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ABSTRACT

CircRNAs are a group of endogenous noncoding RNAs. The quickly developing 
high throughput RNA sequencing technologies along with novel bioinformatics 
approaches have enabled researchers to systematically identify circRNAs and their 
biological functions in cells. Deep sequencing of rRNA-depleted RNAs treated with 
RNase R, which digests linear RNAs and leaves circRNAs enriched, is an efficient way 
to identify circRNAs. However, very few of RNase R treated data are at hand but a 
large amount of total RNA-Seq data with no sequencing costs is available, for circRNA 
predictions. In this study, we systematically investigated the prediction bias from total 
RNA-Seq data as well as the influence of sequencing depth, sequencing quality and 
single-end or paired-end sequencing strategy on the predictions. We also identified 
circRNA properties that may contribute to the improved prediction performance. Our 
analysis shows that circRNA predictions from total RNA-Seq data gain ~50% true 
positive. Sequencing error dramatically worsens the predictions, rather than single-
end sequencing strategy or low sequencing depth. However, false positive can be 
carefully controlled by using data with good quality and narrowing down circRNAs 
guided by their properties.
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INTRODUCTION

Circular RNAs (circRNAs) have been discovered 
as a novel group of endogenous noncoding RNA. 
Differing from linear RNAs, circRNAs lack 5′ cap and 
3′ poly(A) tail and form covalently closed loop structures 
with circularization of exon, intron or intergenic regions, 
which makes them more conserved and stable [1, 2]. 
CircRNAs are resistant to RNase R, an RNA exonuclease 
that preferentially degrades linear RNAs [3]. CircRNAs 
may act as microRNA sponges, interact with RNA binding 
proteins, regulate alternative splicing or transcription 
and translate into the protein of parental genes [4, 5]. 
More importantly, circRNAs may have great potential 
roles in biological development and disease initiation or 
progression, and can function as new clinical diagnostic 

and prognostic biomarkers [6–12]. For instance, 
expression levels of circRNAs are significantly increased 
in cancer serum compared to those in normal serum, so 
circRNAs can serve as a promising biomarker for cancer 
diagnosis [9]. Therefore, circRNAs have been back to 
forefront of the RNA field and attain much more attention 
from basic research to clinical application. 

CircRNAs were first found in a viroid as early as 
1970s [13], unfortunately such molecules were long 
considered to be aberrant RNA splicing byproducts or 
a few of specific pathogens due to their low expression 
abundance [14, 15]. Promisingly, the quickly developing 
high throughput RNA deep sequencing technologies along 
with bioinformatics approaches [6, 16–21] have enabled 
researchers to systematically identify circRNAs and their 
biological functions in cells. Ideally, paired-end deep 
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sequencing of rRNA-depleted RNAs treated with RNase 
R, which can digest linear RNAs while leave circRNAs 
unaffected, is an efficient way to identify circRNAs. 
However, very few of such ‘perfect’ data are at hand but 
a great deal of ‘imperfect’ total RNA-Seq data with no 
RNase R treatment, even with single-end sequencing, low 
sequencing quality or poor sequencing depth are available 
for circRNAs predictions. 

Presently, there are few studies investigate the 
prediction bias, as well as the factors that contribute to the 
improved predictions, from total RNA-Seq data. In this 
study, we used a de novo circRNA prediction algorithms 
CIRI [16] and KNIFE [17] to predict circRNAs from total 
RNA-Seq data, then evaluated prediction performance 
using RNase R treated sample. We further generated three 
types of simulated data based on total RNA-Seq data, 
which respectively simulated the imperfect RNA-Seq data 
with single-end sequencing, gradually decreased sequence 
quality or sequencing depth. The prediction performance 
was also evaluated on these imperfect data. Finally, we 
investigated the circRNAs properties that can contribute 
to the efficient prediction of true circRNAs.

RESULTS 

Predicting the circRNAs from total RNA-Seq 
data

Hansen et al. employed Hs68 fibroblast to compare 
the performance of five circRNA prediction algorithms 
[22]. Here we used the same samples to investigate the 
bias of circRNA predictions from total RNA-Seq data. 
Two replicates of total RNA-Seq data with 100-bp 
paired-end reads from Hs68 (SRR444655, SRR444975) 
were used in this study. FastQC analysis (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) showed 
the good quality of four single-end RNA-Seq data, 
including SRR444655_1, SRR444655_2, SRR444975_1 
and SRR444975_2, except for a declined quality at the 3′ 
termini of the reads (Supplementary Figure 1A, 1B). This 
decline was more obvious for the second single-end data 
SRR444655_2 (Supplementary Figure 1A, right panel). 
We applied the recently published circRNA prediction 
algorithms CIRI (CIRI1.2 and CIRI2.0) and KNIFE to 
predict novel circRNAs from total RNA-Seq data, since 
CIRI algorithm have showed the advantage over the 
other two algorithms, segemehl and find_circ [22]. As for 
KNIFE algorithm, unlike previous algorithms that were 
lack of rigorous statistical testing, it used a statistical 
approach to decrease false positive identification [17]. To 
distinguish true circRNAs from false ones, two replicates 
of RNase R treated RNA-Seq data in Hs68 (SRR444974, 
SRR445016) were used as a validation. The circRNAs 
with the reads enriched in RNase R treated samples were 
reported as true positives based on enrichment score 

(See methods). FastQC analysis also showed the good 
quality for SRR444974 and SRR445016 except for a 
poor quality at the 3′ termini of the reads (Supplementary 
Figure 1C, 1D). 

From total RNA-Seq data SRR444655, the 
algorithms respectively predicted 3,488 (CIRI1.2), 2,207 
(CIRI2.0), and 2,854 (KNIFE) circRNAs with at least two 
reads spanning the splicing sites (Figure 1). As expected, 
the number of circRNAs predicted by using RNase R 
treated data SRR444974, with 32,170 for CIRI1.2, 30,470 
for CIRI2.0, and 35,849 for KNIFE, was much greater 
than one using total RNAs samples (Figure 1). CIRI1.2 
predicted 2,531 circRNAs that were both found by RNase 
R treated samples and total RNA samples. Among them 
1,362 circRNAs were enriched in RNase R treated sample 
(enrichment score E > 0) and thus defined as true circRNAs. 
Comparing with 3,488 circRNAs predicted from total 
RNA-Seq, the true positive rate of CIRI1.2 is 39.05%. And 
CIRI2.0 and KNIFE algorithms respectively found 1,096 
(49.71%) and 1,689 (59.18%) true circRNAs. The complete 
list of true circRNAs and false circRNAs was shown in 
Supplementary Tables 1 and 2. Most of predicted circRNAs 
and true positives were generated by exon circularization. 
Intron circularization was also identified. KNIFE algorithm 
only identified the circRNAs from exons. Moreover, most 
of circRNAs were generated from protein coding genes 
(Supplementary Table 3). CircRNAs predicted only by 
one approach were more likely to be false positive in 
general [22], and a recent evaluation based on 11 circRNA 
prediction tools also showed that no single approach 
dominated on all of the metrics of performance [23]. So 
several algorithms should be combined to achieve reliable 
predictions. In our analysis, of the predicted circRNAs 
using three algorithms, an overlap of 1,152 circRNAs was 
observed between all algorithms (Figure 1D). Prediction 
performance was improved when combining more than 2 
algorithms (Figure 1E).

The results analysed using total RNA-Seq data 
SRR444975 and RNase R treated RNA-Seq data 
SRR445016 by CIRI2.0 were shown in Supplementary 
Figure 2. 

Evaluating the bias of predicted circRNAs from 
the imperfect total RNA-Seq data

The above analysis suggested that it was feasible to 
predict the circRNAs from total RNA-Seq data, though 
prediction should be cautious due to ~50% false positive. 
Therefore, a large amount of total RNA-Seq data in the 
public databases can be for the effective use of novel 
circRNA discovery. However, the public total RNA-Seq 
data may not be as perfect as SRR444655 and SRR444975 
due to single-end sequencing, poor sequence quality or 
low sequencing depth. 
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To systematically evaluate the prediction bias 
of circRNAs from the imperfect total RNA-Seq data, 
we generated three types of simulations (Figure 2): 
(i) Only single-end reads extracted from SRR444655/
SRR444975, simulating single-end sequencing strategy, 
were used for prediction; (ii) Reads randomly sampled 
from SRR444655/SRR444975 with a different sampling 
rate, simulating the gradually decreased sequencing depth, 
were used for prediction and (iii) Reads from SRR444655/
SRR444975 with the bases of each read being replaced by 
other false bases, simulating decreased sequencing quality, 
were used for prediction. 

In the first simulation based on the data SRR444655 
(Figure 3A–3C), CIRI1.2 respectively identified 2,762 and 
2,111 circRNAs when using the first and second single-
end reads, which was an apparent decrease compared to 
3,488 circRNAs found by paired-end data SRR444655 
(Figure 3A). A decrease in the number of predicted 
circRNAs was also observed when using CIRI2.0 and 
KNIFE algorithm (Figure 3B–3C). The number of true 
circRNAs for sing-end RNA-Seq data also decreased 
compared with paired-end data. Moreover, when only using 
the second single-end reads all prediction algorithms found 
much less circRNAs than using the first single-end reads 
(Figure 3A–3C). The number of both predicted circRNAs 
and true circRNAs predicted using the first single-end data 
exceeded one using the second single-end data, suggesting 

that the better reads quality (Supplementary Figure 1A) 
improve the predictions. Moreover, KNIFE algorithm 
almost did not work for single-end sequence.

In the second simulation (Figure 3D–3F), the 
number of predicted circRNAs decreased with the number 
of reads using for prediction linearly. A linear decrease 
was also observed in the number of true circRNAs for 
three algorithms. Meanwhile the true circRNAs was 
proportional to sequencing depth. For example, CIRI2.0 
found about half of true circRNAs (461/1096) when 
sequencing depth was reduced to the half of SRR444655 
(Figure 3E). 

In the third simulation (Figure 3G–3H), the number 
of predicted circRNAs and true circRNAs decreased when 
more sequencing errors occurred in the reads. Our analysis 
showed that 794 true circRNAs were found by CIRI1.2 
when 5 errors added in each read. Moreover, CIRI2.0 is 
more sensitive to sequencing error than CIRI1.2, having 
only 56 circRNAs predicted when 5 errors added and 
no circRNAs predicted when 10 errors added. KNIFE, 
being most sensitive to sequencing error, could not 
predict circRNAs when sequencing errors occurred in 
the reads. Comparing with the influence of single-end 
reads or sequencing depth on the prediction performance, 
sequencing error dramatically worsened the predictions.

To validate our findings we also employed CIRI2.0 
and KNIFE algorithms to predict circRNAs from total 

Figure 1: Prediction performance of the total RNA-Seq data SRR444655 using three algorithms. Prediction performance 
of the total RNA-Seq data using CIRI1.2 (A), CIRI2.0 (B) or KNIFE (C). Most of predicted circRNAs and true positives were generated 
by exon circularization. An overlap of 1,152 circRNAs was observed between all algorithms (D). Prediction performance was improved 
when using combining more than 2 algorithms. C1, C2 and K represent CIRI1.2, CIRI2.0 and KNIFE, respectively (E).
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RNA-Seq data SRR444975 and used three simulations to 
evaluate the prediction bias. The results on SRR444975 
were consistent with our findings on SRR444655 
(Supplementary Figure 3).

Identifying the circRNA properties contributing 
to the efficient predictions

Our analysis above suggested that single-end 
reads, low sequencing depth and poor sequencing quality 
correlated with the decreased prediction performance. 
However, still a proportion of circRNAs was efficiently 
identified as true ones in the simulated imperfect RNA-
Seq data. To identify the factors that may contribute to 
such efficient predictions, we evaluated four types of 
circRNAs properties - including distance between back-
splicing sites, enrichment score, junction reads ratio, 
and reads count – between two groups of circRNAs (See 
methods). The first group (S1) covered the true circRNAs 
that were efficiently identified in the imperfect RNA-Seq 
data, and the second group (S2) covered true circRNAs 
that were not identified in the imperfect RNA-Seq data 
(Figure 4A). Kolmogorov-Smirnov test (K-S test) was 
employed to respectively compare cumulative distribution 
function (CDF) of these properties between two groups. 
Red curve is corresponding to CDF of the first group S1, 
and the green curve is corresponding to CDF of the second 
group S2 (Figure 4B–4D). 

This evaluation was performed on three types of 
simulated imperfect data (single-end sequencing, low 
sequencing depth, and poor sequencing quality). The results 
showed that the shape of CDF for distance of splicing sites 
in S1 was similar to that in S2 (Figure 4B–4D, left panel), 
suggesting that distance of splicing sites had no difference 
between two groups. However, the shape of CDF for three 
types of properties - enrichment score, junction reads ratio, 
and reads count – in S1 was significantly right shifted in 
comparison with that in S2 (Figure 4B–4D, middle panels 
and right panels). This demonstrated that circRNAs with 
more reads count, higher junction reads ratio or greater 
enrichment score tend to be efficient predictable even in the 
imperfect RNA-Seq data. When we ranked the predicted 
circRNAs and selected the top 500 circRNAs with greater 
reads count, the true positives rate dramatically increased 
from around 50% to 70%. Therefore, though predictions 
from the imperfect total RNA-Seq data have a high risk 
to be artifacts, circRNAs with higher junction reads ratio 
and more reads count are much reliable. The evaluation 
when using other algorithm also showed the similar results 
(Supplementary Figure 4).

DISCUSSION 

In this study, we performed comparison analyses to 
systematically evaluate the bias of circRNA predictions 

Figure 2: Pipeline for generating the simulated imperfect RNA-Seq data. 
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from total RNA-Seq data. Our analysis showed that it was 
feasible to fully take advantage of the large amount of 
total RNA-Seq data in the public databases for circRNAs 
predictions. Though such prediction suffers from false 
positive, it can be carefully controlled by using total RNA-
Seq data with good quality and preferentially selecting the 
circRNAs with high junction reads ratio and reads count. 

Our analysis demonstrates that only total RNA-
Seq data with good base quality is qualified for circRNA 
predictions. The number of true circRNAs decreased 
obviously along with the increasing sequencing errors 
(Figure 3G–3I), moreover, the second single-end RNA-
Seq data with worse sequencing quality at 3′ termini 
gained less true positives (Figure 3A–3C). Therefore, 
sequencing error dramatically worsens the predictions, 
rather than single-end sequencing or low sequencing depth. 
However, though the ratio of false positive circRNAs was 
lower than that of true positive, among all of the circRNAs 
predicted from the perfect data, the absolute number of 
false positive circRNAs increased together with that of 
true positive ones. Therefore, there is still much space 
for further improvement of prediction performance for a 
single algorithm. And currently several algorithms could 
be combined to achieve reliable predictions.

In our study, we used CIRI1.2, CIRI2.0 and KNIFE 
to predict circRNAs. Different scircRNA prediction 

algorithms have different results. A recently published 
study [22] compared the predicted circRNAs from the 
different prediction algorithms. Their results suggested 
that combining two algorithms could effectively reduce 
the false positive, which was confirmed by our analysis. In 
addition, our analysis showed that CIRI2.0, as an updated 
version of CIRI1.2, gained the obviously improved true 
positives. KNIFE achieved the highest rate of true positive, 
and it worked efficiently on paired-end RNA sequencing 
data with good quality. But KNIFE greatly depended on 
sequencing strategy and sequence quality. Comparing 
with KNIFE, CIRI1.2 and CIRI2.0 still work on data with 
single-end RNA sequencing and poor sequence quality. 

Our study has provided a comprehensive view on 
the predictions using the imperfect total RNA-Seq data. 
Our analysis demonstrates how public total RNA-Seq data 
with no sequencing costs, can be effectively utilized to 
promote the researches on circRNAs.

MATERIALS AND METHODS

Dataset analysis

RNA-Seq data of human fibroblast cell line Hs68, 
including total RNA sample (SRR444655, SRR444975) 
and RNase R treated sample (SRR444974, SRR445016) 

Figure 3: Prediction performance of the simulated data using three algorithms. Prediction performance of the single-end 
sequencing data using CIRI1.2 (A), CIRI2.0 (B) or KNIFE (C). Prediction performance of the data with gradually decreased sequencing 
depth using CIRI1.2 (D), CIRI2.0 (E) or KNIFE (F). Prediction performance of the data with gradually increased sequencing error using 
CIRI1.2 (G), CIRI2.0 (H) or KNIFE (I).
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[2], was downloaded from the National Center for 
Biotechnology Information (NCBI) short Sequence Reads 
Archive. RNA sequencing data quality was investigated 
using FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Using BWA-MEM alignment algorithm 
[24], we mapped the RNA-Seq reads to the human 
reference genome (hg19) that was downloaded from UCSC 
Genome Browser [25]. CIRI1.2, CIRI2.0 and KNIFE, the 
de novo circRNA identification algorithms, were employed 
to predict circRNAs with the default arguments. Only 
circRNAs with at least two reads spanning the splicing sites 
were kept for analysis. We designed an enrichment score to 
distinguish the true positives from false positives that were 
predicted from total RNA-Seq data. For a single predicted 
circRNA, enrichment score can be calculated by,

E = (m − n)/(m + n) (1)

Where m is the reads count of predicted circRNA 
from the Rnase R treated sample, and n is the reads count 
of predicted circRNA from total RNA-Seq sample. A 
predicted circRNA with enrichment score greater than 0 
is considered as true positive.

Prediction of simulated imperfect total RNA-Seq 
data

The imperfect RNA-Seq data were simulated based 
on total RNA-Seq data SRR444655 or SRR444975 in 
three ways: (i) Two files, the first single-end reads and the 
second single-end reads from SRR444655 or SRR444975, 
were simulated as two independent total RNA-Seq data 
with single-end sequencing. (ii) 80%, 50% and 20% reads 
were sampled from paired-end reads of SRR444655 or 

Figure 4: The circRNAs properties contributing to the efficient predictions using the imperfect total RNA-Seq data. 
(A) Some cirRNAs were efficiently predicted by the imperfect RNA-Seq. Evaluation of the contributions of four types of circRNAs 
properties - distance of splicing sites, enrichment score, junction reads ratio, and reads count – to the efficient predictions using the first 
single-end RNA-Seq data (B) 50% sampling data (C) and data with the bases in each read were replaced by 5 false bases (D). Red curve is 
corresponding to cumulative distribution function (CDF) of the first group S1, and green curve is corresponding to cumulative distribution 
function (CDF) of the second group S2.
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SRR444975, which simulated the gradually decreased 
sequencing depth. (iii) The bases in each read from 
SRR444655 or SRR444975 were replaced by other bases 
differing from them. For example, A is replaced by T, C, 
G, or N. 2, 5, 10 or 20 bases were substituted in each read, 
respectively, which simulated the gradually decreased 
sequencing quality. Simulated RNA-Seq data were carried 
out the same circRNA predictions above.

Investigation of the circRNAs properties

Four types of circRNAs properties, including 
distance between back-splicing sites, enrichment score, 
junction reads ratio, and reads count, were investigated. 
Junction reads ratio can be calculated by,

R n
N

=  (2)

Where n is the reads count of predicted circRNAs, 
and N is the reads count of predicted RNAs (including 
circRNA and linear RNA) around the circular region, a 
region between two junction sites.

Here true circRNAs were separated into two groups 
based on whether they were efficiently predicted in the 
imperfect RNA-Seq data. The first group covered the true 
circRNAs that were identified in the imperfect RNA-Seq 
data, and the second group covered ones that were not 
identified in the imperfect RNA-Seq data. Kolmogorov-
Smirnov test (K-S test) was employed to respectively 
compare cumulative distribution function (CDF) of these 
properties between two groups of circRNAs.
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