cancer types for drug repositioning, but also an accurate 
statistical prediction model to select responsive patients 
with the new target cancer type. Second, CONCORD does 
not need any drug perturbation for its reference library 
construction (COXEN sets) and can use de novo gene 
expression data obtained before a drug’s treatment. The 
latter distinction will be highly important for introducing 
a novel drug in clinical settings. Also, CMap infers a novel 
agent’s pharmacological activities in its reference database 
but cannot directly select a new disease type for which a 
novel drug can be effective.

It is worth to note several limitations of our current 
study. Although we developed and validated several 
single-drug signatures, the majority of patients in the 
cancer cohorts used for this study were treated with multi-
drug combinations such as T/FAC in breast cancer. It 
will therefore be very useful if inferences on single drug 
contributions can be made for patients who were treated 
with combination therapies. Yet this is challenging for 
several reasons: First, different chemotherapy drug effects 
are often correlated, so that it is difficult to decompose 
them solely into exclusive individual drug effects. 
Also, it is difficult to obtain and validate equally highly 
predictive biomarker models for all single drugs, and 
individual drug effects cannot be accurately estimated 
from their combination signature. Furthermore, single 

(and combination) drug effects are associated with many 
other confounding factors such as target patient population 
and specific clinical settings of each study. However, if 
high-performing single drug biomarker models for all 
drugs used in a specific combination regimen can be 
curated, this opens the possibility of using multivariate 
logistic regression models on the single drug signatures. 
This statistical model can then provide single drug effect 
coefficients, risk odds ratios, and p-values, which may 
provide, in part, information necessary for evaluating 
individual drug effects [21, 38]. These strategies are 
currently being investigated.

A tumor’s response and resistance to a therapeutic 
agent will rely not only on de novo pre-treatment cellular 
mechanisms but also on post-treatment molecular 
mechanisms and microenvironments after a selective 
pressure is applied. While our CONCORD attempted to 
utilize de novo molecular information for our cross-cancer 
prediction, the latter molecular information such as drug 
activities and resistance under certain cancer-specific 
mutations will not be apparent until the drug is actually 
used. Thus it will be important to obtain and integrate 
cancer-specific mutation and other molecular information 
to more accurately predict cross-cancer patient therapeutic 
responses.

We also found that it was difficult to discover 
consistent biomarkers from different RNA sources, (e.g. 
UVA-51 ovarian cancer cohort from FFPE tissue samples). 
It was important to overcome such technical differences 
by using appropriate quality control and normalization 
analysis procedures for our CONCORD prediction. In our 
current study, developments and validations were mainly 
applied to patient sets profiled with several Affymetrix 
microarray platforms. While some of our multi-gene 
biomarker models have been successfully applied with 
considerably different platforms, e.g., between oligo- 
and cDNA- microarrays by us and others, this technical 
limitation needs to be examined more carefully. [17, 20]. 
Also, our biomarker discovery and modelling methods 
are highly dependent on the cancer cell line panel and 
patient data resources in the initial cancer type; thus, our 
CONCORD approach is currently restricted to drugs and 
cancer types for which such rich datasets are available. It 
will be important to determine the minimum requirements 
for accurate CONCORD predictions in future studies.

It will also be useful to investigate whether 
CONCORD can be extended to different molecular data 
such as genome-wide mutations, aberrations, RNAseq, 
proteomics, or metabolomics data. We believe that the 
mathematical framework of CONCORD will be broadly 
applicable to these different molecular platforms. 
However, one may need to carefully examine if large 
reliable patient data resources are available and whether 
predictive therapeutic biomarkers can be obtained from 
such molecular data. Likewise, since cultured cell lines 
can show quite different expression profiles across many 
key genes, it may be possible to substitute cell line-based 
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expression data from other sources such as patient-
derived xenograft tumors, treated metastatic tumors, 
or other model systems (including ex vivo spheroid 
and autochthonous models). The ultimate utility of 
these CONCORD predictions should be assessed by a 
prospective study.

To share the CONCORD algorithm with the 
scientific community, a web-based CONCORD tool is 
currently under development. Using this tool, investigators 
can obtain drug sensitivity biomarkers for anti-cancer 
compounds screened in NCI-60, CCLE, and GDSC cancer 
cell line studies. The algorithm could also be applied to 
cross-cancer type drug response prediction using publicly-
available gene expression data from Gene Expression 
Omnibus and ArrayExpress, along with users’ own gene 
expression data.

MATERIALS AND METHODS

Gene expression and drug sensitivity data of 
human cancer cell line panels

Microarray gene expression data sets of the NCI-
60 cell line panel are available publicly at the National 
Cancer Institute (http://discover.nci.nih.gov/cellminer). 
in vitro drug sensitivity data, 50% growth inhibition 
(GI50), on the NCI-60 cell lines were obtained from 
the NCI DTP website (http://dtp.nci.nih.gov). The gene 
expression and drug sensitivity data of GDSC-648 cell 
line panel are available at the Welcome Trust Sanger 
Institute (http://www.cancerrxgene.org). The Cancer Cell 
Line Encyclopedia (CCLE) also provides public access for 
analyzing and visualizing gene expression and mutation 
data for over 1000 cancer cell lines encompassing 36 
tumor types, and also pharmacological profiles for 24 
anti-cancer drugs across 504 cell lines (http://www.
broadinstitute.org/ccle).

Cancer patient cohorts for CONCORD 
development and validation

The list of cancer cell line panels and cancer 
patient cohorts treated with corresponding cancer 
therapeutic agents is summarized in Supplementary 
Table 6 with its cancer types and roles in our CONCORD 
development. Patients in the breast cancer cohorts 
were treated with T/FAC (taxane / 5-FU, adriamycin 
and cyclophosphamide) or with FAC or FEC (5-FU, 
epirubicin, and cyclophophamide)[14, 39, 40]. Patients 
in all ovarian cancer cohorts were treated with platinum-
based systematic chemotherapy with Taxane [35]. 
Non-Hodgkin lymphoma patients were treated with 
CHOP (cyclophosphamide, adriamycin, vincristine, and 
prednison) or R-CHOP (rituximab in addition to CHOP) 
and a Hodgkin lymphoma cohort, Steidel-130, was treated 
with AVCD (adriamycin, bleomycin, vinblastine, and 

dacarbazine) [42–44]. The COXEN sets were pretreatment 
gene expression microarray data for a large number of 
patients. These datasets were used to derive COXEN 
coefficients in cancer type selection and to identify three-
way COXEN biomarkers. We have not used them for 
our drug sensitivity biomarker discovery and prediction 
modeling in any manner. In this study we used breast 
cancer as a primary cancer type since multiple large 
patient sets were available. These sets included important 
parameters such as pathologic clinical response after 
chemotherapy which was required for our independent 
model evaluation and optimal threshold derivation for 
cross-cancer patient stratification. Other cohorts of cancer 
patients treated with the drug of interest were used later 
for external validation of the final prediction model of 
drug response. All gene expression microarray data and 
drug activity profile data used in the study are publicly 
available in NCBI Gene Expression Omnibus (GEO), 
ArrayExpress, and The Cancer Genome Atlas (TCGA) 
official websites..

Discovery of in vitro drug sensitivity biomarkers

We discovered expression of certain biomarkers 
that were significantly associated with each drug’s in vitro 
activities on cancer cell lines from multiple types of cancer. 
In vitro drug activity and gene expression data of cancer 
cell lines were used to screen the most accurate drug 
sensitivity biomarkers for a given drug. The basic unit of 
biomarker is an individual probe set in the microarray data 
of cancer cell lines. The drug sensitivity of each biomarker 
was then represented and prioritized by estimating either 
correlation coefficient of its gene expressions with drug 
sensitivity profiles or by independent two sample t-test 
statistics comparing gene expression levels between 
highly-sensitive and -resistant cell lines to the drug while 
controlling false discovery rate (FDR) at 0.05. These were 
ranked by strength of drug sensitivity in terms of absolute 
correlation-test or t-test statistics in a descending order. 
When activity data of a drug were available on multiple 
cancer cell lines panels, we chose a cancer cell line panel 
which yielded the largest number of significant gene probe 
sets in correlation and t-test analyses. We performed our 
statistical data analysis using the open-source statistical 
software R v3.1.0.

Co-expression extrapolation (COXEN) 
coefficient

To quantify each probe’s co-expression relationships 
between two different cancer systems such as cell line 
panel and patient cohort (or two different cancer types), 
we calculated COXEN coefficient rc(j) for each probe j as 
follows. Using expression data within each of two systems 
separately, we constructed two correlation matrices (of 
dimension n x n) for n chemosensitivity biomarkers. The 

http://discover.nci.nih.gov/cellminer
http://dtp.nci.nih.gov
http://www.cancerrxgene.org
http://www.broadinstitute.org/ccle
http://www.broadinstitute.org/ccle
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two correlation matrices, e.g. one for the NCI-60 and 
another for the cancer patient set such as BR-251, both 
were evaluated as U = [Uij]nxn and V = [Vij]nxn, where Uij 
and Vij are the correlation coefficients between probes i 
and j in the NCI-60 and BR-251, respectively. Then, rc(j) 
is derived as

rc j
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where U j and Vj are the mean correlation coefficients 
of the j-th column correlation coefficient vectors for the 
NCI-60 and BR-251. The COXEN coefficient rc(j) is 
thus simply the correlation coefficient between column 
vectors U j  and Vj. Therefore, rc(j) reflects the degree of 
concordance between the NCI-60 and BR-251 panels for 
expression relationships of probe j with other n-1 probes. 
If rc(j) exceeded a cut-off criterion e.g., 98th percentile of 
the null distribution by random shuffling for two-sided 
test, probe j was selected as a significant COXEN probe 
between the two panels. Note that since probe j was 
initially selected among n chemosensitivity biomarkers, it 
also retained drug sensitivity characteristics.

Identification of relevant cancer types for 
CONCORD prediction

We developed a method to identify new candidate 
cancer types for cross-cancer drug response prediction 
by comparing the COXEN distributions of predictive 
biomarkers of drug response within the same cancer type 
(wCOXEN; within-COXEN) with those between different 
types of cancer (bCOXEN; between-COXEN). Each of 
wCOXEN and bCOXEN is a set of COXEN coefficients 
of genes related to initial in vitro sensitivity to a drug. 
The former was calculated for any pairs of patient cohorts 
of a pre-specified original cancer type. The latter was 
calculated between the original cancer type cohort and a 
different cancer type cohort. To calculate bCOXEN, we 
defined the COXEN set for each cancer type as the largest 
patient cohort available with gene expression microarray 
data obtained before any cancer-related therapy. 
These COXEN sets were not used for our biomarker 
discovery and prediction modeling in any manner (see 
Supplementary Table 6). We then used a criterion that 
bCOXEN should be consistent with (or not significantly 
worse than) wCOXEN for our cross-cancer CONCORD 
prediction. To examine this criterion, we compared these 
bCOXENs to wCOXEN with the lowest median among 
gene expression data sets of the original cancer type by 
using one-sided Wilcoxon rank sum test at a significance 
level of 0.025. A null hypothesis for the test was that the 
median of bCOXEN is equivalent to the lowest median 
of wCOXEN. A corresponding alternative hypothesis was 

that the bCOXEN had a lower median than the lowest 
median of wCOXEN. Bonferroni-adjusted p-values were 
calculated to adjust for multiple comparisons of bCOXEN 
to wCOXEN. A different cancer type was considered 
suitable for the CONCORD prediction if its bCOXENs 
were statistically equivalent to wCOXENs (Wilcoxon rank 
sum test p-value>0.025).

Three-way COXEN biomarker identification

Once a different cancer type was selected for 
CONCORD modeling, we further triaged the initial in 
vitro predictive biomarkers of drug response into the ones 
that retained highly significant COXEN coefficients across 
all the three pairs among cancer cell line, original cancer, 
and different cancer patient sets defined as COXEN sets 
in Supplementary Table 6. This step was intended to 
screen drug sensitivity biomarkers that were concordantly 
co-expressed across all three cancer systems—cell lines, 
original cancer site, and second cancer site. For this 
analysis we calculated COXEN coefficients for all initial 
drug sensitivity biomarkers and extracted biomarkers with 
significant COXEN under FDR < 0.2 in each of the pairs 
for three COXEN sets separately. For instance, COXEN 
coefficients of 202 paclitaxel drug sensitivity biomarkers 
were calculated for each of following three pairs; 1) the 
NCI-60 cancer cell line panel and BR-251 breast cancer 
cohort, 2) the NCI-60 and OV-99 ovarian cancer cohort, 
and finally 3) the BR-251 breast cancer and OV-99 ovarian 
cancer cohorts. We compared and intersected three sets of 
biomarkers with significant COXEN coefficients in each 
of the three pairs to identify significantly co-expressed 
common biomarkers across NCI-60, breast cancer, and 
ovarian cancer. Hence, the resultant biomarkers, which 
had significant COXEN coefficients across all three 
pairs, were classified as CONCORD biomarkers. This 
process can also be considered as a humanization step of 
the initial in vitro drug sensitivity biomarkers. Therefore, 
this was one of the key steps that enabled us to obtain 
the biomarkers to convey drug response information 
from one cancer type to another cancer type. For each 
drug’s biomarkers, pathway analysis was performed to 
investigate known genetic networks and gene functions 
by Ingenuity Pathway analysis (IPA; Ingenuity, Inc., 
Redwood City, CA).

CONCORD modeling and evaluation

Multivariate prediction models for each drug’s 
response were built using gene expression data and drug 
response data of the cell line panel used in in vitro drug 
sensitivity biomarker discovery. We performed a principal 
component regression analysis using a statistical dimension 
reduction technique to avoid model overfitting due to a large 
number of biomarkers in the models. Competing models 
with different numbers of biomarkers were fitted from 
the most significant CONCORD biomarkers in stratifying 
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in vitro drug sensitivity of cancer cell lines. To select the 
optimal prediction model for each drug, we independently 
evaluated the performance of competing models on the 
original cancer cohort with the largest number of patients 
treated with the drug. Each patient’s regression model 
prediction score was converted into a drug-sensitivity 
percentile score with one being the most sensitive and zero 
being the most resistant within the patient’s peer cohort. The 
performance of the optimal model was then evaluated by 
the receiver operating characteristic curve (ROC) with the 
area under the ROC curve (AUC) value. The best prediction 
model was then selected with most stable and significant 
prediction performance among competing models on the 
independent patient set of the original cancer type. For 
future response stratification (i.e., predicted responders vs. 
predicted non-responders), we also defined the threshold 
value for predicted positives vs. negatives by maximizing 
overall prediction performance with the Youden’s J index 
(=specificity + sensitivity -1) from the ROC analysis of the 
largest original cancer patient cohort. The final prediction 
model with the identical threshold value was used to stratify 
patients of all independent cohorts of both original and 
different cancer types, prospectively.

CONCORD prediction and validation

We applied each drug’s final prediction model 
independently to historical patient cohorts of different 
cancer types. Beforehand, we evaluated the distribution 
of COXEN coefficients of final CONCORD biomarkers 
for each cohort of patients to assess its suitability to cross 
cancer prediction. The cohort with significantly lower 
bCOXEN than wCOXEN of the original cancer type 
was considered unsuitable for cross-cancer prediction. 
The performance of each drug’s CONCORD prediction 
was then assessed in a prospective manner. In addition 
to ROC and survival analyses, we also evaluated 
positive predictive value (PPV) based on the predefined 
threshold value from the original cancer type; thus, PPV 
would be a predicted rate of pCR with the CONCORD 
guided treatment. PPV was then compared with the 
observed pathological complete response rate (pCR) 
(under the current standard of care) for each cohort in 
which patients were unselectively treated. Therefore, 
this comparison would reflect the clinical benefits gained 
by the CONCORD-based patient enrichment. Statistical 
significance was obtained by a binomial proportion test 
for the difference between the expected PPV and observed 
pCR rate. For patient cohorts with survival outcome 
data, survival distributions were also compared between 
predicted positive and negative patient groups by Kaplan-
Meier survival analysis with a log-rank test.
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