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ABSTRACT
In this study, we investigated the consensus gene modules in head and neck 

cancer (HNC) and cervical cancer (CC). We used a publicly available gene expression 
dataset, GSE6791, which included 42 HNC, 14 normal head and neck, 20 CC and 8 
normal cervical tissue samples. To exclude bias because of different human papilloma 
virus (HPV) types, we analyzed HPV16-positive samples only. We identified 3824 
genes common to HNC and CC samples. Among these, 977 genes showed high 
connectivity and were used to construct consensus modules. We demonstrated 
eight consensus gene modules for HNC and CC using the dissimilarity measure and 
average linkage hierarchical clustering methods. These consensus modules included 
genes with significant biological functions, including ATP binding and extracellular 
exosome. Eigengen network analysis revealed the consensus modules were highly 
preserved with high connectivity. These findings demonstrate that HPV16-positive 
head and neck and cervical cancers share highly preserved consensus gene modules 
with common potentially therapeutic targets.

INTRODUCTION

Differential gene expression analysis has been 
widely used to identify critical gene and pathways involved 
in tumorigenesis [1–3]. However, a part from differential 
gene expression data, there is tremendous amount of 
critical information in the gene expression datasets that is 
ignored. For example, some mutant proteins with altered 
functions show similar expression in diseased and healthy 
individuals [3]. Therefore, diagnosis or prognosis based 
on the expression of a single biomarker gene may not be 
reliable. This implies that differential co-expression and 
differential network analysis are more relevant as they help 
in understanding the underlying biological processes that 
are key to the disease understanding and therapy [3–8].

Another strategy to optimize gene expression data 
involves comparative and integrative analyses of gene 
expression in multiple cancer types [9, 10]. The integrative 
approach improves reproducibility and identifies common 

markers for multiple types of cancer. The multi-cancer 
biomarkers are more reliable and superior than cancer-
specific biomarkers [11]. Genes or proteins that are 
directly linked are most likely to belong to the same 
biological pathway or function [12]. Such groups of genes 
or proteins that belong to the same biological pathway 
are called modules. A common module that is found in 
multiple cancers is defined as the consensus module.

Squamous cell carcinoma (SCC) is the most 
common histological type of head and neck cancer (HNC) 
and cervical cancer (CC). Both HNC and CC demonstrate 
similar multistep progression, where in normal squamous 
epithelial cells undergo dysplastic changes followed 
by carcinoma formation, which subsequently becomes 
invasive and metastatic. Moreover, human papilloma virus 
type 16 (HPV16) is a major pathogen in HNC and CC 
[13]. Therefore, in this study, we investigated consensus 
gene modules of HNC and CC to identify common targets 
for therapy of HPV16-positive HNC and CC.
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RESULTS

Common differentially expressed genes of HNC 
and CC

The GSE6791 microarray dataset was analyzed 
to identify common genes that play a significant role in 
HNC and CC. The dataset included 54675 probes and 84 
samples (42 HNC and14 normal head and neck samples 
as well as 20 CC and 8 normal cervical tissue samples). 
We analyzed only HPV16 positive samples to exclude bias 
because of different HPV types.

We identified significantly expressed genes 
separately in HNC and CC, based on Mann-Whitney U 
test. The rates of commonly identified genes were 43.8% 
and 28.9% of the detected significant genes from HNC 
and CC, respectively. This indicated that these two types 
of cancers might have similar genomic variations to some 
extent.

Among 3824 complete genes, 977 genes with high 
connectivity were used to construct the consensus module. 
The expression patterns of common genes in HNC and 
CC samples were analyzed by unsupervised hierarchical 
clustering (Figure 1; orange indicates low and yellow 
indicates high expression). The genes were classified into 
2 groups based on their expression patterns in HNC and 
CC samples compared to their respective normal samples 
(Figure 1). Genes that were downregulated in HNC and 
CC samples than normal samples were clustered into one 
group, whereas genes that were upregulated in the two 
cancer types than corresponding normal samples were 
clustered into another group (Figure 1). 

Consensus modules in HNC and CC

Next, we used the dissimilarity measure and average 
linkage hierarchical clustering method to construct 
consensus modules with common genes between HNC 
and CC [7, 12]. Genes in similar consensus modules 
were assigned a color code, whereas unassigned genes 
were colored grey. As shown in Figure 2A, we identified 
eight consensus modules that were assigned specific color 
codes, namely, brown (83 genes), yellow (80 genes), blue 
(105 genes), turquoise (141 genes), green (62 genes), red 
(53 genes), black (45 genes), pink (40 genes) and grey 
(368 genes).

The modules were characterized by height and 
minimum size of branch. Consensus modules represent 
biological pathways shared between the HNC and 
CC data sets. For each data set, we represented the 
consensus modules by their corresponding eigengenes 
and then constructed a eigengene network (Figure 2). The 
consensus eigengenes in HNC and CC groups belonged 
to one of two branches (Figure 2B–2C). The green, black 
and blue modules formed the first branch, whereas the 
brown, yellow, red, pink and turquoise modules formed 

the second branch. The module eigengenes were highly 
preserved (Figure 2). The eigengene networks of HNC 
and CC are shown in Figure 2D and 2G, respectively. 
The high connectivity showed that each individual 
eigengene in a module was highly preserved relative to 
the other eigengenes. The preservation indices were 0.811, 
0.938, 0.933, 0.92, 0.835, 0.963, 0.92 and 0.919 for the 
brown, yellow, blue, turquoise, green, red, black and pink 
modules, respectively, with the overall preservation of 
0.90 (Figure 2E). The consensus modules were preserved 
between the two data sets (Figure 2F).

Gene expression patterns of eight consensus 
modules

Next, we explored the gene expression patterns of 
the 8 consensus gene modules between the cancer and their 
corresponding normal samples (Figure 3). We observed 
much clearer distinct differences in expression patterns 
between CC and normal cervical samples comparing to the 
differences between HNC and their corresponding normal 
head and neck samples. The genes in the 8 consensus 
modules are shown in Table 1 and Supplementary Table 1. 

Annotation of gene ontology (GO) terms and 
KEGG pathways of eight consensus modules

Table 2 shows the annotation of the genes in the 8 
consensus modules using GO terms and KEGG pathways 
with DAVID gene annotation tool (http://david.abcc.
ncifcrf.gov/). We determined the P-values (modified 
Fisher exact p-value) and the Benjamini-Hochberg false 
discovery rate (FDR) to determine the significance of 
enrichment of the annotated terms. Red and black modules 
represent the key GO terms and KEGG pathways with 
significant Benjamini adjusted P-values (Table 2). These 
two modules were clearly distinct and showed high 
connectivity (red = 0.963, black = 0.920; Figure 2B–2C).

DISCUSSION

Although single-target drugs inhibit or activate a 
specific target, their effects may be sub-optimal because 
of compensatory mechanisms [14–17]. Therefore, multi-
target dugs are preferred to deal with the complexity of 
diseases [14, 16–18]. Cancer cell types are commonly 
classified by histopathology as well as molecular 
characteristics like gene expression, mutations, copy 
number variations and epigenetic alterations. These 
molecular characteristics help identify cancer-type and 
stage-specific prognostic biomarkers. In comparison to 
cancer type-specific biomarkers, multi-cancer biomarkers 
are more precise and accurate in research and clinic [11].

Previously, various specific biomarkers have been 
described for HNC or CC [19, 20]. However, consensus 
biomarkers are not well known for HNC and CC. 
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Therefore, we investigated the various consensus gene 
modules in HNC and CC. We identified 8 consensus gene 
modules that showed differential expression patterns 
between cancer and normal samples in both types of 
cancers. Each module contained common genes that were 
important in HNC and CC. For example, SMAD2 that 
was included in the brown module correlated with poor 
prognosis in oral SCC [21] as well as cell cycle regulation 
and epithelial to mesenchymal transition (EMT) in CC 
[22]. Moreover, well known molecular biomarkers of 
HNC such as IL8, MMP1, and MMP10 [20] were included 
in the blue and green modules (Supplementary Table 1). 
Some of the genes in the modules are well known in 
various cancers, but have not been fully investigated in 
HNC or CC. For example, CACYBP in the brown module 
correlates with proliferation and metastasis in colon cancer 
[23, 24] as well as drug resistance in pancreatic cancer 
[25]. The modules also contained genes like LRRN4CL, 

NAV3 and STMN1 that have not yet been investigated in 
cancer research. Functional studies of these genes, which 
are not well known in HNC and CC will potentially reveal 
novel molecular mechanisms for both cancers and identify 
new molecular targets for the diagnosis and treatment.

We also explored the biological functions 
of each module by GO terms and KEGG pathway 
annotation. GO terms such as cancer initiation and 
progression, chemotherapy, cell cycle, immune response, 
tetrahydrofolate metabolic process and cell adhesion 
molecules were included in the red and black modules. 
Functional enrichment analysis identified cancer cell 
migration, invasion and survival as common pathways. 

In the brown module, ATP binding was a significant 
term with many ATP binding-associated genes like NIMA 
related kinase 2 (NEK2). NEK2 regulates centrosome 
separation by phosphorylating centrosomal proteins 
[26–28]. Aberrant NEK2 activity has been investigated 

Figure 1: Gene expression patterns in HNC and CC. The expression patterns of 3824 common genes in HNC and CC samples 
relative to their corresponding controls are shown. The statistical analysis was performed with Mann-Whitney U test. The vertical and 
horizontal axes represent the gene lists and samples, respectively.
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in various malignancies [29–31] including CC [32, 33] 
and HNC [34]. In the turquoise module, extracellular 
exosome was identified as a significant term. Extracellular 
exosome is an organelle that contributes to intercellular 
communication and is produced by all cell types [35, 
36]. It is implicated in the progression of various cancers, 
including brain and head and neck cancer [37–40]. The 
turquoise module included 33 extracellular exosome 
associated genes. These included LYN, a member of 
the SRC family of protein tyrosine kinases. Lyn is a key 
mediator of cell proliferation, migration and invasion in 
CC [41] and HNC [42]. 

The type I interferon (IFN) signaling pathway, 
which is involved in the antiviral response [43], host 
immunity [44] and cytotoxicity [45] was a significant 
term of the green module. IFNs belong to a family of 
multifunctional cytokines that activate (Janus Kinases)/
STAT (Signal Transducer and Activator of Transcription) 

signaling pathway [46, 47], which up-regulates IFN-
stimulated genes (ISG) [48]. ISG15 was localized in the 
green module [49].

A limitation of this study is that we used genes 
with significantly different expression patterns between 
cancer and normal samples for identifying consensus 
module. In future studies, we plan to pursue the whole 
gene set to identify the consensus modules that will 
also include similarly expressed genes with aberrant 
function due to mutations. Future studies will also 
include the validation of the identified gene modules 
using other cancer types.

In conclusion, we identified consensus gene 
modules of HNC and CC to identify common targets 
for multicancer therapy, especially for cancers that are 
HPV16-positive. The modules included genes that are 
involved in significant biological functions associated with 
cancer progression.

Table 1: Gene lists of eight consensus modules
Brown Yellow Blue Turquoise Green Red Black Pink

LRRN4CL TRIM40 CDC42SE2 KRT78 KLF7 TMEM72 TYMS HYDIN2

NAV3 HOXC12 CNOT6L LRRC43 STAT1 LOC285300 LOC375196 CCDC26

STMN1 MGC20647 FLJ31715 ATP6V1C2 CTSC TP53BP1 DHFR C18orf20

CACYBP C21orf15 OSGIN2 C1orf177 CTSL1 F11 DHFR.2 OLFM3

DHFR NFYC EME2 C5orf28 SLC16A1 KDM5B STIM1 C9orf68

SMAD2 LOC338694 RPAP3 CTNND1 CDKN2A ACAA2 RNASEH2A OR2C3

CDK1 CHML LOC283888 RABEPK CFB TAOK2 RFC5 RNASET2

FAIM2 C6orf174 NEDD1 GBP6 IFI27 RAB3A CDC45 C10orf44

MAPT C9orf29 KIAA1543 HCG22 PLSCR1 SLC14A1 CLUAP1 LOC729870

ZWINT KRT79 CBX3 LOC441178 PLOD2 INS NFE2L3 RNF103

HSD11B2 SLC39A6 GNG10 TRIP10 LTBP1 IFNW1 MLF1 SAMD5

PDE2A DGCR2 MED13 HOPX LAMA3 PSG4 CXCL13 BHLHB9

PMAIP1 FAM20B TNFAIP3 C9orf169 LOX CLDN6 SYNGR3 DDX19A

ACOX2 SMAD2 IL8 TCP11L2 LDOC1 SELPLG RIBC2 MLEC

BRCA1 SLC13A2 BCAS2 FMN1 MMP1 FAM120A SYCP2 MLF1

NEK2 DAPK3 KIF2A EMP1 HOMER3 PBX2 HOXC6 ZNF135

ABCA8 CA12 NFIL3 SOX4 HLF PATZ1 ATP4A ARMCX4

TGFBR3 ST3GAL2 NDST2 IFI30 PLAU IGHA CBX5 PDIA4

CKM PRIM2 SLC43A1 FARP1 ISG15 POU2F2 NEDD4L KCNK2

TTK HSPB2 GAS1 MTMR3 MMP10 FSHB OLFM1 RGSL1

PLK4 HOXD3 RECQL LYN PLA2G7 CYP11B2 APITD1 GABARAPL3

CLEC3B ALOX15B TMEFF1 ITPR2 PAK2 PVT1 HSP90AA1 C1orf216

PHYHIP GCKR SNX4 AKAP2 APOL1 KIR2DL1 IPO9 RAB7A

CCL14 FOXE1 CASK C1QB NCF2 KLF11 DTL OR2J3

Twentyfour genes for each module were shown in the table and the order is insignificant.
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Figure 2: Eigengene network in HNC and CC. (A) Dendrogram shows hierarchical clustering of genes used to identify the 
consensus modules in HNC and CC samples. Branches of the dendrogram correspond to consensus modules. Genes in each module are 
assigned a particular color code, which is shown below the dendrogram. Genes not assigned to any of the modules are colored grey. (B and 
C) Clustering dendrograms show consensus module eigengenes in HNC and CC. The two major modules are evident in both dendrograms. 
(D) Heatmap shows eigengene proximities in the consensus eigengene network for CC samples. Each row and column corresponds to 
one eigengene (labeled by consensus module color). In the heatmap, red denoteshigh proximity (positive correlation) and green denotes 
low proximity (negative correlation). (E) Bar graph showing preservation measure (D) for each consensus eigengene (vertical axes). The 
module color is represented in each bar for the corresponding eigengenes. (F) Heatmap shows proximities in the preservation of eigengene 
networks of HNC and CC modules. Each row and column corresponds to a consensus module. The red pattern reveals the proximity of 
specific module in HNC and CC. (G) Heatmap shows eigengene proximities in the consensus eigengene network for HNC samples. The 8 
consensus modules were clearly merged into two modules in HNC.
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MATERIALS AND METHODS

Gene expression dataset analysis

We used a publicly available gene expression 
dataset (GSE6791) [50] that included 42 head and neck 

cancer, 14 normal head and neck, 20 cervical cancer and 
8 normal cervix tissue samples. The HPV types in these 
cancer samples were HPV16, HPV18, HPV33, HPV31, 
HPV35, HPV55 and HPV66. We analyzed HPV16-
positive samples only to exclude bias due to different HPV 
types. The dataset is summarized in Table 3.

Table 2: KEGG pathways and GO terms of identified consensus modules for head and neck 
cancer and cervical cancer
Module Enriched terms associated with gene list in module Category P-value* Benjamini**

Brown Fanconi anemia pathway
Cell cycle

ATP binding
cytoplasm

KEGG-pathway

GOTERM

1.6E-3
2.0E-2

4.4E-4
1.6E-3

1.1E-1
5.1E-1

3.6E-2
1.3E-1

Yellow anterior/posterior pattern specification
negative regulation of glucokinase activity
regulation of neuronal synaptic plasticity

GOTERM 1.8E-3
1.8E-2
4.8E-2

4.4E-1
9.4E-1
9.9E-1

Blue nucleus
endocytosis
regulation of transcription, DNA-templated
catalytic step 2 spliceosome

Hedgehog signaling pathway

GOTERM

KEGG-pathway

2.3E-3
4.0E-3
4.4E-3
4.6E-3

9.8E-2

1.6E-1
6.4E-1
4.3E-1

1.6E-1

9.9E-1
Turquoise Serotonergic synapse

Insulin signaling pathway
Oocyte meiosis
Rap1 signaling pathway
Long-term depression

extracellular exosome

KEGG-pathway

GOTERM

3.4E-3
7.3E-3
2.3E-2
3.0E-2
4.5E-2

8.5E-5

4.1E-1
4.3E-1
7.0E-1
6.9E-1
7.6E-1

1.4E-2
Green Herpes simplex infection

Pathways in cancer

type I interferon signaling pathway
defense response to virus

KEGG-pathway

GOTERM

2.2E-2
3.9E-2

2.5E-5
7.7E-5

8.0E-1
7.6E-1

6.5E-5
1.5E-2

Red Antigen processing and presentation
Natural killer cell mediated cytotoxicity
Cell adhesion molecules (CAMs)

regulation of immune response
immune response

KEGG-pathway

GOTERM

6.3E-11
2.9E-9
8.0E-2

7.2E-4
2.2E-2

3.3E-9
7.8E-8
7.7E-1

2.0E-1
9.7E-1

Black
regulation of transcription involved in G1/S transition 
of mitotic cell cycle
G1/S transition of mitotic cell cycle 
DNA replication
tetrahydrofolate metabolic process

One carbon pool by folate
DNA replication

GOTERM_

KEGG-pathway

6.4E-6

5.7E-4
2.0E-3
1.6E-2

3.4E-2
6.1E-2

1.2E-3

5.4E-2
1.2E-1
5.4E-1

5.7E-1
5.3E-1

Pink melanosome membrane
autophagosome membrane

GOTERM 1.6E-2
3.8E-2

6.8E-1

7.4E-1
*P-value: modified Fisher Exact p-value, **Benjamini: Benjamini-Hochberg false discovery rate (FDR) adjusted p-value.
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Statistical analysis

Mann–Whitney U test was performed to determine 
the differently expressed genes in HNC and CC cancer 
samples in relation to their corresponding controls. After 
identifying the differentially expressed genes in HNC 
and CC, hierarchical clustering analysis was performed 
to construct different modules, as described previously 
[7, 12]. Principal component analysis (PCA) was used 
to identify the eigengene of each cluster or module. All 
statistical analyses were conducted using Rversion 3.3.1 
software package including packages for consensus 
module detection.

Consensus module construction

Gene modules refer to genes that show similar 
expression patterns in cancer cells or tissues in comparison 
to normal cells or tissues. Consensus modules refer to 
modules that are similar in multiple cancers. Hierarchical 
clustering according to a measure of dissimilarity is 
used to group genes with similar expression profiles 
into modules [12]. We used average linkage hierarchical 

clustering with consensus dissimilarity measure and 
defined modules as branches of a tree [7, 51]. For cut-
off branches, we used a fixed height cut-off value of 0.95. 
The modules contained a minimum number of genes (25 
genes per module in this study).We identified modules in 
a multistep process [7]. First, we performed hierarchical 
clustering based on consensus dissimilarity measure. 
Then, the cluster tree was cut at a fixed height cut-off 
value. Each branch was considered a separate module. 
Genes that were not assigned to any branch or module 
were denoted in grey.

Construction of the eigengenes network

We performed principal component analysis 
(PCA) to identify eigengenes in the consensus gene 
modules. PCA is a nonparametric statistical method that 
reduces data dimensionality and converts correlated 
variables into uncorrelated variables called principal 
components [52, 53]. We calculated principal components 
of each gene module. The first principal component is 
called an eigengene and represents the module. Each 
principal component is represented in the form of linear 

Figure 3: Gene expression patterns of consensus modules in HNC and CC. The expression patterns of genes in the consensus 
modules of HNC and CC samples are shown. The vertical and horizontal axes of heat map represent gene expressions and samples, 
respectively.
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combinations of gene expressions in the module according 
to the following formula:

1 1 2 2 3 3  n neigengene C g C g C g C g= + + + ⋅⋅⋅⋅ ⋅ +

where g1, g2, g3… gn are gene expressions, and C1, 
C2, C3…Cn are weights of each gene expression.

Module preservation and biological validation of 
modules

Module preservation statistics were used to evaluate 
if a module defined in one data set was also present in 
another data set. The preservation among modules was 
evaluated by the correlation of eigengenes of each module 
[51]. The preservation of eigengenes between the ith and 
jthconsensus modules in data sets A and B were calculated 
as 

where ( )A
iE and

( )B
iE denote the eigengenes of the 

ithconsensus module in data sets A and  B, respectively; 
cor(X,Y) represents correlation coefficient of X and Y.

High values indicate strong preservation between the 
ithand jthconsensus modules across the two data sets. The 
preservation statistic is maximized when the correlation of 
the ithand jthconsensus modules in data set A is the same as 
in data set B. For biological validation, we used the KEGG 
pathways to determine the consensus biological terms that 
were associated with the gene lists in modules [54].

Abbreviations

SCC: Squamous cell carcinoma; HPV16: Human 
papillomavirus type 16; PCA: principal component analysis; 
HNC: head neck cancer; CC: cervical cancer; GO: gene 
ontology; FDR: false discovery rate; NEK2: NIMA related 
kinase 2; IFN: interferon; STAT: Signal Transducer and 
Activator of Transcription; ISG: IFN-stimulated genes.

Author contributions

K-Y Kim conceptualized and designed this study; 
X. Zhang and K-Y Kim developed the methodology; X. 

Zhang, I-H Cha and K-Y Kim analyzed and interpreted 
the data as well as wrote, reviewed and revised the 
manuscript; X. Zhang and K-Y Kim supervised the 
study.

ACKNOWLEDGMENTS AND FUNDING

This work was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education (NRF-
2016R1D1A1B03934112, NRF-2017R1D1A1B03034921 
and NRF-2016R1D1A1B03934296), and by a grant from 
National Natural Science Foundation of China (NSFC, 
No. 81460408).

CONFLICTS OF INTEREST 

All authors declare that there are no conflicts of 
interest. 

REFERENCES

1. Cui X, Churchill GA. Statistical tests for differential 
expression in cDNA microarray experiments. Genome Biol. 
2003; 4:210.

2. Choi Y, Kendziorski C. Statistical methods for gene set co-
expression analysis. Bioinformatics. 2009; 25:2780–2786.

3. de la Fuente A. From ‘differential expression’ to ‘differential 
networking’ - identification of dysfunctional regulatory 
networks in diseases. Trends Genet. 2010; 26:326–333.

4. Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY. Link-based 
quantitative methods to identify differentially coexpressed 
genes and gene pairs. BMC Bioinformatics. 2011; 12:315.

5. Yip AM, Horvath S. Gene network interconnectedness 
and the generalized topological overlap measure. BMC 
Bioinformatics. 2007; 8:22.

6. Cho SB, Kim J, Kim JH. Identifying set-wise differential 
co-expression in gene expression microarray data. BMC 
Bioinformatics. 2009; 10:109.

7. Langfelder P, Horvath S. Eigengene networks for studying 
the relationships between co-expression modules. BMC 
Syst Biol. 2007; 1:54.

8. Tesson BM, Breitling R, Jansen RC. DiffCoEx: a simple 
and sensitive method to find differentially coexpressed gene 
modules. BMC Bioinformatics. 2010; 11:497.

Table 3: Summary of the dataset used in this work
Dataset Platform Number of

samples and probes
Number of 
HPV16 positivesamples

GSE6791 [14] HG-U133Plus2 42 HNC, 14 normal tissues of head 
and neck,20 CC, 8 normal tissues of 
cervix,
54675 probes

13 HNC, 8 CC

*HNC: Head and neck cancer; CC: Cervical cancer; HPV: Human papilloma virus.

( ) ( ) ( ) ( )
( , ) | ( , ) ( , ) |

1
2

A A B B
i j i jA B

ij

cor E E cor E E
preserv

−
= −



Oncotarget114039www.impactjournals.com/oncotarget

 9. Xu K, Cui J, Olman V, Yang Q, Puett D, Xu Y. A 
comparative analysis of gene-expression data of multiple 
cancer types. PLoS One. 2010; 5:e13696.

10. Song R, Huang J, Ma S. Integrative prescreening in analysis 
of multiple cancer genomic studies. BMC Bioinformatics. 
2012; 13:168.

11. Martinez-Ledesma E, Verhaak RG, Trevino V. Identification 
of a multi-cancer gene expression biomarker for cancer 
clinical outcomes using a network-based algorithm. Sci 
Rep. 2015; 5:11966.

12. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi 
AL. Hierarchical organization of modularity in metabolic 
networks. Science. 2002; 297:1551–1555.

13. Herrero R, Castellsague X, Pawlita M, Lissowska J, Kee 
F, Balaram P, Rajkumar T, Sridhar H, Rose B, Pintos 
J, Fernandez L, Idris A, Sanchez MJ, et al. Human 
papillomavirus and oral cancer: the International Agency 
for Research on Cancer multicenter study. J Natl Cancer 
Inst. 2003; 95:1772–1783.

14. Csermely P, Agoston V, Pongor S. The efficiency of multi-
target drugs: the network approach might help drug design. 
Trends Pharmacol Sci. 2005; 26:178–182.

15. Puls LN, Eadens M, Messersmith W. Current status of SRC 
inhibitors in solid tumor malignancies. Oncologist. 2011; 
16:566–578.

16. Boran AD, Iyengar R. Systems approaches to 
polypharmacology and drug discovery. Curr Opin Drug 
Discov Devel. 2010; 13:297–309.

17. Lu JJ, Pan W, Hu YJ, Wang YT. Multi-target drugs: the 
trend of drug research and development. PLoS One. 2012; 
7:e40262.

18. Petrelli A, Giordano S. From single- to multi-target drugs 
in cancer therapy: when aspecificity becomes an advantage. 
Curr Med Chem. 2008; 15:422–432.

19. Dasari S, Wudayagiri R, Valluru L. Cervical cancer: 
Biomarkers for diagnosis and treatment. Clin Chim Acta. 
2015; 445:7–11.

20. Dahiya K, Dhankhar R. Updated overview of current 
biomarkers in head and neck carcinoma. World J Methodol. 
2016; 6:77–86.

21. Mangone FR, Walder F, Maistro S, Pasini FS, Lehn CN, 
Carvalho MB, Brentani MM, Snitcovsky I, Federico MH. 
Smad2 and Smad6 as predictors of overall survival in oral 
squamous cell carcinoma patients. Mol Cancer. 2010; 9:106.

22. Zhao JL, Zhang L, Guo X, Wang JH, Zhou W, Liu M, Li X, 
Tang H. miR-212/132 downregulates SMAD2 expression 
to suppress the G1/S phase transition of the cell cycle and 
the epithelial to mesenchymal transition in cervical cancer 
cells. IUBMB Life. 2015; 67:380–394.

23. Zhai H, Shi Y, Chen X, Wang J, Lu Y, Zhang F, Liu Z, Lei 
T, Fan D. CacyBP/SIP promotes the proliferation of colon 
cancer cells. PLoS One. 2017; 12:e0169959.

24. Ghosh D, Li Z, Tan XF, Lim TK, Mao Y, Lin Q. iTRAQ 
based quantitative proteomics approach validated the role of 

calcyclin binding protein (CacyBP) in promoting colorectal 
cancer metastasis. Mol Cell Proteomics. 2013; 12:1865–
1880.

25. Chen X, Zheng P, Xue Z, Li J, Wang W, Chen X, Xie F, Yu 
Z, Ouyang X. CacyBP/SIP enhances multidrug resistance 
of pancreatic cancer cells by regulation of P-gp and Bcl-2. 
Apoptosis. 2013; 18:861–869.

26. Fang G, Zhang D, Yin H, Zheng L, Bi X, Yuan L. Centlein 
mediates an interaction between C-Nap1 and Cep68 to maintain 
centrosome cohesion. J Cell Sci. 2014; 127:1631–1639.

27. Man X, Megraw TL, Lim YP. Cep68 can be regulated by 
Nek2 and SCF complex. Eur J Cell Biol. 2015; 94:162–172.

28. Chen C, Tian F, Lu L, Wang Y, Xiao Z, Yu C, Yu X. 
Characterization of Cep85 - a new antagonist of Nek2A that 
is involved in the regulation of centrosome disjunction. J 
Cell Sci. 2015; 128:3290–3303.

29. Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan 
IM, Fry AM. The centrosomal kinase Nek2 displays 
elevated levels of protein expression in human breast 
cancer. Cancer Res. 2004; 64:7370–7376.

30. Andreasson U, Dictor M, Jerkeman M, Berglund M, 
Sundstrom C, Linderoth J, Rosenquist R, Borrebaeck CA, 
Ek S. Identification of molecular targets associated with 
transformed diffuse large B cell lymphoma using highly 
purified tumor cells. Am J Hematol. 2009; 84:803–808.

31. Zeng X, Shaikh FY, Harrison MK, Adon AM, Trimboli AJ, 
Carroll KA, Sharma N, Timmers C, Chodosh LA, Leone 
G, Saavedra HI. The Ras oncogene signals centrosome 
amplification in mammary epithelial cells through cyclin 
D1/Cdk4 and Nek2. Oncogene. 2010; 29:5103–5112.

32. Naro C, Barbagallo F, Chieffi P, Bourgeois CF, Paronetto 
MP, Sette C. The centrosomal kinase NEK2 is a novel 
splicing factor kinase involved in cell survival. Nucleic 
Acids Res. 2014; 42:3218–3227.

33. Koch M, Wiese M. Gene expression signatures of 
angiocidin and darapladib treatment connect to therapy 
options in cervical cancer. J Cancer Res Clin Oncol. 2013; 
139:259–267.

34. Duan X, Chen H, Ma H, Song Y. NEK2 is up-regulated 
in oral squamous cell carcinoma and correlates with 
patients’disease severity. International Journal of 
Experimental Pathology. 2017; 10:3594–3600.

35. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular 
organelles important in intercellular communication. J 
Proteomics. 2010; 73:1907–1920.

36. Kowal J, Tkach M, Thery C. Biogenesis and secretion of 
exosomes. Curr Opin Cell Biol. 2014; 29:116–125.

37. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra 
MC, Ostrowski M, Thery C. Rab27a supports exosome-
dependent and -independent mechanisms that modify 
the tumor microenvironment and can promote tumor 
progression. Cancer Res. 2012; 72:4920–4930.

38. Epple LM, Griffiths SG, Dechkovskaia AM, Dusto 
NL, White J, Ouellette RJ, Anchordoquy TJ, Bemis LT, 



Oncotarget114040www.impactjournals.com/oncotarget

Graner MW. Medulloblastoma exosome proteomics yield 
functional roles for extracellular vesicles. PLoS One. 2012; 
7:e42064.

39. Ludwig S, Floros T, Theodoraki MN, Hong CS, Jackson 
EK, Lang S, Whiteside TL. Suppression of lymphocyte 
functions by plasma exosomes correlates with disease 
activity in patients with head and neck cancer. Clin Cancer 
Res. 2017; 23:4843–4854. https://doi.org/10.1158/1078-
0432.CCR-16-2819.

40. Steinbichler TB, Dudas J, Riechelmann H, Skvortsova 
II. The Role of Exosomes in Cancer Metastasis. Semin 
Cancer Biol. 2017; 44:170–181. https://doi.org/10.1016/j.
semcancer.2017.02.006.

41. Liu S, Hao X, Ouyang X, Dong X, Yang Y, Yu T, Hu J, 
Hu L. Tyrosine kinase LYN is an oncotarget in human 
cervical cancer: A quantitative proteomic based study. 
Oncotarget. 2016; 7:75468–75481. https://doi.org/10.18632/
oncotarget.12258.

42. Wheeler SE, Morariu EM, Bednash JS, Otte CG, Seethala 
RR, Chiosea SI, Grandis JR. Lyn kinase mediates cell 
motility and tumor growth in EGFRvIII-expressing head 
and neck cancer. Clin Cancer Res. 2012; 18:2850–2860.

43. Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host 
type I interferon response to viral and bacterial infections. 
Cell Res. 2005; 15:407–422.

44. Stetson DB, Medzhitov R. Type I interferons in host 
defense. Immunity. 2006; 25:373–381.

45. Khodarev NN, Roizman B, Weichselbaum RR. Molecular 
pathways: interferon/stat1 pathway: role in the tumor 
resistance to genotoxic stress and aggressive growth. Clin 
Cancer Res. 2012; 18:3015–3021.

46. Laurence A, Pesu M, Silvennoinen O, O’Shea J. JAK 
Kinases in Health and Disease: An Update. Open 
Rheumatol J. 2012; 6:232–244.

47. Yanai H, Negishi H, Taniguchi T. The IRF family of 
transcription factors: Inception, impact and implications in 
oncogenesis. Oncoimmunology. 2012; 1:1376–1386.

48. Andersen JB, Hassel BA. The interferon regulated 
ubiquitin-like protein, ISG15, in tumorigenesis: friend or 
foe? Cytokine Growth Factor Rev. 2006; 17:411–421.

49. Blomstrom DC, Fahey D, Kutny R, Korant BD, Knight E 
Jr. Molecular characterization of the interferon-induced 15-
kDa protein. Molecular cloning and nucleotide and amino 
acid sequence. J Biol Chem. 1986; 261:8811–8816.

50. Pyeon D, Newton MA, Lambert PF, den Boon JA, 
Sengupta S, Marsit CJ, Woodworth CD, Connor JP, 
Haugen TH, Smith EM, Kelsey KT, Turek LP, Ahlquist 
P. Fundamental differences in cell cycle deregulation in 
human papillomavirus-positive and human papillomavirus-
negative head/neck and cervical cancers. Cancer Res. 2007; 
67:4605–4619.

51. Zhang B, Horvath S. A general framework for weighted 
gene co-expression network analysis. Stat Appl Genet Mol 
Biol. 2005; 4:Article17.

52. Hotelling H. Analysis of a complex of statistical variables 
into principal components. Journal of Educational 
Psychology. 1933; 24:417–441.

53. Pearson K. On Lines and Planes of Closest Fit to Systems of 
Points in Space. Philosophical Magazine. 1901; 2:559–572.

54. Huang da W, Sherman BT, Lempicki RA. Systematic 
and integrative analysis of large gene lists using DAVID 
bioinformatics resources. Nat Protoc. 2009; 4:44–57.


