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ABSTRACT

LncRNAs acting as miRNA sponges to indirectly regulate mRNAs is a novel layer 
of gene regulation, therefore, it is necessary to integrate lncRNA and gene levels for 
interpreting tumor biological mechanism. In this study, we developed a lncRNA-gene 
integrated strategy to infer functional activities for tumor analyses at the subpathway 
level. In this strategy, we reconstructed subpathway graphs by embedding lncRNA 
components and considered the expression levels of both genes and lncRNAs to 
infer subpathway activities for each tumor sample. And the activities were applied 
to three aspects of tumor analyses; First, the subpathway activities across tumor 
samples of five tumor types were analyzed, and it was observed that the samples with 
consistent subpathway activities were derived from the same or similar tumor types. 
Also, the subpathway activities could stratify samples into several subtypes which 
has different clinical characterization, e.g. survival status. Second, the subpathway 
activities between tumor and normal samples were analyzed, and the comparative 
results showed that subpathway activities displayed more specificities than entire 
pathway activities. Finally, based on the subpathway activities, we identified 
prognostic subpathways for lung cancer. Our subpathway-based signatures shared 
significant overlap with enrichment analysis results and displayed predictive power 
in the independent testing sets. In conclusion, our integrated strategy provided a 
framework to infer subpathway activities for tumor analyses and identify subpathway 
signatures for clinical use.

INTRODUCTION

Long non-coding RNAs (lncRNAs) are found to 
play key roles in human diseases by mediating a wide 
range of biological processes, including cell differentiation 
[1], immune response [2], genomic imprinting [3], and 
chromatin modification [4]. Especially, recent studies have 
demonstrated that lncRNAs could act as miRNA sponges 
to competitively regulate messenger RNA (mRNA) 
expressions by sharing common miRNA binding sites 
with mRNAs, which is a novel layer of gene regulation 
[5, 6]. And, the dys-regulation of lncRNA expressions 
could further affect biological pathways by competitively 

regulating mRNAs. For example, the study of Wang et al. 
found that lncRNAs promoted tumorigenesis, invasion, 
and metastasis by regulating core genes involved in 
transforming growth factor-β signaling pathway [7]. 
In another finding, lncRNA CASC11 interacted with 
gene hnRNP-K and activated Wnt/β-catenin pathway 
to promote colorectal cancer growth and metastasis 
[8]. Therefore, it was necessary to perform the pathway 
activity analyses by considering lncRNA expressions.

Numerous methods have been recently developed 
to analyze tumor biological mechanisms at the function or 
pathway level. The pathway signatures that represent sets 
of gene units with consistent functional roles could display 

www.impactjournals.com/oncotarget/         Oncotarget, 2017, Vol. 8, (No. 67), pp: 111433-111443

                                                     Research Paper



Oncotarget111434www.impactjournals.com/oncotarget

a more robust performance than gene signatures. As a 
major reason, the function-level analyses could reduce the 
dimensions of high-throughput data sets, which have more 
variables than sample number [9, 10]. Ooi et al. developed 
an approach to connecting pathways and tumor profiles, 
and further identified clinical relevant pathway signatures 
for gastric cancer [11]. Moreover, another method named 
FAIME was developed to generate functional signatures 
for tumor analyses; the FAIME calculated functional 
activities using rank-weighted gene expressions derived 
from individual sample [12]. Recently, more and more 
studies tried to identify dysregulated pathways in kinds of 
human diseases [13, 14]. However, most current methods 
performed the function- or pathway-level analyses only 
based on gene expressions, and ignored the regulatory 
roles of lncRNAs.

Based on pathway topology information, the 
subpathway concept was proposed in our previous 
study. In addition, it has been confirmed that key local 
subpathways, rather than entire pathway, were more subtly 
explainable to the etiology of diseases [15, 16]. Containing 
smaller number of components, the subpathway reflects 
more detailed functional descriptions and thus interprets 
disease biological mechanisms at a more precise level. 
The subpathways have been implicated in detecting 
multiple mechanisms, including drug action [17] and 
miRNA regulation [18] analyses. Recently, we identified 
prognostic signatures for lung cancer patients at the 
subpathway level and verified the subpathway signatures’ 
predictive power using independent data sets [19]. So, 
there is no doubt that subpathway-based analysis is 
necessary to be considered for precise tumor analyses.

Recently, we developed a novel method named 
subpathway-LNCE to identify dysfunctional subpathways, 
which were competitively regulated by lncRNAs [20]. In 
this study, we firstly converted signaling pathways from 
Kyoto Encyclopedia of Genes and Genomes (KEGG) into 
undirected graphs with genes as nodes, and reconstructed 
the pathway graphs based on lncRNA-mRNA regulations, 
which were identified by simultaneously considering 
lncRNA-mRNA co-expression relationship and shared 
miRNA number. Then, interesting lncRNAs and genes 
were mapped into the reconstructed graphs, and key 
subpathways were located using “lenient distance” 
similarity method [16]. Finally, these key subpathways 
were evaluated using the Wallenius approximation [21] 
and the significant subpathways were identified. In the 
result, we applied subpathway-LNCE method into multiple 
types of tumors and demonstrated that this method was 
effective to identify risk subpathways. Furthermore, we 
confirmed the reliability of corresponding subpathway 
results using independent data sets. Although the 
regulatory roles of lncRNAs have been applied into risk 
subpathway identification, the involvement of lncRNAs 
in inferring subpathway activities was seldom considered.

We hypothesized the functional activities could 
be accessible from the expression levels of lncRNAs 
and genes at the subpathway level. In this study, we 
developed a novel strategy to infer subpathway activities 
by integrated analysis of gene and lncRNA expressions. 
We then applied the subpathway activities into three 
aspects of tumor analyses, including difference analyses 
across multiple tumor types, difference analyses between 
normal and tumor samples, and cancer prognosis analysis. 
Through these analyses, we found that the subpathway 
activities could distinguish different samples derived 
from five tumor types, as well as samples between tumor 
and normal conditions. Moreover, it was shown that 
subpathway results displayed more specificities than 
entire pathway results. Based on the subpathway activities, 
the prognostic signatures were identified for two lung 
cancer sub-types, and displayed biological meanings and 
robust predictive power in independent testing sets. In 
summary, our lncRNA-gene integrated strategy provided 
a framework to infer subpathway activities for tumor 
analyses, and further identify subpathway signatures for 
tumor patient prognostic implications.

RESULTS

Infer subpathway activities by integrating gene 
and lncRNA expressions

It was necessary to simultaneously consider the 
expression levels of genes and lncRNAs to perform the 
pathway analyses. In addition, the subpathway displayed 
advantages over entire pathway with respect to reflecting 
more detailed functional descriptions. To resolve these 
issues, we developed a framework to infer subpathway 
activities by integrated analysis of gene and lncRNA 
expressions. As shown in Supplementary Figure 1, we 
performed this framework at two steps as follows:

i) Reconstruct the subpathway graphs by embedding 
lncRNAs. We first obtained all the biological pathways 
from KEGG database and converted these pathways into 
undirected graphs with genes as nodes. Then, the gene-
based subpathways were identified using our previously 
developed R package [16]. And we further embedded 
lncRNA components into the gene-based subpathways 
based on the lncRNA-gene regulations from the study 
of Shi et al. [20] (see Material and Methods). After 
this step, a total of 1644 subpathways were obtained, 
and most pathways contained less than 5 subpathways 
and the path: 05200 (pathways in cancer) contained 60 
subpathways (see Supplementary Figure 2A). As shown 
in Supplementary Figure 2B, subpathways contained an 
average of 20.2 genes and 26.6 lncRNAs, which were 
smaller than the entire pathway scale. The detailed gene 
and lncRNA components within subpathway graphs were 
provided in Supplementary Table 1.
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ii) Calculate the subpathway activity and form 
subpathway profile. We calculated the activities of all 
subpathways for each sample (tumor or normal) based on 
gene and lncRNA expression data sets (see Materials and 
Methods). For a group of samples, a subpathway profile 
with all subpathways as rows and samples as columns 
were further formed. And the activities within profile 
showed the subpathways conditions reflected by the 
expression levels of both lncRNAs and genes involved.

Tumor analyses 1: subpathway activities across 5 
tumor types

Based on the subpathway activities calculated 
by integrating gene and lncRNA expressions, we first 
analyzed the activity difference across tumor types. In 
this study, we obtained gene and lncRNA expression data 
sets of totally five tumor types from TCGA database. 
As detailed described in Material and Methods, the 
activities of all subpathways were calculated for each 
tumor sample, and a subpathway profile with 1644 
subpathways as rows and 2140 tumor samples as columns 
was generated. Next, we performed clustering analyses to 
show the differentiation of subpathway activities among 
tumor types. As shown in Figure 1A, the samples from 
the same or similar tumor types displayed a trend to be 
clustered together. For example, the samples from lung 
adenocarcinoma and lung squamous cell carcinoma 
were clustered together to form a cluster, showing 
that the tumor samples from the same tissue origin 
displayed consistent subpathway activities. Furthermore, 
we performed a comparative analyses for subpathway 
activities between tumor types. For each tumor type, 
we calculated average subpathway activity based on all 
tumor samples as the tumor specific subpathway activities. 
And then, the Pearson correlation of average subpathway 
activities between five tumor types were calculated. As 
shown in Figure 1B, most tumor types shared negative 
subpathway activities with each other, for example, the 
BLCA displayed negative correlation with BRCA (Pearson 
value = -0.51, P-value = 3.7e-108). And, the LUAD and 
LUSC displayed positive correlation with Pearson value = 
0.31, which further confirmed that consistent subpathway 
activities were involved in the tumor samples with the 
same tissue origin.

On the other hand, separate clusters were also 
formed for the samples from the same tumor type, for 
example, five breast cancer clusters (from cluster-1 to 
cluster-5) were separated. As a probable reason, the 
samples of these five breast cancer clusters might display 
different biological characterizations. So, we further 
analyzed whether there existed clinical outcome difference 
among samples from the above clusters. As shown in 
Figure 1C, the samples from cluster-1 and cluster-3 
displayed the best clinical outcomes, while the samples 
from cluster-5 displayed the poorest clinical outcomes. 

And there was significant survival difference (P-value 
= 0.00047) among the five clusters by log-rank test, also 
indicating the performance of subpathway activities to 
distinguish patient’s clinical characterization.

We also analyzed the activity difference of specific 
subpathways across five tumor types. As shown in Figure 
1D, path:04060_16 from the Cytokine-cytokine receptor 
interaction displayed the highest activity difference. In 
detail, this subpathway displayed low activities in BRCA 
and PRAD, and displayed high activities in other three 
tumor types. In the meanwhile, another subpathway 
(path:04060_11) from the same entire pathway did not 
display the difference, which reflected the specificity 
of subpathway results. In addition, we observed that the 
path:05215_1 from Prostate cancer displayed significantly 
higher activity in PRAD than other tumor types.

Tumor analyses 2: subpathway activities between 
normal and tumor samples

To test whether the subpathway activities could 
distinguish normal and tumor samples, we obtained cancer 
pathways from KEGG database, which corresponded to 
different tumor types. For example, Path: 05219 (Bladder 
cancer) corresponded to BLCA, Path: 05223 (Non-small 
cell lung cancer) corresponded to LUAD and LUSC, and 
Path: 05215 (Prostate cancer) corresponded to PRAD. 
For performing the comparison between subpathways 
and entire pathways, we also reconstructed pathway 
graphs by embedding lncRNA components, which was 
similar as the procedure for subpathway graphs. Then, we 
calculated the subpathway and pathway activities for all 
normal and tumor samples for some certain tumor type, 
based on the reconstructed subpathway graphs and entire 
pathway graphs. And the activity between normal and 
tumor samples was compared using the Wilcoxon rank 
sum test. Take the Path:05219 (Bladder cancer) as an 
example, entire pathway and six subpathway graphs were 
reconstructed, and the activities were both calculated at 
the pathway and subpathway levels. Using TCGA BLCA 
data set, we could compare the performance of entire 
pathway and subpathways in distinguishing normal and 
tumor samples.

As shown in Figure 2A, entire pathways displayed 
higher activities in tumor samples than normal samples, 
with P-value = 2.99e-07 in BLCA, P-value = 3.19e-
04 in LUAD, P-value = 5.69e-11 in LUSC, and P-
value = 7.87e-10 in PRAD. At the subpathway level, 
most subpathways displayed consistent activities 
as corresponding entire pathway, higher activity in 
tumor samples than normal samples. In addition, the 
path:05223_8 and path:05215_8 displayed opposite 
subpathway patterns with higher activities in normal 
samples than tumor samples, showing that novel 
biological patterns were observed at the subpathway 
levels. In conclusion, all these findings confirmed that 



Oncotarget111436www.impactjournals.com/oncotarget

both pathway and subpathway activities could distinguish 
tumor samples from normal samples, and subpathway 
analyses displayed more specificity.

Tumor analyses 3: subpathway activities for 
tumor prognoses

As shown in the first tumor analyses, the samples 
from LUAD and LUSC displayed similar subpathway 
activities, moreover, the patients with non-small cell 
lung cancer (NSCLC) often had poor prognoses [22], 
and LUAD and LUSC were major types of NSCLC. 
Therefore, we applied the subpathway activities into the 
tumor prognoses and respectively identified prognostic 
subpathways for LUAD and LUSC risk classifications. For 
the TCGA LUAD (or LUSC) data set, we first randomly 
divided it into a training set and a testing set, which 

contained the same sample number. Based on the training 
set, we then calculated the subpathway activities for all 
1644 subpathways and identified prognostic subpathways 
using the univariate Cox analyses. Also, we performed 
a comparison between the prognostic subpathways we 
identified and the results from traditional hypergeometric 
enrichment method (see Material and Methods). Finally, 
we analyzed the survival predictive performance of our 
prognostic subpathways using corresponding independent 
testing set.

For LUAD, a total of 19 subpathways were 
identified as prognostic signatures with Univariate Cox P-
value < 0.01, and these subpathways were derived from 10 
entire pathways (see Figure 3). As a result of comparison, 
these 19 prognostic subpathways shared significant 
overlap with the subpathway identified by enrichment 
analyses. In detail, 13, 8, and 4 subpathways were 

Figure 1: The analyses of subpathway activities across samples from five tumor types. (A) The clustering results of 
subpathway matrix with 1644 subpathways as rows and 2140 samples from five tumor types as columns. Some sample clusters are shown 
as examples, and different colors correspond to each tumor type. (B) The correlations between tumor types based on the subpathway 
activities, and the correlation value is calculated using Pearson method. The red number indicates the positive correlation and the green 
number indicates negative correlation. The significant results with P-values are showed at grey background. (C) The Kaplan-Meier 
survival analyses for samples from five breast cancer clusters (in Figure 1A), and P-value is calculated using the Log-rank test. (D) Some 
subpathway examples including path:04060_16, path:04060_11, and path:05215_1 for subpathway activity analyses across five tumor 
types. The standard deviation of mean subpathway activity among these five tumor types is respectively calculated.
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commonly identified with enrichment analysis P-value < 
0.01, 0.001, and 0.0001. It was shown that our method 
based on the subpathway activities displayed consistent 
results with traditional pathway identification method. 
To test the survival performance of the 19-subpathway 
signatures, we performed K-mean clustering to achieve 
tumor sample classification using the testing set. As 
a result, four risk sample groups were formed in the 
clustering analyses and K-M survival analysis was applied 
to evaluate the survival difference between different risk 
groups. As shown in Figure 3C and 3D, the samples from 
cluster 4 with low subpathway activities from cell cycle 
pathways (path:04114 and path:04110) as well as high 
subpathway activities from immune pathways (path:04670 
and path:04650) displayed the best prognoses, whereas, 
the samples from cluster 2 with high subpathway activities 
from cell cycle pathways (path:04114 and path:04110) as 
well as low subpathway activities from immune pathways 
(path:04670 and path:04650) displayed the poorest 

prognoses. And the log-rank test showed that there was 
significant difference in survival time between these four 
risk groups (P-value = 0.038).

For LUSC, 9 subpathways were identified as 
prognostic signatures with Univariate Cox P-value < 0.01. 
And, we also observed that there was significant number 
of common subpathways between these 9 subpathways 
and subpathways identified by enrichment analyses (see 
Figure 4A). Similarly, we tested the predictive power 
of these 9 subpathways using corresponding testing set. 
As shown in Figure 4C and 4D, the samples with high 
subpathway activities from neurotrophin signaling 
pathway as well as low subpathway activities from 
folate biosynthesis displayed good prognoses, whereas, 
the samples with opposite subpathway activity patterns 
displayed poor prognoses. And log-rank test showed that 
there was significant difference in survival time between 
these two risk groups (P-value = 0.029).

Figure 2: The analyses of subpathway activities between tumor and normal samples. (A) The performance of entire pathway 
and subpathway activities in distinguishing tumor and normal samples for four tumor types, including BLCA, LUAD, LUSC, and PRAD. 
The grey color indicates non-significant results, the red color indicates higher activity score in tumor samples, and the green color indicates 
higher activity score in normal samples. P-value is calculated using the Wilcoxon rank sum test. (B) Path: 05215 for PRAD type as an 
example.
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DISCUSSION

The tumor function-based characterization was 
not well understood, and lncRNA expressions should 
be considered in inferring functional activities at the 
subpathway level. In this study, we developed a novel 
strategy to infer subpathway activities by considering 
the expression levels of both genes and lncRNAs. And 

the subpathway activities were applied into three tumor 
analyses. In first tumor analyses, we found that the 
subpathway activities could distinguish tumor samples 
from different tumor types, and the samples with the 
same histological origin were clustered together. In 
second tumor analyses, the subpathway activities could 
distinguish tumor samples from normal samples, and 
subpathway-based results were proved to outperform the 

Figure 3: The prognostic analyses based on subpathway activities in LUAD. (A) The comparison between 19 prognostic 
subpathways identified by univariate Cox based on subpathway activities and the subpathways identified by enrichment analyses with 
different adjusted P-value cut-offs (0.01, 0.001, and 0.0001). The comparative P-values are calculated using the hypergeometric test. 
(B) The subpathway id and entire pathway name of these 19 prognostic subpathways. (C) K-mean clustering representation based on 
subpathway activities using the testing set. The columns represent samples and rows represent the 19 subpathways. The red color indicates 
high subpathway activity, whereas the green color indicates low activity. (D) The Kaplan-Meier analyses of clinical outcome between 
samples from four risk clusters (in Figure 3C), and P-value is calculated by the log-rank test.
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entire pathway-based results. Finally, we respectively 
identified two prognostic signatures for LUAD and LUSC 
based on the subpathway activities, and verified the 
predictive power of these signatures using testing set.

LncRNAs functioned as competitors of mRNAs 
by binding miRNAs, thereby competitively regulating 
mRNA expression levels [5, 6, 23]. The sponge features of 
lncRNAs could competitively regulate genes in biological 
pathway and thus played critical roles in tumor initiation 
and progression [23]. PTENP1 was a PTEN pseudogene 
and contained seed sequences for PTEN-targeting 
miRNAs [24, 25]. The study of Wang et al. found that 
lincRNA-RoR played roles as miRNA sponge to regulate 
Oct4 and Sox2, and then mediated differentiation 
processes [26]. Moreover, as an oncogenic lncRNA in 
multiple cancers, H19 functioned as miRNA sponge to 
lead to the de-repression of ZEB1 and ZEB2 genes in 
the mesenchymal cells [23]. In this study, the lncRNA-
gene interactions were obtained from our previous 
study [20], which considered both sequence-based and 

expression-based associations. In the sequence-based 
associations, the lncRNA-gene pairs were evaluated using 
both hypergeometric test P-value and Jaccard Coefficient 
indexes. In the expression-based associations, the 
lncRNA-gene pairs which were co-expressed in at least 3 
of 28 RNA-seq data sets were required, which were also 
utilized in other studies [27, 28].

The gene components of distinct signatures usually 
displayed no significant overlap, even though these 
signatures exhibited efficient power [29]. Therefore, it 
was necessary to perform the function-level analyses for 
interpreting tumor biological mechanism. In addition, 
concentrating more attention on subpathways rather than 
entire pathways might be more biologically meaningful. 
Recently, our team has performed a series of researches 
to explore the applications of subpathways, including 
disease etiology, drug action and miRNA regulation 
[17, 18, 30]. In this study, we performed a comparison 
between subpathway-based and entire pathway-based 
results. As shown in Figure 2B, subpathways exhibited 

Figure 4: The prognostic analyses based on subpathway activities in LUSC. (A) The comparison between 9 prognostic 
subpathways identified by univariate Cox based on subpathway activities and the subpathways identified by enrichment analyses with 
different adjusted P-value cut-offs (0.01 and 0.001). The comparative P-values are calculated using the hypergeometric test. (B) The 
subpathway id and entire pathway name of these 9 prognostic subpathways. (C) K-mean clustering representation based on subpathway 
activities using the testing set. The columns represent samples and rows represent the 9 subpathways. The red color indicates high 
subpathway activity, whereas the green color indicates low activity. (D) The Kaplan-Meier analyses of clinical outcome between samples 
from two risk clusters (in Figure 4C), and P-value is calculated by the log-rank test.
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more informative than entire pathways to distinguish 
tumor and normal samples. Different subpathways 
derived from the same pathway gave opposite trends in 
tumor and normal samples; the subpath_8 from the path: 
05215 (Prostate cancer) displayed high activities in PRAD 
normal samples, whereas the entire pathway and other 
subpathways displayed high activities in PRAD tumor 
samples. The high-resolution subpathway activities could 
provide novel insights into tumor molecular mechanisms.

As an important application, we respectively 
identified prognostic subpathways for LUAD and 
LUSC based on the subpathway activities. For LUAD, 
the subpathways derived from Cell cycle, Oocyte 
meiosis, Pathways in cancer, Leukocyte transendothelial 
migration, and Natural killer cell mediated cytotoxicity 
were identified. And different activity patterns within 
these subpathways were observed in four LUAD clusters. 
The samples in cluster 2 displayed high activities for cell 
cycle subpathways and low activities for immune-related 
subpathways, whereas the samples in cluster 4 displayed 
opposite activity patterns with cluster 2. Also, the survival 
analyses showed that there was significantly difference 
in survival time between these clusters. For LUSC, 
9 subpathways derived from Neurotrophin signaling 
pathway, Folate biosynthesis, and Cytokine-cytokine 
receptor interaction were identified, and also displayed 
predictive power, which indicated that these subpathways 
might be involved in LUSC formation and progression.

The data sets from TCGA database simultaneously 
detected the expression levels of genes and lncRNAs, 
and provided reliable resource to perform integrated 
analysis. Based on the subpathway activities calculated, 
we performed a series of applications including the 
characterization across tumor types, the characterization 
between normal and tumor samples, and tumor patient’s 
prognoses. This integrated strategy provided a framework 
for inferring subpathway activities, which could be applied 
on other human complicated diseases.

MATERIALS AND METHODS

Data sets from TCGA

We obtained RNA level 3 expression data of five 
tumor types from The Cancer Genome Atlas (TCGA) 
database (version April, 2015) through the Data portal. 
These five tumor types included bladder urothelial 
carcinoma (BLCA), breast invasive carcinoma (BRCA), 
lung adenocarcinoma (LUAD), lung squamous carcinoma 
(LUSC), and prostate adenocarcinoma (PRAD). For 
each tumor type, we extracted the expression data sets 
of lncRNAs and genes from the raw read counts of each 
exon, which were obtained from exon quantification 
files (RNASeqV2). Then, we recalculated the RPKM 
expression values of lncRNAs and mRNAs for each 
sample, and the detailed calculation process was described 

in our previous study [31]. Both tumor and normal samples 
were considered in the tumor analyses. For BRCA, LUAD 
and LUSC types, we also obtained the clinical information 
for patient prognosis analyses.

LncRNA-gene regulations

The competitively lncRNA-gene regulations 
were obtained from our previous study in which we 
reconstructed lncRNA-mediated pathway graphs [20]. 
In brief, we firstly predicted the miRNA-lncRNA and 
miRNA-gene interactions based on six miRNA target 
prediction methods and the Argonaute-CLIP data. And, the 
lncRNA-gene pairs that shared large number of miRNAs 
using two indexes (hypergeometric P-value < 0.05 and 
rank of Jaccard Coefficient in top 20%) were identified 
as candidate lncRNA-gene regulations. Then, the co-
expression relationship between candidate lncRNA-gene 
pairs in 28 RNA-seq data sets were further considered. 
The details were described in the study of Shi et al. 
[20]. Finally, we got 6722 non-redundant lncRNA-gene 
regulations including 798 lncRNAs and 1527 genes for 
further analyses.

Reconstruction of subpathway graphs by 
embedding lncRNAs

We reconstructed subpathway graphs by embedding 
lncRNA components if lncRNAs had regulatory 
relationships with genes within the subpathway. The 
detailed processes were described below. First, we 
extracted all the biological pathways from KEGG 
database, and converted them into undirected graphs 
using our previously developed R package [16]. In these 
pathway graphs, nodes represent genes and edges between 
two nodes represent that these genes interacted with each 
other in this pathway. Then, we used K-clique method to 
identify subpathways based on the shortest paths among 
genes in each pathway. In this process, the distance 
between any two gene nodes within subpathway was no 
larger than k, and the default value (k=3) was used. Finally, 
we determined whether one lncRNA was embedded in 
the subpathway based on competitively lncRNA-gene 
regulations obtained from our previous study [20]. And 
the lncRNAs which regulated at least one gene within 
the subpathway were embedded into this subpathway. 
To reduce bias of small scale, subpathway graphs with 
less than two lncRNA or three genes were not considered 
in further analyses. And the reconstructed subpathway 
graphs, which incorporated both lncRNA and gene nodes, 
were used for calculating subpathway activities.

Calculation of subpathway activities

The activity for each subpathway was calculated by 
simultaneously considering the expression levels of genes 
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and lncRNAs within this subpathway using modified 
FAIME method [12]. First, we merged the gene and 
lncRNA expression profiles to form a matrix with genes 
and lncRNAs as rows and common samples as columns. 
Then, we sorted all expressed genes and lncRNAs (Ng c+ ln )  
of each sample in an ascending order according to their 
expression levels, and then weights (w) of the ordered 
genes and lncRNAs (wg c s+ln , ) were calculated as follows:
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Hypergeometric enrichment method

For convenience, most researchers treated the 
gene elements within pathway graphs as independent 
and applied hypergeometric test to pathway analyses. 
For a comparison of prognostic subpathways, we also 
utilized hypergeometric enrichment analyses to perform 
subpathway identification. In detail, we used univariate 
Cox method to identify prognostic genes and lncRNAs 
(P-value < 0.05) based on TCGA training sets. Then, the 
significance P-value for each reconstructed subpathway 
graph was evaluated as follows:
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where mg (m cln ) was the number of genes (lncRNAs) in 
entire genome (lncRNAome), of which tg (t cln ) genes 
(lncRNAs) were involved in the reconstructed subpathway 
graph, and the number of prognostic genes (lncRNAs) was 
ng (n cln ), of which rg  (r cln ) genes (lncRNAs) were also 
involved in the same subpathway. The corrected P-values 
were finally calculated using the Benjamini-Hochberg 
method.

Survival analyses

In the survival analyses, we first used K-means 
clustering method to divide tumor samples into different 
risk groups. Then, Kaplan-Meier (K-M) analyses 
were performed to compare the survival differences 
of the patients in these risk groups. The significance of 
differences between groups was finally tested using the 
log-rank test. Moreover, prognostic power of subpathway 
signatures were also evaluated using univariate Cox 
analyses. In all these survival analyses, P-value < 0.05 was 
considered as significant.

Clustering analyses

We performed hierarchical clustering analyses for 
subpathway activities across 2140 tumor samples of five 
tumor types. The correlation (uncentered) and complete 
linkage methods were selected to perform the analyses 
using Cluster3 software. Finally, the Java TreeView 
imaging software was used to display the clustering 
results.
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