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ABSTRACT
Insulated culture environment and prolonged propagation contribute to known 

limitations of cell lines, and selection is often limited to availability or favorable growth 
characteristics. To better characterize and improve selection of cell lines, we compared 
60 melanoma cell lines profiled by the Cancer Cell Line Encyclopedia and 472 cutaneous 
melanoma tumors profiled by The Cancer Genome Atlas by DNA sequence and copy 
number alterations. All samples were scored for stromal and immune cell composition 
by the ESTIMATE algorithm, and 412 tumors with ≥ 60% tumor cell fraction were 
compared to cell lines. Uncharacterized early passage cell lines that lacked BRAF, NRAS, 
or NF1 mutations had near zero mean Pearson correlation of copy number alterations 
per gene to tumors and also tended to have higher stromal scores. The Comet Exact 
Test was applied to tumors and cell lines identifying three pairs of genes mutated in a 
mutually exclusive pattern in tumors but not cell lines: BRAF and NRAS, BRAF and NF1, 
as well as NRAS and PTEN. Additionally, 31 genes were more frequently mutated in cell 
lines than tumors. Avoiding cell lines with co-occurring mutually exclusive mutations 
and the fewest differentially mutated genes within a known distribution of genetic 
similarity to tumors by copy number alterations may optimize selection.

INTRODUCTION

Incidence of cutaneous melanoma in the United 
States occurred at a rate of 26.8 per 100,000 males and 
16.6 per 100,000 females from 2009–2013 [1]. Since the 
1960’s, incidence of cutaneous melanoma has continued 
to increase in Caucasian populations North America and 
Europe with a stable mortality rate, while mortality rates 
have increased in East Asian populations despite relatively 
low incidence [2, 3]. Additionally, African American 
populations with cutaneous melanoma have lower survival 
rates relative to Caucasians despite having lower rates of 
occurrence [4]. Cutaneous melanoma persists as a deadly 
disease if not diagnosed and surgically removed early in 
its progression with a 97% 5-year survival rate for stage 
IA, but survival drops dramatically once metastases have 
spread to regional lymph nodes with only 78% 5-year 
survival rate for stage IIIA and 15–20% 5-year survival 
rate for stage IV [5]. Targeted therapies exist for treating 
cutaneous melanoma at more advanced stages including 
RAF and MEK inhibitors as well as immune blockade 

therapy through the PD1 antibody treatment, but primary 
and acquired therapy resistance both limit increases in 
patient survival [6, 7]. 

Cancer cell lines continue as a pre-clinical tool 
for development of novel therapeutics and diagnostics. 
Cell lines have been widely used for drug screening 
and mechanistic studies in 2D and 3D cell cultures as 
well as xenograft models, but immortalized cancer cell 
lines limit the generalizability of conclusions due to 
clonal homogeneity and the lack of a full complement of 
stromal and immune cell types [8]. Characterization and 
evaluation of the similarity of cancer cell lines to tumors in 
vivo by their molecular characteristics makes a first step to 
increasing translational efficiency of pre-clinical studies. 
Significant genetic alterations can be applied as a basic 
metric before investigating cancer biology with cell lines 
including significant mutations of oncogenes or tumor 
suppressors, karyotype similarity, and DNA methylation. 
The number of cell line passages before analysis also 
critically influences results since genomic features may 
change during propagation and maintenance of cell lines 
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[9]. Recently, comparative studies have been carried out 
to evaluate the overall genomic, transcriptomic, and to 
a limited extent proteomic similarity between cell lines 
and tumors from multiple cancer types [10–14]. These 
studies utilize publicly available multi-platform biological 
data resources and sharing platforms including but not 
limited to The Cancer Genome Atlas (TCGA), The Gene 
Expression Omnibus, The Cancer Cell Line Encyclopedia 
(CCLE), and the COSMIC Cell Lines Project [15–18]. 

The original TCGA study that characterized 
cutaneous melanoma (TCGA-SKCM) included 67 
primary tumors and 266 metastatic tumors, and as 
samples continue to be analyzed these numbers have 
increased to 104 primary tumors and 367 metastatic 
tumors included in this study [19]. Commercially available 
cell lines characterized by CCLE derive from many 
tumor types including 60 melanoma cell lines [16]. We 
hypothesized that comparison of melanoma cell lines to 
tumors primarily by their DNA sequence and DNA copy 
number alterations provides the most stable and broadly 
applicable evaluation of similarity. Vincent & Postovit 
previously ranked similarity of cutaneous melanoma 
cell lines to tumors from 19 patients by averaging all 
correlation coefficients of mRNA expression between 
cell lines and 1,246 individual melanoma cells profiled 
by single cell RNA-seq [13]. Though a direct tumor cell 
to tumor cell comparison revealed important differences 
in the types of genes expressed between cell lines and 
tumors, RNA expression patterns are dynamic and 
change in response to environmental cues like stress from 
hypoxia and inflammation to name two common examples 
[20, 21]. Under normal culture conditions, cell lines are 
not receiving stromal cues; therefore, RNA expression 
may not be the most accurate representation of cell line 
similarity to tumor cells in vivo. To address this limitation, 
we focus on genomic data, particularly DNA mutations 
and DNA copy number alterations, from 470 cases 
included in The Cancer Genome Atlas Skin Cutaneous 
Melanoma (TCGA-SKCM) study and 60 melanoma cell 
lines profiled by CCLE.

Aran et al. applied multiple molecular data analysis 
approaches to estimate the tumor cell fraction of all tumor 
samples profiled by TCGA and found highly variable 
purity, particularly in TCGA-SKCM samples, which 
confounds conclusions drawn from next generation 
sequencing data [22]. To address this limitation of the 
TCGA-SKCM data, comparative analyses in this study 
includes only TCGA-SKCM samples with a tumor cell 
fraction ≥ 60% calculated from scores derived from the 
ESTIMATE algorithm [23]. Cutaneous melanoma cell 
lines were evaluated by (1) the presence of significantly 
mutated genes defined by TCGA-SKCM, (2) the number 
of differentially mutated genes, (3) the co-occurrence of 
mutations in cell lines that were found to be mutually 
exclusive in TCGA-SKCM, and (4) the correlation of 
copy number alterations per gene in focally amplified 

and deleted regions identified by GISTIC 2.0 analysis. 
Gross genomic features were evaluated by the difference 
in mutational burden between tumors and cell lines and 
the amount of copy number alteration across the entire 
genome. 

RESULTS

Data summary

The CCLE study included 62 cell lines annotated 
as being skin derived, and 60 of those are defined 
as cutaneous melanoma cell lines. BJHTERT, an 
immortalized fibroblast cell line, and GRM, a likely 
pancreatic cancer cell line by SNP identity according 
to CCLE annotation, were excluded from comparative 
analysis. TCGA-SKCM profiled 472 fresh frozen 
cutaneous melanoma tumor samples from 470 cases. 
Target paired-end sequencing was performed on CCLE 
samples using Agilent Sure-Select Target Enrichment 
System including 1651 selected genes [16]. Whole exome 
paired-end sequencing was performed on TCGA-SKCM 
samples using Agilent Sure-Select Human All Exon v2.0 
capture [19]. Copy number estimation for both TCGA-
SKCM and CCLE samples were profiled with Affymetrix 
Genome-Wide Human SNP 6.0 Array and segmented 
with the Circular Binary Segmentation algorithm then 
normalized as ploidy corrected log2 ratios [16, 19]. CCLE 
profiled mRNA expression using an Affymetrix GeneChip 
Human Genome U133 Plus 2.0 Array and converted 
probe intensities to gene-wise expression with Robust 
Multi-array average and quantile normalization [24]. 
TCGA-SKCM profiled mRNA expression using Illumina 
paired-end RNA sequencing and used RSEM software 
for normalization [25]. Every data type was not available 
for every sample. Therefore, each analysis was limited to 
samples with the data available (Figure 1).

Tumor and cell line ESTIMATE scores

In order to control for variability in tumor sample 
composition, the tumor cell fraction was estimated for 
cell lines using mRNA microarray expression data and 
for tumors using RNA-seq expression data with the 
ESTIMATE algorithm [23]. The TCGA-SKCM study 
required tissue sample composition ≥ 60% tumor nuclei 
with ≤ 20% necrosis by histological review with further 
macrodissection if the criteria were not met for DNA/
RNA extraction [19]. To meet this minimal tumor fraction 
threshold, the TCGA-SKCM tumor data set was filtered 
to only include samples with tumor cell fraction ≥ 60% 
calculated from the ESTIMATE score as shown in 
Figure 1. In the normalized expression data for tumors, 
139 of 141 genes were common with the ESTIMATE 
stromal gene set and 141 of 141 immune genes were 
common with the ESTIMATE immune gene set. 
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Hierarchical clustering of normalized mRNA expression 
of the two gene sets is shown in Figure 2A. Two tumor 
samples form a cluster with low estimated tumor purity 
and high expression of both immune and stromal genes. 
A sub-cluster of tumors with low estimated tumor cell 
fraction show strong expression of immune genes. 

ESTIMATE scores were also calculated for all 
cell lines included in the CCLE study. In the GCT file of 
normalized microarray expression data, 139 of the 141 genes 
were common with each the ESTIMATE stromal gene set 
and immune gene set respectively. Stromal and immune 
scores across cell lines are very low relative to those found in 
melanoma tumors, and clusters tend to form by the derived 
cell type (Figure 2B). Hematopoietic and lymphoid tissue 
cell lines form a cluster characterized by higher expression 
of immune genes and higher immune scores relative to other 
cell lines as expected by their cell type. A sub-cluster of the 
non-hematopoietic or lymphoid derived cell lines shows 
high expression of stromal genes including central nervous 
system cell lines and multiple early passage primary cell 
cultures made available by ATCC (https://www.atcc.org/) 
with variable mixtures of tumor and stromal cells that were 

originally provided by the Naval Biosciences Laboratory 
(NBL). HS600T, HS834T, HS688AT, HS839T, HS934T, and 
HS940T are melanoma derived cell cultures made available 
by ATCC as uncharacterized early passage lines, and all 
are included in the cluster with the highest stromal score. 
Additionally, BJHTERT, an immortalized fibroblast cell line, 
and HS895T, a fully characterized cell line, both cluster with 
the higher stromal scoring cell lines. Many other cell lines 
originally sourced by NBL were further developed to fully 
characterized cell lines and generally cluster according to 
their cell type.

Comparing DNA copy number

Segmented copy number alterations were compared 
between cell lines and tumors by their fraction genome 
altered (FGA). FGA was applied as described by Domcke 
et al. to measure of the proportion of copy number 
segments that are either amplified or deleted above a 
chosen threshold as described in the methods section [10]. 
Mean FGA was found to be significantly different between 
cell lines (n = 59), metastatic tumors (n = 310), and 

Figure 1: Flow chart outlining the analysis pipeline and samples included in each comparison.
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primary tumors (n = 101) (p < 0.05 one-way ANOVA). 
Cell line mean FGA (0.45 ± 0.23) was significantly higher 
than both primary tumors (0.33 ± 0.19) and metastatic 
tumors (0.38 ± 0.20) (p < 0.05 Tukey’s Method). Mean 
FGA was not significantly different between primary and 
metastatic tumors (p = 0.09 Tukey’s Method) (Figure 3A). 

HS695T, MDAMB435S, and WM983B are the top three 
cell lines by FGA with more than half of all copy number 
segments altered (Figure 3B). HS940T, HS688AT, 
HS839T, HS600T, HS934T, and HS895T have the lowest 
FGA of the melanoma cell lines. The mean FGA for all 
tumors combined is 0.37 ± 0.20 (min = 0.02, max = 0.98). 

Figure 2: Heat maps illustrate the normalized expression values for genes included in the ESTIMATE algorithm 
for stromal and immune gene signatures. (A) Heatmap (center) depicting hierarchically clustered normalized expression values 
for stromal and immune ESTIMATE gene sets (columns) for tumor samples (rows). Clustering was carried out with Euclidean distance 
and Ward’s agglomeration method. Annotations (right) include stromal score, immune score, and the fraction tumor cells estimated. (B) 
Heatmap (center) depicting hierarchically clustered normalized expression values for stromal and immune ESTIMATE gene sets (columns) 
for all cell lines profiled by CCLE (rows). Clustering was carried out with Euclidean distance and Ward’s agglomeration method. Sample 
annotations (left) include cell line type and whether or not the cell line was originally sourced from the Naval Biosciences Laboratory 
(NBL). ESTIMATE algorithm results (right) illustrate stromal score and immune score.
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In order to compare overall copy number similarity 
between cell lines and tumors across all gene coding 
regions, the average copy number per gene was calculated 
as described in the methods section. Sample Pearson 
correlation coefficients were calculated for the copy 
number alteration per gene between each cell line and each 
tumor sample to determine the distribution of similarity. 
Comparison of copy number across all genes between 
individual cell lines and tumors results in a broad range 
of Pearson r values with multiple outliers across cell lines 

(Figure 4A). HS939T (mean = 0.31 ± 0.13) and SH4 (mean 
= 0.31 ± 0.14) both had the highest mean Pearson r value 
with tumors of all the cell lines. Interestingly HS939T, an 
uncharacterized early passage melanoma cell line, had the 
highest mean Pearson r value, but other uncharacterized 
early passage lines including HS600T, HS688AT, HS839T, 
HS934T, and HS895T all had mean Pearson r values near 
zero. These same five uncharacterized cell lines also had 
FGA near zero possibly accounting for the lack of a linear 
association with tumor sample copy number per gene. 

Figure 3: Comparison of FGA between tumors and cell lines. (A) Boxplots compare the distribution of FGA between cell lines, 
metastatic tumors, and primary tumors (*p-value < 0.05, **p-value < 0.01 by ANOVA and Tukey’s Method). (B) Barplot compares FGA of 
each cell line.
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Two fully characterized cell lines, CJM and LOXIMVI, 
also have mean Pearson r values near zero, but these 
two cell lines have larger standard deviation relative to 
the five uncharacterized early passage cells with near 
zero correlation with tumor samples. Sample Pearson 
correlation coefficients were also calculated for each cell 
line relative to the average copy number per gene across 
all tumors (Figure 4B). HS939T and SH4 are also the 
top two cell lines by correlation to the tumor mean copy 
number per gene. The uncharacterized early passage cell 
lines as well as LOXIMVI and CJM also have very low 
correlation to the tumor mean copy number per gene. The 
average Pearson r value of all pairwise comparisons and 
the correlation to the tumor mean tend to maintain the same 
order when ranked from highest to lowest, but correlation 
to the tumor mean resulted in much larger Pearson r values.

In general, Pearson correlation between cell lines 
and tumors based on copy number per gene was fair to 
poor with the highest mean value of 0.31. Melanoma 
tumor samples are a very heterogeneous in terms of 
copy number alterations with a large range of FGA from 

0.02 to 0.98. To narrow the comparison to regions of 
significance, Pearson r values were calculated between 
cell lines and tumors by copy number per gene for a 
subset of genes within the peak of significant focal 
amplifications and deletions in metastatic melanoma 
tumors from TCGA-SKCM (n = 367) by GISTIC 2.0 
analysis provided by the Broad Institute Genomic Data 
Analysis Center Firehose [26]. Correlation of copy 
number per gene within significant focal amplifications 
and deletions presents a more specific metric of similarity 
between cell lines and tumors as opposed to comparing 
correlation of CNAs across all genes. The distribution of 
Pearson r values is different when only considering focal 
deletions and amplifications rather than comparing CNAs 
across all genes (Figure 5A). The average difference in 
the mean Pearson r value across all melanoma cell lines 
was seventeen times higher for correlation between 
genes found within focal amplifications and deletions 
relative to the mean correlation coefficients for CNAs in 
all coding genes. The mean Pearson r value was higher 
for comparison of focal amplifications and deletions than 

Figure 4: Pearson correlation coefficients of copy number per gene were compared between cell lines and tumors for 
all genes. (A) Boxplots compare the distribution of all pairwise Pearson r values between each cell line and each tumor. (B) The average 
copy number per gene was calculated across all tumors, and Pearson r values were calculated for each cell line relative to the tumor mean 
value represented as a barplot.
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across all genes for all samples except CHL1, HMCB, 
A2058, and HS939T for which the mean Pearson r value 
decreased. Hierarchical clustering of Pearson r values 
between each cell line and tumor pairwise comparison of 
CNAs in genes found in focal amplifications and deletions 
are shown in Figure 5B. The uncharacterized early 
passage cell lines HS839T, HS600T, HS934T, HS895T, 
HS940T, and HS688AT as well as CHL1 and HMCB, two 
commonly derived cell lines with high SNP identity, form 
a cluster with poor correlation across all tumor samples. 
Tumor samples form two main clusters, one with moderate 
to high correlation to most cell lines and another with low 
correlation across most cell lines. There was no statistical 

difference in these two clusters of tumors by primary or 
metastatic status, tumor stage, or tumor purity (data not 
shown). 

Comparing mutations

After filtering the TCGA-SKCM MAF file 
to include the 1,651 genes targeted in the CCLE 
hybrid-capture sequencing, there were 1,192 genes 
common between the melanoma cell line (n = 53) and 
melanoma tumor (n = 412) MAF files. Single nucleotide 
polymorphisms, insertions, and deletions were included in 
the comparison, but synonymous variants were excluded. 

Table 1: Differentially mutated genes between tumors (n = 412) and cell lines (n = 53) by Fisher’s 
Exact Test with multiple testing corrections by the Bonferroni method
Hugo Symbol Frequency in Cell Lines Frequency in Tumors p-value
MAP3K14 41 0 2.82E-45
MYST4 14 0 1.38E-11
MLL3 13 0 1.56E-10
KIAA1409 8 0 2.07E-05
ODZ1 7 0 0.000206
MYST3 5 0 0.019293
SGK269 5 0 0.019293
NEK3 36 1 1.92E-36
GRIA3 52 29 1.46E-43
NR1H2 46 6 3.69E-46
MAP3K1 44 5 8.44E-44
CLTCL1 48 14 1.18E-43
VEGFC 50 25 2.43E-41
MAML3 47 12 3.15E-43
AKAP12 44 8 3.12E-41
PRKDC 47 34 1.54E-32
AAK1 28 7 6.95E-21
RECQL4 32 11 4.38E-23
ITPR2 37 18 1.56E-25
CTBP2 26 8 4.69E-18
MSH3 19 7 2.02E-11
CREB3L2 24 13 1.52E-13
ASPH 16 8 3.86E-08
MAML2 17 9 1.27E-08
CHD1 22 15 6.93E-11
PIK3C2G 34 63 2.46E-10
AKAP9 28 44 8.43E-09
GPR112 36 84 7.52E-09
ALPK2 31 66 1.52E-07
NCOA3 18 28 0.000205
PDE4DIP 26 53 7.08E-06
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There were 31 genes that were mutated in significantly 
higher proportion of cell lines relative to the proportion 
of tumors (Bonferroni adjusted p-value ≤ 0.05 by Fisher’s 
Exact Test) (Table 1). Eight of the fifteen significantly 
mutated genes identified in the original TCGA-SKCM 
study were also mutated in melanoma cell lines including 
BRAF, TP53, NF1, NRAS, PTEN, MAP2K1, IDH1, and 
RB1. These eight genes were tested for mutual exclusivity 
within each data set with the Comet Exact Test [27]. Single 
nucleotide polymorphisms, insertions, and deletions were 
included as criteria for a mutated gene, but synonymous 
variants were excluded from comparison. There were three 
pairs of genes that were mutated in a mutually exclusive 
pattern in tumor samples (n = 412): BRAF and NRAS 
mutations (Bonferroni adjusted p-value < 0.05), BRAF 
and NF1 mutations (Bonferroni adjusted p-value < 0.05), 
and NRAS and PTEN mutations (Bonferroni adjusted 
p-value < 0.05) (Table 2). None of the eight genes had a 
mutually exclusive mutation pattern in cell lines (n = 53) 
(Bonferroni adjusted p-value ≥ 0.05) (Table 3). WM88, 
HS695T, and LOXIMVI cell lines have co-occurring 
BRAF and NF1 mutations. HS936T and SKMEL30 cell 
lines have co-occurring BRAF and NRAS mutations. 
HS944T has co-occurring NRAS and PTEN mutations. 

In order to compare relative total mutations between 
samples, mutations per megabase were calculated 
as described in the methods section. The mean log2 
normalized mutations per megabase between metastatic 
tumors (n = 189), primary tumors (n = 24), and cell lines 
(n = 53) were found to be significantly different in at least 
two groups (p ≤ 0.05 by one-way ANOVA) (Figure 6A). 
Pairwise comparisons of mean log2 normalized mutations 
per megabase were carried out by Tukey’s Method. Mean 
log2 normalized mutations per megabase were found to 
be significantly higher in cell lines than primary tumors 
(p < 0.05), not significantly different between cell lines 
and metastatic tumors (p = 0.99), and significantly higher 
in metastatic tumors than primary tumors (p < 0.05). 
Though the mutational load of primary tumors was found 
to be significantly different from metastatic tumors and 
cell lines, sequencing coverage information was only 
available for a small subset of primary tumors. Since the 
genome size may affect the total number of mutations 
present, log2 normalized mutations per megabase were 
plotted against FGA for each cell line that was profiled for 
copy number alterations and DNA sequence (n = 52) and 
tumor samples (n = 213) (Figure 6B). The distributions 
are largely overlapping with all cell lines falling within the 
metastatic tumor distribution. There appears to be no linear 
association between FGA and log2 normalized mutations 
per megabase. The three cell lines with the highest 
mutational burden include MEWO, MDAMB435S, and 
COLO849. Of these three cell lines, MEWO has the 
highest mutational burden relative to its FGA. 

UV radiation induced mutation signature is a 
common genomic feature of skin cancers like melanoma 

and has been previously been defined by C> T transitions 
at dipyrimidine sites making up ≥ 60% of all mutations 
or CC>TT making up ≥5% of all mutations [19, 28]. Of 
the filtered tumor samples, 65.3% (269/412) harbor a UV 
mutation signature. Of the cell lines with DNA sequencing 
data, 15.1% (8/53) harbor a UV mutation signature 
including CHL1, G361, SKMEL30, COLO792, WM88, 
IPC298, SKMEL5, and HS934T. 

DISCUSSION

In this study, commercially available melanoma cell 
lines profiled by CCLE were compared to tumors profiled 
by TCGA-SKCM according to genomic features including 
the number of mutations per megabase, the presence of 
differentially mutated genes, the presence of mutually 
exclusive mutations, total copy number alterations in 
the form of FGA, and the correlation of copy number 
alterations per gene. 

Based on these criteria, each melanoma cell line 
can be evaluated by its degree of similarity to a large 
sample of highly annotated tumors from TCGA-SKCM. 
Selecting a cell line model for studying cancer biology 
depends on multiple factors. For melanoma cell lines, 
the preeminent factors are the presence of the most 
significantly mutated genes (BRAF, NRAS, NF1, or 
triple wild type) and proliferative or invasive behavior 
(MITF/AXL expression ratio). However, proliferative 
and invasive phenotypes are not a characteristic of all 
melanoma cells within a single tumor, and a spectrum 
of MITF expressing and AXL expressing cells exist 
in any single tumor that can be manipulated through 
treatment with RAF and MEK inhibitors [29]. Cell lines 
expressing predominantly MITF become a hierarchically 
organized mass of MITF high and MITF low expressing 
cells after growth in a mouse xenograft [30]. Hypoxia 
was found to alter the expression of MITF via HIF1α 
leading to switching of melanoma proliferative to 
invasive phenotype [31]. One mechanism maintaining 
the proliferative and invasive phenotypes in cell 
culture is through SOX9 promoter methylation which 
leads to the proliferative phenotype by expression, 
and the overexpression of SOX9 promotes the invasive 
phenotype in a mouse model [32]. Since both chemical 
treatment and environmental conditions may manipulate 
the expression signatures of melanoma cells, genomic 
characterization of cell lines may offer a more stable 
metric of cell line suitability for modeling cancer 
biology. For this reason, cell lines are summarized by 
their mutational subtype (Figure 7). The most appropriate 
cell line models can be selected according to the features 
of interest found in cutaneous melanoma. Figure 7 
summarizes the major genomic features investigated in 
this study and provides a tool for selection of cell lines 
based on genetic criteria. Cell lines are organized into 
mutational subtypes ordered from left to right according 
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to highest to lowest mean correlation coefficient by copy 
number per gene for GISTIC peak amplified and deleted 
genes. Copy number data was available for all cell lines 
except HS834T. Cell lines with strongly positive Pearson 
r values to a large proportion of tumors are available 
for each BRAF, NRAS, and NF1 subtypes. MEWO and 
COLO792 were the only two NF1 mutants, and both 
have much larger numbers of mutations per megabase 
relative to other cell lines. However, the mutational 
burden for both falls within the distribution of tumor 
mutations per megabase.  

Both Pollock et al. and the original TCGA-SKCM 
study found BRAF and NRAS were anti-correlated [19, 33]. 
In this study using the subset of TCGA-SKCM samples 
filtered by estimated tumor purity, BRAF and NRAS 

mutations were found to occur in a mutually exclusive 
pattern. Additionally, BRAF and NF1 mutations as well 
as NRAS and PTEN mutations were found occur in a 
mutually exclusive pattern, but none of these gene pairs 
were mutually exclusive in cell lines. The occurrence 
of NRAS and PTEN mutations were previously found to 
occur rarely in cutaneous melanoma [34]. NF1 mutations 
generally occur with wild type BRAF and NRAS [35]. 
WM88, HS695T, SKMEL30, LOXIMVI, HS936T, 
and HS944T all harbor one of these mutually exclusive 
mutation pairs. These cell lines are less likely to represent 
broadly relevant models of cutaneous melanoma. However, 
activating mutations in NRAS have been proposed as a 
mechanism of RAF inhibitor resistance potentially making 
SKMEL30 or HS936T potential models for primary 

Table 2: Testing for mutually exclusive mutation patterns found in melanoma tumors (n = 412) 
by the Comet Exact Test with multiple testing correction by the Bonferroni method

Gene 1 Gene 2 Neither
Mutated

Gene 2
Mutated

Gene 1
Mutated

Both
Mutated p-value

BRAF NRAS 98 110 196 8 2.49E-30
BRAF NF1 160 48 190 14 4.34E-05
NRAS PTEN 259 35 116 2 0.004565
NF1 MAP2K1 328 22 62 0 0.349177
BRAF IDH1 194 14 198 6 1
BRAF RB1 198 10 199 5 1
NF1 PTEN 316 34 59 3 1
PTEN RB1 360 15 37 0 1
NRAS NF1 246 48 104 14 1
NRAS MAP2K1 276 18 114 4 1
PTEN MAP2K1 354 21 36 1 1
BRAF TP53 175 33 173 31 1
MAP2K1 IDH1 371 19 21 1 1
NF1 IDH1 333 17 59 3 1
PTEN IDH1 357 18 35 2 1
MAP2K1 RB1 376 14 21 1 1
TP53 RB1 336 12 61 3 1
NF1 RB1 338 12 59 3 1
TP53 IDH1 332 16 60 4 1
TP53 MAP2K1 331 17 59 5 1
NRAS RB1 285 9 112 6 1
TP53 PTEN 319 29 56 8 1
IDH1 RB1 379 13 18 2 1
NRAS IDH1 283 11 109 9 1
TP53 NRAS 254 94 40 24 1
BRAF MAP2K1 201 7 189 15 1
TP53 NF1 301 47 49 15 1
BRAF PTEN 201 7 174 30 1
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resistance according to this mechanism [36]. MELJUSO 
harbors mutations in both NF1 and NRAS, but these were 
not found to be mutually exclusive in tumors. Vincent & 
Postovit found TP53 to be mutated in a significantly higher 
proportion of cell lines profiled by Klijn et al. than TCGA-
SKCM tumors [13, 37]. In the subset of TCGA-SKCM 
tumors compared in this study, TP53 was not found to be 
mutated in a significantly greater proportion of cell lines 
(18/53) than tumors (64/412) (Bonferroni adjusted p-value 
≥ 0.05 by Fisher’s Exact Test). The result may be dependent 
on different coverage requirements for mutation calls, the 
number of genes compared, and the different sample sets 
used. 

Tumors that lack mutations in BRAF, NRAS, and 
NF1 were defined in the TCGA-SKCM study as triple 

wild type. The triple wild type melanoma cell lines 
compared in this study have poor correlation with 
tumors by copy number per gene with mean Pearson r 
values between 0.22 for HS940T and -0.14 for CHL1. 
Uncharacterized early passage lines made available by 
ATCC including HS839T, HS600T, HS934T, HS895T, 
HS940T, and HS688AT had different molecular 
characteristics relative to tumors and other cell lines. All 
six of these cell lines had very low correlation of copy 
number per gene for focal amplifications and deletions 
identified by GISTIC 2.0 analysis and FGA near zero. 
Mutations per megabase in these samples were also 
lower than other cell lines (mean = 4.4 mutations per 
megabase). One potential reason for the lack of similarity 
may be due to a relatively high concentration of stromal 

Table 3: Testing for mutually exclusive mutation patterns found in cell lines (n = 53) by the 
Comet Exact Test with multiple testing correction by the Bonferroni method
Gene 1 Gene 2 Neither 

Mutated
Gene 2 

Mutated
Gene 1 

Mutated
Both Mutated p-value

BRAF NRAS 12 5 34 2 0.438538739
BRAF MAP2K1 17 34 2 0 1
BRAF IDH1 17 35 1 0 1
BRAF RB1 17 35 1 0 1
BRAF NF1 14 3 33 3 1
TP53 NF1 30 5 17 1 1
TP53 PTEN 30 5 17 1 1
TP53 MAP2K1 33 2 18 0 1
BRAF TP53 10 7 25 11 1
NF1 PTEN 41 6 6 0 1
TP53 IDH1 34 1 18 0 1
TP53 RB1 34 1 18 0 1
NF1 MAP2K1 45 2 6 0 1
NRAS IDH1 45 1 7 0 1
NRAS RB1 45 1 7 0 1
NF1 IDH1 46 1 6 0 1
NF1 RB1 46 1 6 0 1
PTEN IDH1 46 1 6 0 1
PTEN RB1 47 5 1 0 1
MAP2K1 IDH1 50 1 2 0 1
MAP2K1 RB1 51 1 1 0 1
IDH1 RB1 51 1 1 0 1
NRAS NF1 41 5 6 1 1
NRAS PTEN 41 5 6 1 1
TP53 NRAS 31 4 15 3 1
BRAF PTEN 16 1 31 5 1
NRAS MAP2K1 45 1 6 1 1
PTEN MAP2K1 46 1 5 1 1
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Figure 5: Pearson correlation coefficients of copy number per gene were compared between cell lines and tumors 
for genes falling within GISTIC 2.0 peak focal amplifications and deletions detected in metastatic tumor samples. 
(A) Boxplots compare the distribution of all pairwise Pearson r values between each cell line and each tumor for genes found in focal 
amplifications or deletions by GISTIC 2.0 analysis. (B) Hierarchical clustering of all pairwise Pearson r values between each cell line 
(rows) and each tumor (columns) for genes found in focal amplifications or deletions by GISTIC 2.0 analysis were plotted as a heatmap. 
Clustering was carried out with Euclidean distance and Ward’s agglomeration method.
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cells relative to tumor cell lines in these early passage 
cell cultures. ESTIMATE scoring indicated that these cell 
lines had elevated stromal scores relative to other cell 
lines. CJM, HMCB, and CHL1 also lacked mutations in 
BRAF, NRAS, or NF1, but these cell lines had similar 
FGA and mutational burden relative to other melanoma 
cell lines as well as tumors. However, these three cell 
lines also had very low mean correlation to tumors by 
copy number alterations in focally amplified and deleted 
genes. HMCB and CHL1 were annotated as having high 
SNP similarity in the original CCLE study [16]. Both 
HMCB and CHL1 show very poor correlation with 
copy number per gene in focally amplified and deleted 
genes with mean correlation coefficients of -0.11 and 
-0.14 respectively, but these two cell lines had the most 
citations relative to other triple wild type cell lines. There 
is an overall lack of studies including triple wild type 
melanoma cell lines, and the commercially available 
cell lines compared in this study have low similarity to 
melanoma tumors relative to other cell lines, indicating 
new cell lines may be warranted.

This study has identified features of melanoma cell 
lines which may indicate that they are not accurate models 
of most human melanomas. Though a UV mutation 
signature is common in melanoma and occurs in 65.3% 
(269/412) of TCGA-SKCM tumors, only 15.1% (8/53) 
cell lines harbor a UV signature. The UV signature may be 
lost during maintenance of cell lines as more mutations are 
acquired making the UV signature less discriminatory and 
more descriptive of a cell line's origin. Most cell lines have 

good correlation of DNA copy number per gene for focally 
amplified and deleted genes by GISTIC 2.0 analysis, 
but a subset of tumors was found to have low similarity 
across cell lines independently of tumor stage, primary 
or metastatic status. Cell lines which harbor mutations 
of interest, the fewest differentially mutated genes, and 
the highest Pearson sample correlation with most tumors 
provides criteria to select cell lines with more genetic 
similarity to patient tumors.

There are several limitations to conclusions drawn 
from this study. DNA sequencing data from CCLE was 
only available for a set of 1651 genes selected for hybrid 
capture sequencing. Specific mutations, mutational 
burden, and UV signature were drawn only from this 
small subset of genomic data. Additionally, all data types 
were not available for all cell lines, limiting the full 
characterization of each one. Despite these limitations, 
comparison of cell line molecular features may lead to 
more applicable pre-clinical models that can improve the 
translational efficiency of in vitro studies.

MATERIALS AND METHODS

Data sets

All files were downloaded in March of 2017. 
Cell line DNA copy number, DNA mutation, and 
mRNA expression data were obtained from the Broad 
Institute data portal (https://portals.broadinstitute.org/
ccle/data/) as described in the original CCLE study 

Figure 6: The mutational burden was compared between tumors and cell lines. (A) Boxplots compare the distribution of 
log2 normalized mutations per megabase between primary tumors, metastatic tumors, and cell lines (*p-value < 0.05, **p-value < 0.01 by 
ANOVA and Tukey’s Method). (B) A scatter plot of the fraction genome altered relative (x-axis) to the log2 normalized mutations per 
megabase (y-axis) for primary tumors (green), metastatic tumors (red), and cell lines (blue).
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Figure 7: Important genomic features of melanoma cell lines relative to tumor samples are summarized with 
representative figures of comparisons to tumors. Cell lines (columns) are grouped according to their mutation status in the top three 
mutated genes: BRAF, NRAS, or NF1. Cell line summary features from top to bottom include the distribution of Pearson r values between 
cell lines and tumors for focally amplified and deleted genes by GISTIC 2.0, the fraction genome altered, total mutations per megabase, the 
number of differentially mutated genes present, and the number of PubMed abstracts that include the name of the cell line. Genes included 
in the original TCGA-SKCM study that were significantly mutated, significantly amplified, or significantly deleted are illustrated on the 
bottom of the figure. Amplifications (red) include ≥ 2.5 total copies, deletions (blue) include ≤ 1.5 total copies, and mutations (green) 
include insertions, deletions, or single nucleotide polymorphisms.



Oncotarget114890www.impactjournals.com/oncotarget

[16]. Normalized segmented DNA copy number data 
obtained by Affymetrix SNP 6.0 array was downloaded 
as CCLE_copynumber_2013-12-03.seg.txt, which 
includes 59 melanoma cell lines. DNA mutation data was 
obtained with the Agilent Sure-Select Target Enrichment 
System including 1651 selected genes downloaded as 
CCLE_hybrid_capture1650_hg19_NoCommonSNPs_
NoNeutralVariants_CDS_2012.05.07.maf, which includes 
53 melanoma cell lines. The CCLE MAF file included 
only coding regions, excluded common polymorphisms, 
mutations with a variant allele frequency < 10%, and 
putative neutral variants. Sequencing coverage for 
all 53 CCLE samples included in the MAF file was 
provided in WIG format and downloaded as CCLE_
hybrid_capture1650_hg19_coverage_2012.06.19.tar.
gz.  Affymetrix U133+2 array mRNA expression data 
was obtained as normalized gene level data from CCLE_
Expression_Entrez_2012-10-18.res. All the CCLE data 
was mapped using the hg19 genome build. 

TCGA-SKCM melanoma tumor data from 470 cases 
including DNA copy number, DNA mutation, and mRNA 
expression were downloaded with the TCGAbiolinks R 
package from the GDC legacy archive (https://portal.gdc.
cancer.gov/legacy-archive/) mapped to the hg19 genome 
to facilitate comparison with CCLE [19, 38]. Multiple 
samples from single cases were available for some data 
platforms, and the total number of samples is noted for each 
data type. Normalized segmented DNA copy number data 
obtained by Affymetrix SNP 6.0 was downloaded as 471 
SEG files. Somatic DNA mutation data was downloaded 
as a single MAF file, SKCM_pairs.aggregated.capture.
tcga.uuid.automated.somatic.maf. Since the sequencing 
coverage for TCGA is not made publicly available, 
sequencing coverage for TCGA-SKCM data was 
downloaded from Synapse (https://www.synapse.org/) via 
syn1709990 as 255 BED files containing genome regions 
covered with at least 14 reads (n = 255) as described by 
Kandoth et al. [39]. Illumina Hiseq mRNA expression data 
were downloaded as 472 RSEM normalized results files.

Tumor cell fraction by ESTIMATE Score

The ESTIMATE R package was used to calculate 
ESTIMATE scores for CCLE samples using Affymetrix 
U133+2 array normalized mRNA expression data and for 
TCGA-SKCM tumors using normalized RNA-seq data 
[23]. Tumor cell fraction was estimated for each TCGA-
SKCM sample and all CCLE cell lines with the ESTIMATE 
score using the formula published by Yoshihara et al. [23]. 
Gene names were matched by HGNC symbols.

Fraction genome altered

The fraction genome altered was calculated using 
the formula published by Domcke et al with some 
modification to the mathematical notation:

FGA=
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where Li represents length L of each segment i and 

CNi represents normalized copy number CN for each 
segment i with a chosen normalized copy number threshold 
T for n total segments [10]. Therefore, FGA for a sample 
is the sum of all segment lengths where the absolute value 
of the normalized copy number value is above a chosen 
threshold divided by the sum of all segment lengths. 

DNA copy number correlation

A reduced segment matrix was extracted from 
segmented copy number data for each CCLE and TCGA-
SKCM sample and was used to calculate mean copy-
number per gene with CNTools [40]. The CNTools 
algorithm aligns segments across samples, and genes that 
fall within an overlapping segment are assigned the mean 
of the probe log2 ratios within that segment. Genome 
coordinates of known protein coding genes or known non-
coding RNAs were downloaded with biomaRt for the hg19 
ENSEMBL genome build including 23,959 genes [41, 42]. 
Genes on X and Y chromosomes were omitted to facilitate 
comparison between male and female derived samples 
resulting in 22,780 genes with mean copy number values 
for each sample. Pearson sample correlation coefficients of 
copy number per gene were calculated between each cell 
line and each tumor individually as a correlation matrix to 
obtain the distribution of copy number per gene similarity. 
Additionally, the mean was calculated for copy number 
values for each gene across all TCGA-SKCM samples. 
Pearson sample correlation coefficients of copy number per 
gene were calculated between each cell line and the mean of 
all tumors to assess which cell line shows the most genomic 
similarity to tumor samples as a group. Finally, cell lines and 
tumors were compared by average copy number per gene 
for genes within the peak of significant focal amplifications 
and deletions found in metastatic tumors from TCGA-
SKCM (n = 367) by GISTIC 2.0 analysis downloaded from 
the Broad Institute GDAC Firehose [26].

Comparing mutations

Differentially mutated genes were identified using 
Fisher’s Exact Test implemented via maftools to compare 
the proportion of tumors relative to the proportion of 
cell lines that carry a mutation in a given gene with a 
minimum of five samples carrying the mutation [43]. 
Comparisons were limited to 1,192 genes that were 
mutated in both the TCGA-SKCM MAF file and the 
CCLE MAF file with variant allelic fraction ≥ 0.1 and 
≥ 8 reads total per variant. Synonymous variants were 
excluded from comparison. Eight significantly mutated 
genes reported in the original TCGA-SKCM study were 
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present in the cell line MAF file including BRAF, TP53, 
NF1, NRAS, PTEN, MAP2K1, IDH1, and RB1. These 
genes were tested for the occurrence of mutations in a 
mutually exclusive pattern each in tumors and cell lines 
using cometExactTest via maftools [27]. Multiple testing 
corrections were implemented for both Fisher’s Exact 
Test and the Comet Exact Test by the Bonferroni method 
implemented through p.adjust in the R programming 
environment.

Comparing the number of mutations normalized 
by coverage

In order to compare mutations between CCLE data 
and TCGA-SKCM data, the total number of mutations 
was normalized by the breadth and depth of coverage for 
each data set. Sequencing coverage data was available for 
255 melanoma tumor samples provided from the Synapse 
data sharing platform, and 213 of those tumor samples 
had tumor cell fraction greater than 60% calculated using 
ESTIMATE scores. The BED files contain genomic start 
and end positions for regions covered by ≥14 reads. 
The breadth of sequencing coverage for TCGA-SKCM 
samples was calculated by subtracting each end position 
from each start position in the BED file, and total breadth 
of coverage was calculated by summing all lengths. 
Coverage was available for CCLE samples as WIG 
files, which contain the number of reads covering each 
genome position. In order to have equivalent breadth of 
coverage for both CCLE and TCGA-SKCM samples, the 
total length covered for CCLE samples was calculated 
by counting the total positions provided in the WIG files 
with ≥14 reads. Total mutations were counted for TCGA-
SKCM and CCLE from their respective MAF files filtered 
by variant allelic fraction ≥ 0.1 and ≥ 14 reads including 
synonymous variants, insertions, deletions, and single 
nucleotide polymorphisms. Total coverage-normalized 
mutations were calculated by dividing the sum of all 
coding region mutations from the MAF files divided by 
the sequencing coverage calculated for each of the TCGA-
SKCM samples and CCLE samples. 

UV Signature

UV signature for TCGA-SKCM samples (n = 412) and 
CCLE samples (n = 53) was determined by extracting the 
flanking bases surrounding mutations from MAF files using 
the maftools and summing the number of C>T transition 
mutations flanked by either C or T; then dividing the sum 
by the total number of substitution mutations in the MAF 
file. MAF files for TCGA-SKCM and CCLE were filtered 
by variant allelic fraction ≥ 0.1 and ≥ 8 reads including 
synonymous variants, insertions, deletions, and single 
nucleotide polymorphisms. A UV signature was defined as 
C>T transitions occurring at dipyrimidine sites comprising ≥ 
60% of all substitution mutations or ≥5% CC>TT mutations.

Software

Data processing and statistical analysis was carried 
out using Linux shell scripting and R version 3.3.2 [44]. 
Bioconductor packages were applied as necessary including 
CNTools, biomaRt, TCGAbiolinks, ComplexHeatmap, 
maftools, cometExactTest and RColorBrewer [45]. Other R 
packages were applied to create plots and make calculations 
including dplyr, ggplot2, reshape2, and ggsignif. 
Hierarchical clustering for all heat maps was carried out 
using Euclidean distance and Ward’s agglomeration method.

PubMed citations

PubMed titles and abstracts (https://www.ncbi.nlm.
nih.gov/pubmed) were searched on June 7th, 2017 using 
the advanced search builder with multiple punctuation 
combinations including spaces, hyphens, and periods. 
Additionally, the search term “melanoma” was required 
in combination with each cell line name to avoid false-
positive search hits. For cell lines with zero search hits, 
the number of cell line studies annotated by Cellosaurus 
(web.expasy.org/cellosaurus) was summed to account for 
publications which don’t have the cell line names included 
in the title or abstract [46]. 
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number alteration; ESTIMATE, Estimation of Stromal and 
Immune cells in Malignant Tumor tissues using Expression 
data; FGA, fraction genome altered; TCGA-SKCM, The 
Cancer Genome Atlas Skin Cutaneous Melanoma.

Author contributions

SAL and SAK designed the study. SAL acquired the 
data and performed filtering and analysis. SAL drafted the 
manuscript. WZ and SAK revised the manuscript. SAL, 
WZ, and SAK have read and approved the final manuscript.

ACKNOWLEDGMENTS

We would like to thank the University of Nebraska 
Medical Center Bioinformatics and Systems Biology Core 
for the use of their computer system.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This work was funded by the University of Nebraska 
Medical Center Chancellor’s Program of Excellence 
Physician-Scientist Training Program.



Oncotarget114892www.impactjournals.com/oncotarget

REFERENCES

 1. Jemal A, Ward EM, Johnson CJ, Cronin KA, Ma J, Ryerson 
B, Mariotto A, Lake AJ, Wilson R, Sherman RL, Anderson 
RN, Henley SJ, Kohler BA, et al. Annual Report to the 
Nation on the Status of Cancer, 1975-2014, Featuring 
Survival. Journal of the National Cancer Institute. 2017; 
109:10.1093/jnci/djx030.

 2. Nikolaou V, Stratigos AJ. Emerging trends in the 
epidemiology of melanoma. The British journal of 
dermatology. 2014; 170:11–19.

 3. Chen L, Jin S. Trends in mortality rates of cutaneous 
melanoma in East Asian populations. PeerJ. 2016; 4:e2809.

 4. Mahendraraj K, Sidhu K, Lau CS, McRoy GJ, Chamberlain 
RS, Smith FO. Malignant Melanoma in African-Americans: 
A Population-Based Clinical Outcomes Study Involving 
1106 African-American Patients from the Surveillance, 
Epidemiology, and End Result (SEER) Database (1988–
2011). Medicine. 2017; 96:e6258.

 5. American Cancer Society. Survival Rates for Melanoma 
Skin Cancer, by Stage. https://www.cancer.org/cancer/
melanoma-skin-cancer/detection-diagnosis-staging/
survival-rates-for-melanoma-skin-cancer-by-stage.html. 
2016; 2017:1.

 6. Kugel CH 3rd, Aplin AE. Adaptive resistance to RAF 
inhibitors in melanoma. Pigment cell & melanoma research. 
2014; 27:1032–1038.

 7. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth 
MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer 
treatment reviews. 2017; 52:71–81.

 8. Klinghammer K, Walther W, Hoffmann J. Choosing wisely 
- Preclinical test models in the era of precision medicine. 
Cancer treatment reviews. 2017; 55:36–45.

 9. Hudson AM, Yates T, Li Y, Trotter EW, Fawdar S, 
Chapman P, Lorigan P, Biankin A, Miller CJ, Brognard 
J. Discrepancies in cancer genomic sequencing highlight 
opportunities for driver mutation discovery. Cancer 
research. 2014; 74:6390–6396.

10. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. 
Evaluating cell lines as tumour models by comparison of 
genomic profiles. Nature communications. 2013; 4:2126.

11. Vincent KM, Findlay SD, Postovit LM. Assessing breast 
cancer cell lines as tumour models by comparison of mRNA 
expression profiles. Breast cancer research : BCR. 2015; 
17:114–015–0613–0.

12. Jiang G, Zhang S, Yazdanparast A, Li M, Pawar AV, Liu 
Y, Inavolu SM, Cheng L. Comprehensive comparison of 
molecular portraits between cell lines and tumors in breast 
cancer. BMC genomics. 2016; 17:525–016–2911-z.

13. Vincent KM, Postovit LM. Investigating the utility of human 
melanoma cell lines as tumour models. Oncotarget. 2017; 
8:10498–10509. https://doi.org/10.18632/oncotarget.14443.

14. Sinha R, Winer AG, Chevinsky M, Jakubowski C, Chen 
YB, Dong Y, Tickoo SK, Reuter VE, Russo P, Coleman JA, 

Sander C, Hsieh JJ, Hakimi AA. Analysis of renal cancer cell 
lines from two major resources enables genomics-guided cell 
line selection. Nature communications. 2017; 8:15165.

15. Cancer Genome Atlas Network. NIH Launches 
Comprehensive Effort to Explore Cancer Genomics. https://
cancergenome.nih.gov/newsevents/newsannouncements/
news_12_13_2005. 2005; 2017:1.

16. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603–607.

17. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, 
Schubert M, Aben N, Goncalves E, Barthorpe S, Lightfoot 
H, Cokelaer T, Greninger P, van Dyk E, et al. A Landscape 
of Pharmacogenomic Interactions in Cancer. Cell. 2016; 
166:740–754.

18. Wheeler DL, Church DM, Lash AE, Leipe DD, Madden TL, 
Pontius JU, Schuler GD, Schriml LM, Tatusova TA, Wagner 
L, Rapp BA. Database resources of the National Center for 
Biotechnology Information. Nucleic acids research. 2001; 
29:11–16.

19. Cancer Genome Atlas Network. Genomic Classification of 
Cutaneous Melanoma. Cell. 2015; 161:1681–1696.

20. Liu B, Qian SB. Translational reprogramming in cellular 
stress response. Wiley interdisciplinary reviews.RNA. 
2014; 5:301–315.

21. Hanahan D, Weinberg RA. Hallmarks of cancer: the next 
generation. Cell. 2011; 144:646–674.

22. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis 
of tumour purity. Nature communications. 2015; 6:8971.

23. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim 
H, Torres-Garcia W, Trevino V, Shen H, Laird PW, Levine 
DA, Carter SL, Getz G, Stemke-Hale K, et al. Inferring 
tumour purity and stromal and immune cell admixture from 
expression data. Nature communications. 2013; 4:2612.

24. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, 
Antonellis KJ, Scherf U, Speed TP. Exploration, 
normalization, and summaries of high density 
oligonucleotide array probe level data. Biostatistics 
(Oxford, England). 2003; 4:249–264.

25. Li B, Dewey CN. RSEM: accurate transcript quantification 
from RNA-Seq data with or without a reference genome. 
BMC bioinformatics. 2011; 12:323–2105–12–323.

26. Anonymous Broad Institute TCGA Genome Data Analysis 
Center: SNP6 Copy number analysis (GISTIC2). Broad 
Institute of MIT and Harvard. 2016; July 2017-doi:10.7908/
C1445KXQ.

27. Leiserson MD, Wu HT, Vandin F, Raphael BJ. CoMEt: a 
statistical approach to identify combinations of mutually 
exclusive alterations in cancer. Genome biology. 2015; 16: 
160–015–0700–7.

28. Brash DE. UV signature mutations. Photochemistry and 
photobiology. 2015; 91:15–26.



Oncotarget114893www.impactjournals.com/oncotarget

29. Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, 
Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, 
Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, 
et al. Dissecting the multicellular ecosystem of metastatic 
melanoma by single-cell RNA-seq. Science (New York, 
N.Y.). 2016; 352:189–196.

30. Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert 
N, Schaerer L, Hemmi S, Dummer R. In vivo switching of 
human melanoma cells between proliferative and invasive 
states. Cancer research. 2008; 68:650–656.

31. Widmer DS, Hoek KS, Cheng PF, Eichhoff OM, 
Biedermann T, Raaijmakers MI, Hemmi S, Dummer 
R, Levesque MP. Hypoxia contributes to melanoma 
heterogeneity by triggering HIF1alpha-dependent 
phenotype switching. The Journal of investigative 
dermatology. 2013; 133:2436–2443.

32. Cheng PF, Shakhova O, Widmer DS, Eichhoff OM, Zingg 
D, Frommel SC, Belloni B, Raaijmakers MI, Goldinger 
SM, Santoro R, Hemmi S, Sommer L, Dummer R, et al. 
Methylation-dependent SOX9 expression mediates invasion 
in human melanoma cells and is a negative prognostic 
factor in advanced melanoma. Genome biology. 2015; 
16:42–015–0594–4.

33. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, 
Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka 
J, Salem G, Pohida T, Heenan P, et al. High frequency of 
BRAF mutations in nevi. Nature genetics. 2003; 33:19–20.

34. Tsao H, Zhang X, Fowlkes K, Haluska FG. Relative 
reciprocity of NRAS and PTEN/MMAC1 alterations in 
cutaneous melanoma cell lines. Cancer research. 2000; 
60:1800–1804.

35. Kiuru M, Busam KJ. The NF1 gene in tumor syndromes and 
melanoma. Laboratory investigation; a journal of technical 
methods and pathology. 2017; 97:146–157.

36. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, 
Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson 
SF, McArthur G, et al. Melanomas acquire resistance to 
B-RAF(V600E) inhibition by RTK or N-RAS upregulation. 
Nature. 2010; 468:973–977.

37. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu 
H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder 
J, Cao Y, et al. A comprehensive transcriptional portrait 
of human cancer cell lines. Nature biotechnology. 2015; 
33:306–312.

38. Colaprico A, Silva TC, Olsen C, Garofano L, Cava 
C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, 
Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. 
TCGAbiolinks: an R/Bioconductor package for integrative 
analysis of TCGA data. Nucleic acids research. 2016; 
44:e71.

39. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu 
C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, 
Leiserson MD, Miller CA, Welch JS, et al. Mutational 
landscape and significance across 12 major cancer types. 
Nature. 2013; 502:333–339.

40. Zhang J. CNTools: Convert segment data into a region by 
sample matrix to allow for other high level computational 
analyses. 2016; 1.30.0.

41. Durinck S, Spellman PT, Birney E, Huber W. Mapping 
identifiers for the integration of genomic datasets with the 
R/Bioconductor package biomaRt. Nature protocols. 2009; 
4:1184–1191.

42. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor 
B, Brazma A, Huber W. BioMart and Bioconductor: a 
powerful link between biological databases and microarray 
data analysis. Bioinformatics (Oxford, England). 2005; 
21:3439–3440.

43. Mayakonda A, Koeffler PH. Maftools: Efficient analysis, 
visualization and summarization of MAF files from large-
scale cohort based cancer studies. bioRxiv. 2016.

44. R Development Core Team. R: A Language and 
Environment for Statistical Computing. R foundation for 
Statisical Computing Vienna Austria. 2010; 3.3.2.

45. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling 
M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, 
Hothorn T, Huber W, et al. Bioconductor: open software 
development for computational biology and bioinformatics. 
Genome biology. 2004; 5:R80.

46. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi 
G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger 
E, Grosdidier A, Hernandez C, Ioannidis V, et al. ExPASy: 
SIB bioinformatics resource portal. Nucleic acids research. 
2012; 40:W597–603.


