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LncRNAs regulate cancer metastasis via binding to functional 
proteins
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ABSTRACT

Cancer is one of the leading causes of death worldwide, and metastasis is 
a crucial characteristic of malignancy. Recent studies have shown that lncRNAs 
play an important role in regulating cancer metastasis through various molecular 
mechanisms. We briefly summarize four known molecular functions of lncRNAs, 
including their role as a signal, decoy, guide and scaffold. No matter which pattern 
lncRNAs follow to carry out their functions, the proteins that lncRNAs bind to are 
important for them to exhibit their gene-regulating properties. We further illustrate 
that lncRNAs regulate the localization, stabilization or modification of their binding 
proteins to realize the binding role of lncRNAs. In this review, we focus on the 
interactions between lncRNAs and their binding proteins; moreover, we focus on 
the mechanisms of the collaborative work of lncRNAs and their binding proteins in 
cancer metastasis, thus evaluating the potential of lncRNAs as prospective novel 
therapeutic targets in cancer.

BACKGROUND

Cancer is one of the leading causes of death 
worldwide, and as one of the hallmarks of cancer, 
metastasis is a crucial characteristic of malignancy [1, 2]. 
Metastasis is a complex multistep process that involves 
the early invasion and late colonization of cancer cells [3]. 
Usually, cancer cells undergo morphological alterations 

and change their cell-cell or cell-matrix interactions to 
be able to successfully pass through the first steps of the 
multistep process of metastasis [4–9]. EMT (epithelial-
mesenchymal transition) is of critical importance in the 
early events of tumor cell metastatic dissemination by 
endowing the cells with a more motile, invasive potential 
[10–15]. On the other hand, MET (mesenchymal-
epithelial transition) is required for migrating cells to 
extravasate from the vessels into their target tissues to 
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form micrometastases and eventually form a secondary 
tumor after the cells survive anoikis [16].

LncRNAs (long non-coding RNAs) are a class 
of transcripts longer than 200 nucleotides with limited 
protein coding potential [17–22]. In the past, extensive 
efforts have been made to characterize the involvement 
of protein-coding genes in cancer metastasis but few for 
lncRNAs, which have once been thought as the “dark 
matter” of the genome, because of our limited knowledge 
about their functions. Up to now, more and more studies 
have identified that deregulations of lncRNAs are observed 
in various cancer types, and an abnormal expression of 
lncRNAs virtually participates in all stages of cancer 
development, including cancer initiation, progression and 
metastasis [23–29].

Various modes of molecular interactions were 
observed for lncRNAs to exhibit their gene-regulating 
properties in the recent years. Studies indicate that 
lncRNAs bind to proteins and regulate their functions. In 
this review, we summarize the role of lncRNAs binding 
to functional proteins to regulate their localization, 
stabilization or modification in cancer metastasis.

LncRNAs regulate cancer metastasis through 
multiple signaling pathways

Metastasis of cancer cells to a distal site is a 
particularly critical stage of cancer progression [30–36]. 
EMT is a critical process during the initiation of cancer 
metastasis, the changes in this program includes cell 
morphology, cell-matrix adhesion and migration abilities. 
E-cadherin, intergrins, and cytokeratins are the most 
commonly used epithelial markers, while N-cadherin, 
vimentin and fibronectin are mesenchymal markers 
[10]. A group of EMT-inducing transcription factors, 
including Slug, Snail and ZEB1/2 (zinc finger E-box 
binding homeobox 1/2), are activated during EMT [37]. 
Growth signals from the tumor stroma, such as TGF-β 
(transforming growth factor) [38–41], EGF (epidermal 
growth factor), FGF (fibroblast growth factor), PDGF 
(platelet-derived growth factor), IGF (insulin growth 
factor) and HGF (hepatocyte growth factor), are 
responsible for triggering EMT in cancer cells [42–45]. 
These inducers trigger EMT through a complex signaling 
network, including several receptor tyrosine kinases 
(RTKs) and the TGF-β/SMAD, WNT/β-catenin, NOTCH, 
MAPK/ERK, PI3K/Akt and HEDGEHOG signaling 
pathways [46–60]. The aberrant expression of lncRNAs 
plays a considerable role in cancer metastasis, and they 
have emerged as versatile regulators of the EMT related 
pathways mentioned above (Figure 1).

The TGF-β signaling pathway is one of the major 
pathways responsible for the induction of EMT via a 
group of transcription factors, including Slug, Snail and 
Twist [61, 62]. LncRNA-HIT (LncRNA-HOXA transcript 
induced by TGF-β) is one of the most upregulated 

lncRNAs induced by TGF-β [63]. The upregulation of 
LncRNA-HIT promotes the migration and invasion of 
NSCLC by directly associating with ZEB1 [64]. The 
knock down of lncRNA-ATB impedes the induction of 
EMT by TGF-β in HCC and colon cancer [65, 66]. ZEB2-
AS1, MALAT1 and linc01133 also play a critical role in the 
TGF-β signaling pathway [67–69].

The canonical WNT/β-catenin pathway also plays 
an important role in the regulation of cancer metastasis 
[70, 71]. β-catenin is a core component of the cadherin 
protein complex, whose localization and stabilization are 
essential for the activation of WNT/β-catenin signaling 
[72, 73]. Several lncRNAs are involved in WNT/β-
catenin pathway regulation. For example, HOTAIR (HOX 
transcript antisense RNA) epigenetically silences the 
Wnt inhibitor WIF1, while the loss of WIF1 enhances the 
migratory ability of glioblastoma cells through WNT5A 
activation mediated via MALAT1 [74, 75]. The lncRNA 
H19, TINCR, and lncTCF7 also play critical roles in the 
regulation of cancer metastasis via the WNT/β-catenin 
pathway [76–78].

MAPK/ERK signaling is an element in lncRNAs 
that mediates the regulation of metastasis. MALAT1 
promotes the metastasis of gallbladder carcinoma through 
the activation of the MAPK/ERK pathway [79]. UCA1 
(lncRNA urothelial carcinoma-associated 1) plays a 
pivotal role in the tumorigenesis of HCC by acting as 
a ceRNA for miR-216b, leading to the suppression of 
FGFR1 (fibroblast growth factor receptor 1) expression 
and the activation of the MAPK/ERK signaling pathway 
[80].

In addition to their roles in the pathways mentioned 
above, several lncRNAs also utilize the PI3K/Akt 
signaling pathway in metastasis regulation. Linc00152 
directly binds with EGFR, which activates PI3K/Akt 
signaling in gastric cancer [81]. The downregulation of 
MALAT1 induces EMT via the PI3K/Akt pathway in 
breast cancer [82], and in contrast, the upregulation of 
MALAT1 promotes the metastasis of osteosarcoma cells 
by activating the PI3K/Akt pathway [83].

LncRNAs regulate metastasis using additional 
pathways, such as the Notch and Hedgehog signaling 
pathways [84–88]. There are so many patterns for 
lncRNAs to regulate cancer metastasis, and thus, a 
particular focus on the molecular mechanisms of lncRNAs 
in metastasis is needed.

Roles of lncRNAs in regulating protein functions

LncRNAs use various modes of molecular 
interactions to exhibit their gene-regulating properties 
from transcriptional to posttranscriptional regulation. The 
functional domains of lncRNAs include RNA-binding 
domains, DNA-binding domains and protein-binding 
domains [89]. Thanks to structural plasticity, lncRNAs can 
act as signals, decoys, guides and scaffolds [90].
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LncRNAs show a type-specific expression and 
respond to various stimuli, suggesting that lncRNAs can 
serve as molecular signals [90]. As signals, lncRNAs 
mark space, time, and expression for gene regulation. 
For instance, lincRNA-p21 is a transcriptional target of 
p53 and plays a role in triggering apoptosis [91]. Other 
lncRNAs, such as HOTAIR [92] and Xist (X-inactive-
specific-transcript) [93], also function as signals, and 
they usually serve as markers of biological events and are 
capable of delivering further signals.

LncRNAs act as molecular decoys, because they 
possess an RNA motif, which binds and titrates away 
proteins or RNA targets. Some lncRNAs, acting as a 
“sponge” of miRNAs, also belong to this archetype. In 
this type, lncRNAs function as CeRNAs (competing 
endogenous RNA), and vie with mRNAs for miRNAs 
with shared MREs (miRNAs responses elements) and act 
as a modulator of miRNAs by influencing the available 

level of miRNAs [94, 95]. Sponge LncRNAs, such as H19 
[64, 96–99], HOTAIR [100–102], MALAT1 [69, 103–
107], UCA1 [108–111], XIST [112, 113], HULC [114], 
lincRNA-ROR [115], lnc-FTX [116], NEAT1 [117, 118], 
SNHG1 [119], TUG1 [120], and TUSC7 [121], are typical 
examples.

The third molecular role of lncRNAs is a guide. 
By acting as a guide, lncRNAs bind to proteins and then 
direct the localization of the resultant complex to specific 
targets [90]. Guide lncRNAs directly interact with DNA 
and RNA by base pairing, and highly structured lncRNAs 
also provide docking sites for binding proteins [122]. For 
example, lncRNA HOTTIP directly binds the adaptor 
protein WDR5 and targets WDR5/MLL complexes to 
the HOXA, increasing the H3 lysine 4 trimethylation of 
the HOXA cluster to cause gene transcription [90]. There 
are many other lncRNAs that function as guides, such as 
HOTAIR [92] and SChLAP1 [123].

Figure 1: LncRNAs act as regulators of metastasis-related signaling pathways. An aberrant expression of lncRNAs promotes 
cancer metastasis via the TGF-β/SMAD, WNT/β-catenin, NOTCH, MAPK/ERK, PI3K/Akt and HEDGEHOG signaling pathways.



Oncotarget1429www.impactjournals.com/oncotarget

The fourth function of lncRNAs is a scaffold. 
LncRNAs serve as central platforms on which different 
effector molecules are assembled. The function of 
LncRNAs as scaffolds is perhaps the most functionally 
intricate and complex class, in which the lncRNAs possess 
different domains that bind distinct effector molecules 
[90]. One example is Kcnq1ot1, which binds both PRC2 
and G9a to promote H3K27me3 and H3K9me3 [124]. 
Other lncRNAs such as ANRIL (CDKN2B antisense RNA 
1) [125, 126], HOTAIR [127], and GClnc1 (gastric cancer-
associated lncRNA 1) [128] also function as scaffolds to 
regulate gene expression.

As a whole, the archetypes mentioned above are not 
mutually exclusive. LncRNAs play regulatory functions 
through either RNA-protein or RNA-DNA recognition 
rules. No matter which archetype lncRNAs carry out 
their functions, the proteins they bind to are important for 
them to exhibit their metastasis-regulating performances. 
In general, lncRNAs complex with various proteins to 
regulate their localization, stabilization or modification.

LncRNAs regulate the localization of binding 
proteins

Chromatin-modifying proteins are a major group of 
lncRNA binding proteins, and lncRNAs bind to and guide 
them to specific sites in the genome to regulate metastasis-
related genes expression in space and time. A prominent 
example of a histone-modifying complex interacting 
with lncRNAs is PRC2, a histone methyltransferase 
that catalyzes the mono-, di- and trimethylation of 
H3K27, which is required for epigenetic silencing during 
development and cancer. The core PRC2 complex is 
composed of four proteins, including EZH1/2, SUZ12, 
EED and RbAP46/48 [129]. Until now, the question 
of how the histone-modifying complex identifies its 
binding sites on the chromatin remains open, and studies 
on lncRNAs may give us new and exciting answers. 
HOTAIR, a lncRNA first identified by Rinn et al., interacts 
with PRC2 and is required for PRC2 occupancy on the 
HOXD locus [92]. Later, researchers found that HOTAIR 
is upregulated in different kinds of cancers and promotes 
cancer metastasis through by regulating the localization 
of PRC2 [130–133]. Mechanistically, HOTAIR recruits 
the PRC2 complex to specific target genes genome-wide, 
leading to H3K27 trimethylation and epigenetic silencing 
of metastasis suppressor genes. LncRNAs also functions 
as molecular scaffold to link PRC2 and other modification 
proteins [127, 134–136]. For example, HOTAIR functions 
as a molecular scaffold to link and target the histone 
modification complexes PRC2 and LSD1 and then 
reprograms chromatin states by coupling histone H3K27 
methylation and H3K4 demethylation for epigenetic gene 
silencing to promote cancer metastasis (Figure 2A).

Another example is SChLAP1, which is a lncRNA 
upregulated in prostate cancer. SChLAP1 promotes 

prostate cancer invasiveness and metastasis by binding 
to SWI/SNF and titrating it away from the chromatin 
[123]. The mammalian SWI/SNF complex mediates 
ATP-dependent chromatin remodeling processes, and a 
substantial of evidence indicates that several components 
of the SWI/SNF complexes function as tumor suppressors 
[137]. In detail, SChLAP1 interacts with SNF5 (also 
known as SMARCB1, an essential subunit that facilitates 
SWI/SNF binding to histone proteins) and functions as a 
molecular decoy that sequesters the SWI/SNF chromatin-
modifying complex away from the selective gene loci to 
inhibit metastasis suppressor gene expression (Figure 2B).

MLL1 is a member of the evolutionarily 
conserved SET1 family of histone H3 lysine4 (H3K4) 
methyltransferases, which are required for the regulation 
of distinct groups of developmentally regulated genes 
[138, 139]. WDR5 is a core subunit of MLL1 and acts as 
an “effector” of H3K4 methylation in gene transactivation 
[128]. Sun et al. identified a novel lncRNA, GClnc1, 
which promotes gastric cancer metastasis [106]. In 
detail, GClnc1 upregulates the transcription of SOD2 
(dismutase 2 mitochondrial) by acting as a scaffold to 
recruit the WDR5 and KAT2A (histone acetyltransferase) 
complex to the SOD2 promoter and increasing the 
H3K4 trimethylation and H3K9 acetylation levels in the 
SOD2 promoter region (Figure 2C). Upregulated SOD2 
expression consequently promotes metastasis.

p300 is a HAT (histone acetyltransferase) member 
that acetylates histone proteins by transferring an acetyl 
group from acetyl-CoA to specific lysine residues [140]. 
The acetylation of histones by HATs results in a dispersed 
structure of chromatin, which becomes accessible to 
transcriptional factors [141]. ZEB1-AS1 promotes cell 
migration in osteosarcoma by directly binding and 
recruiting p300 to the ZEB1 promoter, which induces an 
open chromatin structure and activates ZEB1 transcription 
[142] (Figure 2D).

In addition to chromatin-modifying proteins, 
transcription factors also interact with lncRNAs. A study 
identified that lncRNAs guide transcription factors 
to specific sites in the genome. For example, SLNCR 
(SRA-like non-coding RNA) contains a conserved~300 
nucleotide region with a significant similarity to 
steroid receptor RNA activator 1 (SRA1). Schmidt et 
al. [143] reported that Brn3a (a member of the Brn 3 
family of POU-domain transcription factors) and AR (a 
steroid-hormone activated transcription factor) bind to 
SLNCR1’s conserved sequence and an adjacent sequence, 
respectively. The SLNCR1/AR/Brn3a ternary complex 
has a high affinity for the AR and Brn3a binding sites 
located upstream of the MMP9 transcription start site, 
and the cooperative binding of AR and Brn3a to its 
promoter increases MMP9 expression and activity and, 
thus, increases the invasion of melanoma cells (Figure 
2E). Another prominent example is BCAR4 (breast 
cancer anti-estrogen resistance 4), which contributes to 
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tumor metastasis by binding to SNIP1 (SMAD nuclear 
interacting protein 1) and PNUTS (a phosphatase). 
In response to cytokine stimulation, BCAR4 lifts the 
inhibitory effect of SNIP1 on p300, leading to the 

acetylation of histones, such as H3K18ac. Acetylated 
histones are necessary for the BCAR4-mediated 
recruitment of PNUTS, which in turn leads to the active 
polymerase II at GLI2 controlled genes [144] (Figure 2F).

Figure 2: LncRNAs regulate the localization of the chromatin modification complex. (A) HOTAIR functions as a molecular 
scaffold to link and target PRC2 and LSD1, which then reprograms chromatin states by coupling histone H3K27 methylation and H3K4 
demethylation for epigenetic gene silencing to promote cancer metastasis. (B) SChLAP1 interacts with SNF5 and functions as a molecular 
decoy that sequesters the SWI/SNF chromatin-modifying complex away from selective gene loci to regulate gene expression. (C) GClnc1 
upregulates the transcription of SOD2 by acting as a scaffold to recruit the WDR5 and KAT2A complex to the SOD2 promoter, increasing 
H3K4 trimethylation and H3K9 acetylation levels in the SOD2 promoter region. (D) ZEB1-AS1 directly binds and recruits p300 to the 
ZEB1 promoter, which induces an open chromatin structure and activates ZEB1 transcription. (E) SLNCR1 binds to AR and Brn3a. The 
SLNCR1/AR/Brn3a ternary complex, located upstream of the MMP9 transcription start site, increases MMP9 expression. (F) BCAR4 
binds to SNIP1 and PNUTS. In response to cytokine stimulation, BCAR4 lifts the inhibitory effect of SNIP1 on p300, leading to the 
acetylation of histones, which in turn leads to the activation of polymerase II at GLI2 controlled genes.
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The lncRNAs mentioned above guide the binding 
proteins to chromatin or titrate the binding proteins away 
from the chromatin to regulate gene expression directly. 
LncRNAs can also decoy the protein from it RNA targets 
or interact proteins. For example, LINC01133, which is 
downregulated by TGF-β, inhibits EMT and metastasis in 
colorectal cancer [69]. Mechanistically, LINC01133 acts 
as key downstream molecule in the TGF-β pathway and 
inhibits the EMT in colorectal cancer by directly binding to 
SRSF6 (serine and arginine rich splicing factor 6) as a target 
mimic. The authors speculate that LINC01133 may act as a 
decoy element, titrating SRSF6 away from it RNA targets by 
directly binding to its critical domain to block the induction of 
EMT. However, how SRSF6 regulates colorectal cancer cell 
EMT is still unknown. Another study found that MALAT1 
promotes colorectal cancer cell metastasis by competitively 
binding to PSF and releasing SFPQ from the SFPQ/PTBP2 
(polypyrimidine tract binding protein 2) complex, which then 
increases the SFPQ-detached proto-oncogene PTBP2 [145].

LncRNAs regulate the stabilization of binding 
proteins

Like all macromolecular components of an 
organism, the proteome is in a dynamic state of synthesis 

and degradation. The proteolytic equilibrium of the 
proteins is disturbed and the microenvironment is changed 
in pathophysiological conditions [146]. Studies find 
that lncRNAs play an important role in regulating the 
stabilization of binding proteins.

TINCR (Terminal differentiation-induced lncRNA) 
was first reported by Markus et al. [147], and they declared 
that the 3.7-kilobase lncRNA controls human epidermal 
differentiation by a post-transcriptional mechanism. Then, 
Zhang et al. [77] found that the loss of TINCR expression 
promotes colorectal cancer metastasis by specifically 
binds to EpCAM, preventing its proteolysis. EpCAM is 
expressed at the basolateral membrane of most normal 
epithelial cells but is over-expressed in many epithelial 
cancers. The loss of TINCR promotes the hydrolysis of 
EpCAM and then releases EpICD (EpCAM c-term, 
intracellular domain), which is one of the components 
of the Wnt pathway, and colocalizes with FHL2 and 
β-catenin to form a nuclear protein complex, leading to 
gene transcription and, subsequently, activating the Wnt/β-
catenin pathway [77, 148] (Figure 3A).

LncRNA-LET inhibits the metastasis of HCC 
and colorectal cancer cells, which are suppressed by 
HDAC3 (histone deacetylase 3) in hypoxia conditions 
[149]. A study found that lncRNA-LET functions 

Figure 3: LncRNAs regulate the stabilization of binding proteins. (A) TINCR binds to EpCAM and prevent its proteolysis. The 
loss of TINCR promotes the hydrolysis of EpCAM and releases EpICD. EpICD colocalizes with FHL2 and β-catenin to form a nuclear 
protein complex, leading to gene transcription. (B) LncRNA-LET binds to NF90 and enhances its degradation, thereby affecting HIF-1α 
mRNA accumulation and stability under hypoxic conditions, and the inactivation of HIF-1α results in the decreased expression of EMT-
related proteins, thus leading to the inhibition of EMT, motility and invasiveness.
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through its association with NF90, which is a double-
strand RNA-binding protein that has been implicated 
in the stabilization, transport, and translational 
control of many target mRNAs, including HIF-1α 
(hypoxia-inducible factor 1 alpha subunit) [150]. 
Mechanistically, lncRNA-LET binds to NF90 and 
enhances its degradation, which thereby affects HIF-
1α mRNA accumulation and stability under hypoxic 
conditions, and the inactivation of HIF-1α results in the 
decreased expression of EMT-related proteins, leading 
to an inhibition of EMT, motility and invasiveness [121, 
149] (Figure 3B).

LncRNA-HIT promotes metastasis in NSCLC (non-
small cell lung cancer) via specially binding to ZEB1 
[64]. ZEB factors contain multiple domains that interact 
with other transcription factors, which is essential for 
the regulation of EMT [151, 152]. Mechanistically, the 
association between LncRNA-HIT and ZEB1 protects 
ZEB1 from proteasome degradation. Upregulated 
LncRNA-HIT promotes migration and invasion via 
increasing the occupancy of ZEB on the promoter 
region of CDH1 [64]. LncRNA AOC4P (amine oxidase, 
copper containing 4, pseudogene) is another lncRNA 
that regulates the EMT marker protein directly. LncRNA 
AOC4P suppress EMT in HCC by binding to vimentin, 
the major component of the cytoskeleton, and enhancing 
its degradation [153].

LncRNAs regulate the post-translational 
modification of binding proteins

NF-kB is a family of transcription factors, and 
aberrant NF-kB activation promotes cancer invasion 
and metastasis [154–156]. Liu et al. [157] identified the 
lncRNA NKILA (NF-KappaB Interacting LncRNA), 
which has a low expression in breast cancer and binds 
to the NF-kB / IkB complex. IkB (inhibitor of NF-kB) 
acts as a negative regulator of NF-kB by binding to and 
sequestering NF-kB in the cytoplasm. It is considered as 
a major brake in NF-kB signaling [154]. NKILA binds 
to the NF-kB / IkB complex and directly masks the 
phosphorylation motifs of IkB, which thereby inhibits 
IKK-induced IkB phosphorylation and NF-kB activation 
[133] (Figure 4).

In addition to the three patterns lncRNAs use 
to regulate their binding proteins, lncRNA regulate 
binding proteins through other way. A high expression 
of GAPLINC (Gastric adenocarcinoma predictive long 
intergenic noncoding RNA) promotes colorectal cancer 
invasion by binding to PSF (also known as SFPQ, splicing 
factor proline and glutamine rich) and NONO (non-POU-
domain-containing, octamer binding) [158]. A further 
study found that PSF and NONO promote GAPLINC to 
influence cell invasion partly by increasing the expression 
of SNAI2 (snail family zinc finger 2), a member of the 

Figure 4: LncRNAs regulate the modification of binding proteins. NKILA binds to the NF-kB / IkB complex and directly masks 
the phosphorylation motifs of IkB, thereby inhibiting IKK-induced IkB phosphorylation and NF-kB activation.
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Table 1: Summary of lncRNAs and their binding proteins as regulators of cancer metastasis
Symbol Interaction protein Archetype Mechanism Cancer type References

HOTAIR PRC2 Guide Histone modification;
Promote the transcription of ABL2, 
SNAIL et al.)

Breast cancer [130]

PRC2 (EZH2) Guide Histone modification;
Repress E-cadherin transcription

OSCC [133]

PRC2 (SUZ12) Guide Histone modification;
Suppress promoter methylation of 
PCDH10

GISTs [132]

PRC2 Guide Histone modification;
HOTAIR-miR34a→ HGF/C-Met/Snail 
pathway

Gastric cancer [131]

PRC2, LSD1 Scaffold Histone modification - [127]

NBAT1 PRC2 (EZH2) Guide Histone modification;
Promote the transcription of DKK1

Breast cancer [172]

DANCR PRC2 (EZH2) Guide Histone modification;
Suppress the transcription of TIMP 2/3

Prostate cancer [173]

LINC00511 PRC2 (EZH2) Guide Histone modification;
Repress p57 expression

NSCLC [134]

Linc-UBC1 PRC2 (EZH2, 
SUZ12)

Guide Histone modification Bladder cancer [174]

LncRNA-EBIC PRC2 (EZH2) Guide Histone modification;
Repress E-cadherin transcription

Cervical cancer [175]

HOXA11-AS EZH2, LSD1 or 
DNMT1

Scaffold,
decoy

Histone/DNA modification
“Sponge” of miR-1297

Gastric cancer [134]

LncRNA-
GIHCG

EZH2, DNMT1 Scaffold Histone/DNA modification;
Silence the expression of miR200 
b/a/429

HCC [135]

AGAP2-AS1 EZH2, LSD1 Scaffold Histone modification;
Repress LATS2 and KLF2 transcription

NSCLC [136]

SChLAP1 SWI/SNF (SNF5) Decoy Histone modification; Prostate cancer [123]

GClnc1 WDR5, KAT2A Scaffold Histone modification;
Promotes SOD2 transcription

Gastric cancer [106]

ZEB1-AS1 p300 Guide Histone modification;
Activates ZEB1 transcription

Osteosarcoma [142]

SLNCR1 Bm3a, AR Scaffold Guide Activates MMP9 transcription melanoma [143]

BCAR4 SNIP1, PNUTS Scaffold CCL21→BCAR4→non-canonical 
Hedgehog/GLI2 pathway

Breast cancer [144]

LINC01133 SRSF6 Decoy - Colorectal cancer [69]

MALAT1 PSF Decoy Release oncogene PTBP2 from PSF/
PTBP2 complex

Colorectal cancer [145]

PRC2 (EZH2) Guide
Decoy

Repress E-cadherin expression
“Sponge” of miR-1297

Colorectal cancer [176]

PRC2 (EZH2) Guide Histone modification;
Repress PCDH10 expression

Gastric cancer [177]

PRC2 (SUZ12) Guide
Signal

Histone modification;
Repress E-cadherin expression

Bladder cancer [68]

(Continued )
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snail family of transcription factors, which promotes cell 
invasion, motility, and metastasis via inhibiting E-cadherin 
transcription and inducing EMT in several human cancers 
[158–161]. However, how PSF and NONO bound with 
GAPLINC and how they activate GAPLINC-associated 
genes to promote invasion is still unknown.

CONCLUSION

Currently, studies on lncRNAs have gradually 
become one of the hottest topics in the field of RNA 
biology, and lncRNAs have emerged as a versatile 
regulator of key pathophysiological pathways. LncRNAs 
have broad applications in cancer diagnosis and 
treatment because most of the well-studied lncRNAs 
are correlated with a poor prognosis in patients. The 
abnormal expression of lncRNAs in cancers reminds 
us they may be the targets of tumor diagnosis and 
treatment. Studies also show that lncRNAs take part 
in regulating cancer chemotherapy sensitivity. For 
example, HOTAIR activates the PI3K/Akt pathway by 
inhibiting the expression of miR-126 and promotes the 
development of cisplatin resistance in gastric cancer 
[162], while HOTAIR decreases chemoresistance through 
the activation of Wnt/β-catenin signaling in ovarian 
cancer [80]. Other lncRNAs, such as Linc00152 [163], 
MALAT1 [164], UCA1 [165, 166] and lnc-ROR [167], are 
associated with chemotherapy sensitivity.

In addition, lncRNAs detected in the blood 
may represent prominent novel biomarkers for cancer 
diagnostics. For example, HOTAIR is detected in 
colorectal cancer and represents an effective negative 
prognostic biomarker for colorectal cancer in blood 

samples [168]. MALAT1 is elevated in the whole blood of 
metastatic lung cancer patients [169], and HULC, detected 
in the blood, is also proposed as a diagnostic biomarker 
both for liver cancer and gastric cancer [170, 171]. Studies 
that illuminate the molecular mechanism of the abnormal 
expression of lncRNAs in various cancers are helpful 
to improve the efficiency of clinical treatments and the 
diagnosis of cancer.

More and more lncRNAs, with a differential 
expression in tumors, are being discovered, and these 
lncRNAs are important regulators of genes during cell 
metastasis or act as regulators for other metastasis-
relevant genes. Up to now, two major mechanisms 
have emerged for how lncRNAs regulate cancer 
metastasis, including (1) binding to functional proteins 
characteristically and then affecting the transcription 
of genes associated with metastasis and (2) acting as 
ceRNAs for miRNAs that target genes involved in 
metastasis regulation. There are three control modes 
for lncRNAs to bind to functional proteins, including 
(1) by regulating the localization of binding proteins, 
lncRNAs play a role in the chromatin and epigenetic 
modification and the transcription of metastasis-relevant 
genes, (2) lncRNAs enhance or attenuate protein stability 
by binding to them, and (3) lncRNAs mask or expose the 
modification motif to inactivate or activate the binding 
protein.

In summary, this review highlights the interactions 
between lncRNAs and their binding proteins and the 
mechanisms of their collaborative roles in cancer 
metastasis (Table 1), which provides systematic 
information and an evaluation of the potential of lncRNAs 
as prospective novel therapeutic targets in cancer.

Symbol Interaction protein Archetype Mechanism Cancer type References

TINCR EpCAM Signal TINCR→ hydrolysis of EpCAM → 
EpICD→Wnt/β-catenin pathway

Colorectal cancer [77]

LncRNA-LET NF90 Signal LncRNA-LET→ NF90 degradation 
-HIF-1α

HCC [149]

LncRNA-HIT ZEB1 Signal Protect ZEB1 from degradation and 
then Repress E-cadherin expression

NSCLC [64]

AOC4P Vimentin Signal Enhance vimentin degradation HCC [153]

ANCR EZH2 Signal Enhance the degradation of vimentin Breast cancer [178]

NKILA NF-κB/IκB Signal Blocks IkB phosphorylation Breast cancer [133]

CCAT2 EZH2 Guide Histone modification;
Repress E-cadherin /LATS2 expression

Gastric cancer [179]

Lnc TCF7 SWI/SNF Guide Histone modification;
Activate Wnt/β-catenin pathway

HCC [78]

HNF1A-AS1 DNMT1 Guide DNA modification;
Repress E-cadherin expression

Lung 
adenocarcinoma

[180]

HULC EZH2 Guide Histone modification;
Repress NKD2 expression

Colorectal cancer [181]
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MET:mesenchymal-epithelial transition; lncRNAs: long non-
coding RNAs; HOTAIR :HOX transcript antisense RNA; 
Xist : X-inactive-specific-transcript; CeRNAs :competing 
endogenous RNA; MREs : miRNAs responses elements; 
MALAT1: metastasis associated lung adenocarcinoma 
transcript 1; UCA1: urothelial cancer associated 1; HULC: 
hepatocellular carcinoma up-regulated long non-coding 
RNA; NEAT1: nuclear paraspeckle assembly transcript 
1; SNHG1: small nucleolar RNA host gene 1; SCHLAP1: 
SWI/SNF complex antagonist associated with prostate 
cancer 1; ANRIL: CDKN2B antisense RNA 1; GClnc1: 
gastric cancer-associated lncRNA 1; SOD2: dismutase 2 
mitochondrial); HATs: histone acetyltransferases; SLNCR: 
SRA-like non-coding RNA; BCAR4: breast cancer anti-
estrogen resistance 4; SNIP1: SMAD nuclear interacting 
protein 1; SRSF6: serine and arginine rich splicing factor 
6; PTBP2: polypyrimidine tract binding protein 2; TINCR: 
Terminal differentiation-induced lncRNA; HDAC3 : histone 
deacetylase 3; HIF-1α: hypoxia-inducible factor 1 alpha 
subunit; LncRNA-HIT: HOXA transcript induced by TGF-β; 
NSCLC: non-small cell lung cancer; ZEB1: zinc finger 
E-box binding homeobox 1; AOC4P: amine oxidase, copper 
containing 4, pseudogene; NKILA: NF-KappaB Interacting 
LncRNA; IkB : inhibitor of NF-kB; GAPLINC: Gastric 
adenocarcinoma predictive long inergenic noncoding RNA; 
SNAI2: snail family zinc finger 2; OSCC: oral squamous cell 
carcinoma; GISTs: gastrointestinal stromal tumors; HNF1A-
AS1: lncRNA HNF1A-antisense 1.
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