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ABSTRACT

Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and 
their downstream targets is frequently implicated in the pathogenesis of human 
cancers, however, the clinical benefit of causal miRNA-target interactions has been 
seldom studied. Here, we proposed a computational method to optimize prognosis-
related key miRNA-target interactions by combining transcriptome and clinical data 
from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 
prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 
their targets. Interestingly, these key target genes are specifically involved in tumor 
progression-related functions, such as ‘cell adhesion’ and ‘cell migration’. Furthermore, 
they are most significantly correlated with ‘tissue invasion and metastasis’, a hallmark 
of metastasis, in ten distinct types of cancer through the hallmark analysis. These 
results implicated that the prognosis-related key miRNA-target interactions were 
highly associated with cancer metastasis. Finally, we observed that the combination 
of these key miRNA-target interactions allowed to distinguish patients with good 
prognosis from those with poor prognosis both in most TCGA cancer types and 
independent validation sets, highlighting their roles in cancer metastasis. We provided 
a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.
edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-
target interactions across 16 cancer types.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small non-
protein-coding RNAs [1]. MiRNAs, as important 
regulators of tumorigenesis [2, 3], are involved in 
many cancer-related processes such as cell apoptosis, 
proliferation and metastasis. For example, miR-7 
regulates glioblastoma (GBM) cell invasion by targeting 
focal adhesion kinase [4]. Furthermore, these miRNAs 

may contribute to tumor progression primarily through 
inhibiting the expression of some key downstream target 
genes [4–6]. MiR-155 reduces the aggressiveness of 
tumor cell dissemination by directly suppressing the 
expression of TCF4 which is a regulator of epithelial-
to-mesenchymal transition (EMT) [5]. MiR-155 can 
regulate the proliferation and invasion of clear cell renal 
cell carcinoma cells by targeting E2F2 [6]. It underscores 
the important role of key miRNA-target interactions in the 
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molecular mechanisms of how dysfunctional miRNAs are 
involved in cancer prognosis [7].

Also, advances in small non-coding RNA 
transcriptome have generated many candidate miRNA 
markers with potential clinical value in diverse 
malignancies [8–11]. For example, miR-1 acts as a 
prognostic marker in prostate cancer by inhibiting cell 
proliferation and motility [11]. However, clinical benefit 
of the causal miRNA-target interactions remains poorly 
characterized. Some progress in this area has been made, 
for example, epigenetic silencing of the tumor suppressor 
miR-124a confers a poor prognosis in acute lymphoblastic 
leukemia by regulating CDK6 expression [12]. The 
importance of these miRNA-target interactions in cancer 
prognosis is widely accepted, but a systematic approach 
to identify prognosis-related miRNA-target interactions is 
lacking.

In this study, we propose a computational method 
to optimize prognosis-related key miRNA-target 
interactions by integrating miRNA, mRNA expression 
profiles and clinical information. We applied our method 
to 16 TCGA cancer types and identified a total of 1,956 
prognosis-related key miRNA-target interactions 
consisting of 112 miRNAs and 1,443 target genes. 
We found that these prognosis-related key miRNA-
target interactions were specifically involved in tumor 
progression-related functions, such as ‘cell adhesion’ 
and ‘cell migration’. Hallmark analysis revealed that a 
hallmark of metastasis ‘tissue invasion and metastasis’ 
was most significantly influenced by key target genes 
in ten distinct types of cancer. In most TCGA cancer 
types, the combination of key miRNA-target interactions 
could act as an independent cancer-specific signature 
associated with overall survival. We provided a free 
online database named miRNATarget for optimizing 
prognosis-related key miRNA-target interactions across 
16 types of cancer.

RESULT

Optimizing prognosis-related key miRNA-target 
interactions

Given that miRNAs are associated with cancer 
prognosis and key miRNA targets are functionally 
important in cancer prognosis, we asked whether 
the causal miRNA-target interactions could serve as 
prognostic indicators in human cancers. To address this 
question, we selected 5,353 patients involving 16 different 
cancer types that had expression of miRNAs and mRNAs 
and survival data from TCGA (Table 1). We developed 
a method and applied it to the 16 TCGA cancer types to 
identify prognosis-related key miRNA-target interactions 
(Figure 1, see Method section for further details).

As a result, we obtained a total of 1,956 prognosis-
related key miRNA-target interactions between 112 

miRNAs and 1,443 target genes. The size of the 
prognosis-related key miRNA-target interactions ranged 
from 3 to 580, with an average of 124 interactions per 
cancer type (Table 2 and Figure 2A). As an example, 
528 prognosis-related key miRNA-target interactions 
involving 51 miRNAs and 467 target genes were 
observed in GBM. As illustrated by two key miRNA-
target interactions, miR-155:MXI1 (P-value=0.001, log-
rank test, Supplementary Figure 1A) and miR-21:DRD1 
(P-value=0.006, Supplementary Figure 1B), it seems 
that key regulatory pairs are responsible for clinical 
prognosis. In fact, previous studies have reported that 
miR-155, a GBM progression-related miRNA [13], can 
promote glioma cell proliferation by regulating MXI1 
[14, 15]. MiR-21 can promote glioma invasion [16], and 
its target DRD1 is related to cancer metastasis [17]. In 
KIRC, the key miRNA-target interactions, such as miR-
29a:EDNRB and miR-17:MFAP3L, are highly predictive 
of clinical outcome (P-value<0.05, Supplementary 
Figure 1C and Supplementary Figure 1D). Based on 
these interactions, a prognosis-related key miRNA-
target network was constructed (Figure 2A). Next, the 
degree distribution of the prognosis-related key miRNA-
target network follows a power-law distribution with a 
slope of −1.3 and R2=0.79 (P-value=2.9e-15, Figure 
2B), implying that the network is not random but is 
characterized by a core set of organizing principles in its 
structure that distinguishes it from randomly generated 
networks [18].

Hubs are of general interest as they represent 
the most influential components of a network and, 
accordingly, tend to be essential. Hub miRNAs are 
commonly defined as the top 10% of the nodes by 
degree [19] and regulate ≥10 target genes. The analysis 
identified a total of 11 hub miRNAs including miR-20a, 
miR-221, miR-17, miR-137, miR-21, miR-130b, miR-
15b, miR-9, miR-106b, miR-93 and miR-155 shared 
by at least two cancer types (Figure 2C). The top hub 
miRNAs (such as miR-17, miR-21, miR-130b and miR-
15b) have been reported to be associated with tumor cell 
migration, invasion and metastasis (such as in glioma, 
breast cancer, ovarian carcinoma and endometrial 
cancer) [16, 20–23]. A sub-network composed of the 
top four hub miRNAs and their 224 key target genes 
was shown in Figure 2A (right box). There are 14 
genes (including ZNF704, AKAP6, EXPH5, MFAP3L, 
MTURN, IPO7, TACC1, PTGER3, ZNF296, IGF1, 
WWC1, CGNL1, SH3BGRL2 and FAM54B) regulated by 
at least two miRNAs in the sub-network, many of which 
are involved in tumor progression and prognosis [24–
29]. For example, activation of MFAP3L can promote 
colorectal cancer cell invasion and metastasis [30]. 
The gene TACC1 is associated with endocrine therapy 
resistance in breast cancer [24]. Insulin-like growth 
factor-1 (IGF1) is correlated with proliferation and 
migration of hepatocellular carcinoma [29].
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Prognosis-related key miRNA-target interactions 
are responsible for cancer metastasis

GO term enrichment analysis reveals the association 
between prognosis-related key miRNA-target 
interactions and tumor progression-related functions

To explore the function of prognosis-related key 
miRNA-target interactions in cancer, we investigated 
the biological functions of their key targets. In a Cox 
regression model, a positive regression coefficient means 
a high risk of recurrence as expression ratio of miRNA-
target increases, whereas a negative coefficient indicates 
the opposite effect. We thus categorized key miRNA-target 
interactions into two groups according to the regression 
coefficients derived from the Cox regression analysis: the 
high-risk group with positive regression coefficients and 
the low-risk group with negative regression coefficients. 
To uncover the biological function of key miRNA-
target interactions, we performed Gene Ontology (GO) 
enrichment analysis for key targets of miRNAs in the 
high-risk and low-risk group using DAVID [31] with a 
false discovery rate (FDR) of 0.05 in each cancer type, 
respectively. Take GBM for example, GO enrichment 
analysis revealed that key targets of miRNAs in the low-
risk group were mostly enriched in ‘cell cycle’, ‘cell 

communication’ and ‘MAPK cascade’, those in the high-
risk group are mostly enriched in ‘cell adhesion’, ‘cell 
motility’, ‘interneuron migration’ and ‘synaptic plasticity’ 
(Figure 3A). While in KIRC, key targets of miRNAs in 
the low-risk group were mostly enriched in ‘cell death’, 
‘cell proliferation’ and ‘vasculogenesis’, those in the high-
risk group were mostly enriched in ‘cell adhesion’, ‘cell 
motion’ and ‘epithelial cell migration’ (Supplementary 
Figure 2A), which is consistent with that KIRC is a typical 
metabolic disease [32].

We further used GO enrichment analysis to check 
whether key targets of miRNAs might be biased toward 
particular biological functions relative to their predicted 
targets. In GBM and KIRC, a set of distinct biological 
functions were found to be enriched by key targets 
of miRNAs. For instance, except for some common 
functions such as ‘protein localization and transport’, 
key targets of miR-21 in GBM were specifically related 
to ‘cerebral cortex GABAergic interneuron migration’, 
‘interneuron migration from the subpallium to the cortex’ 
and ‘substrate-independent telencephalic tangential 
interneuron migration’. Key targets of miR-155 in GBM 
were specifically related to ‘interneuron migration from 
the subpallium to the cortex’, ‘cerebral cortex GABAergic 
interneuron migration’ and ‘telencephalon and forebrain 
cell migration’ (Figure 3B). Previous studies reported 

Table 1: The detail information of patients in 16 cancer types

Cancer type
Gene 

expression 
technique

Gene 
expression 

tumor 
samples

Gene 
expression 

normal 
samples

miRNA 
expression 
technique

miRNA 
expression 

tumor 
samples

miRNA 
expression 

normal 
samples

Clinical data 
samples

BLCA RNA-seq 241 19 miRNA-seq 252 19 195

BRCA RNA-seq 1095 113 miRNA-seq 755 87 734

CESC RNA-seq 304 3 miRNA-seq 307 3 299

COAD RNA-seq 261 41 miRNA-seq 469 8 231

ESCA RNA-seq 184 11 miRNA-seq 186 13 182

GBM microarry 395 10 microarry 436 10 372

HNSC RNA-seq 450 43 miRNA-seq 419 43 405

KIRC RNA-seq 518 72 miRNA-seq 236 71 219

KIRP RNA-seq 172 30 miRNA-seq 198 32 153

LIHC RNA-seq 371 50 miRNA-seq 372 50 357

LUAD RNA-seq 488 58 miRNA-seq 434 46 368

LUSC RNA-seq 490 50 miRNA-seq 331 45 239

OV microarry 568 8 microarry 568 8 555

PAAD RNA-seq 178 4 miRNA-seq 178 4 178

STAD RNA-seq 415 35 miRNA-seq 399 41 364

THCA RNA-seq 505 59 miRNA-seq 506 59 502
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that the active migration of tumor cells is crucial for 
cancer metastasis and progression [33]. It was consistent 
that oncogenic miR-21 and miR-155 involved in the 
progression and invasion of GBM [16, 34], and a set of 
their common key targets such as LHX6 [35], DRD1 [17], 
NEUROG1 [36] and RAB27B [37] were also associated 
with tumor progression. Similarly, in KIRC we observed 

that key targets of miR-15b were specifically enriched 
in ‘regulation of epithelial cell migration’, ‘response 
to hormone stimulus’ and ‘tissue morphogenesis’. Key 
targets of miR-204 in KIRC were specifically enriched in 
‘apoptosis’ and ‘programmed cell death’ (Supplementary 
Figure 2B), consistent with inhibition of renal clear cell 
carcinoma tumor growth [38].

Figure 1: The workflow to identify prognosis-related key miRNA-target interactions in a specific condition. Step 1: 
Identifying negative miRNA-target interactions between differentially expressed miRNAs in miR2Disease and differentially expressed 
mRNAs. Step 2: Optimizing miRNA-target interactions which are correlated with survival using Cox proportional hazard regression 
model. Furthermore, for a miRNA-target interaction, patients with specific cancer types were divided into two subgroups on the basis of 
reverse expression pattern of the miRNA and its target. Finally, a miRNA-target interaction with log-rank test P-value<0.05 was considered 
as a prognosis-related key miRNA-target interaction (see Method section for details). The coloured circles and squares represent the 
differentially expressed miRNAs and genes, respectively. Red symbols correspond to upregulation, whereas green symbols indicate 
downregulation.



Oncotarget109526www.impactjournals.com/oncotarget

Hallmark analysis reveals a significant influence of 
prognosis-related key miRNA-target interactions on 
cancer metastasis

Furthermore, hallmarks of cancer were proposed 
that cancer cells acquire a number of biological 
characteristics during the initiation and progression of 

tumors [39]. We used these hallmarks to investigate 
whether key target genes of miRNAs are associated 
with biological capabilities of tumor cells. Hallmark-
associated KEGG pathways were identified and random 
walk–with–restart algorithm over a protein interaction 
network was used to estimate the impact of prognosis-

Figure 2: The layout of the miRNA-target network and its structure features. (A). The left panel shows the global miRNA-
target interaction network, and the right panel shows a sub-network including four miRNAs (miR-17, miR-15b, miR-21 and miR-130b) and 
their key target genes. Orange nodes mark miRNAs and green nodes represent their target genes. An edge represents a negative regulation 
from miRNA to one of its targets. (B). The degree distribution of the miRNA-target interaction network. (C). The graph indicating the 
number of cancer types in which the hub miRNA is detected.

Table 2: Prognosis-related key miRNA-target interactions in 16 cancer types

Cancer 
type BLCA BRCA CESC CO 

AD
ES 
CA GBM HNSC KI 

RC
KI 
RP LIHC LU 

AD LUSC OV PA AD STAD THCA

miRNA-
target 203 93 31 4 12 528 115 580 181 71 51 6 84 3 7 10

miRNA 21 23 17 3 9 51 9 65 34 17 19 6 37 2 4 8

Targets 109 85 23 3 10 467 114 424 163 65 41 6 59 3 7 9
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related key miRNA targets on hallmark-associated KEGG 
pathways (for details, see Methods) for each cancer type. 
We performed 1,000 random permutations to calculate 
the statistical significance of the association between 
prognosis-related key miRNA-target interactions and a 
specific cancer hallmark. In GBM, the top three hallmarks 
of cancer significantly influenced by key miRNA targets 

are ‘tissue invasion and metastasis’, ‘self sufficiency in 
growth signals’, and ‘sustained angiogenesis’ (Figure 
3C). Analogously, in KIRC, the top three hallmarks of 
cancer are ‘sustained angiogenesis’, ‘tissue invasion 
and metastasis’ and ‘insensitivity to antigrowth signal’ 
(Supplementary Figure 2C). It is of interest to note that a 
hallmark of metastasis ‘tissue invasion and metastasis’ is 

Figure 3: The function explorations of prognosis-related key miRNA-target interactions selected from GBM. (A). 
Map of enriched functions for genes in prognosis-related key miRNA-target interactions based on DAVID output. (B). Overlap between 
the DAVID output detected by key targets (left, purple) and all targets (right) of miR-21 and miR-155 in GBM. The labels of top most 
significant GO terms are showed. (C). The impact of prognosis-related key miRNA-target interactions on 10 hallmarks of cancer. Asterisks 
represent significant levels at P-value<0.05 based on permutation tests. (D). A hallmark of metastasis ‘tissue invasion and metastasis’ as 
most frequently significantly influenced by key miRNA targets across the 16 cancer types are sorted vertically according to the number 
of cancer types. (E). Bar graphs showing the number of selected miRNAs and other cancer-related miRNAs classified into GBM-related 
miRNAs (left panel), GBM metastasis-related miRNAs (right panel) or not, respectively.
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significantly influenced by prognosis-related key miRNA-
target interactions in ten distinct types of cancer (Figure 
3D, Supplementary Figure 3). These findings implicate 
that the prognosis-related key miRNA-target interactions 
are associated with cancer metastasis.
A survey of the published literature supports the 
association of prognosis-related key miRNA-target 
interactions with cancer metastasis

On the basis of these results, we further verified 
the association between prognosis-related key miRNA-
target interactions and cancer metastasis. By searching the 
PubMed database, we found that key miRNAs (42 out of 
51; 82.4%) in GBM were significantly associated with the 
risk of GBM when compared with other disease-associated 
miRNAs (45 out of 80; 56.3%) from miR2Disease (P-
value=0.004, chi-square test). Importantly, we confirmed 
that key miRNAs (34 out of 51; 66.7%) were significantly 
associated with metastasis of GBM when compared with 
other disease-associated miRNAs (32 out of 80; 40.0%; P-
value=0.005, chi-square test) (Figure 3E). It may suggest 
the important role of key miRNAs in cancer metastasis, 
since similar results were also observed in KIRC 
(Supplementary Figure 2D).
The clinical benefit of the combination of key miRNA-
target interactions supports their function in cancer 
metastasis

We next hypothesized that cancer metastasis is 
associated with poor prognosis [41–43]. We investigated 

the impact of the combination of these key miRNA-
target interactions on cancer prognosis in support of 
their function in cancer metastasis. As an example, in 
OV, 84 prognosis-related key miRNA-target interactions 
involving 37 miRNAs and 59 targets were used to 
cluster 555 OV patients into two groups on the basis 
of expression ratios of miRNAs to their targets using 
k-means clustering. We observed that the combination 
of key miRNA-target interactions allowed to distinguish 
OV patients with good prognosis from those with poor 
prognosis (P-value=1.02e-5, log-rank test, Figure 4A). 
Repeating this process for each cancer type, we observed 
that the combination of key miRNA-target interactions 
could be highly predictive of clinical outcome in most 
TCGA cancer types, except for LUSC and ESCA (Figure 
4A). Additionally, three additional data sets containing 
mRNA expression, miRNA expression and clinical 
information of 60 GBM samples (CGCA), 65 COAD 
samples (GSE29623) and 32 LUAD samples (GSE63805 
and GSE63459) were used to further confirm the clinical 
benefit of key miRNA-target interactions. A significant 
difference was observed in overall survival between two 
groups of patients (P-value=0.02 for GBM with a hazard 
ratio of 2.24, P-value=0.02 for COAD with a hazard ratio 
of 2.64 and P-value=0.02 for LUAD with a hazard ratio of 
8.65, log-rank test, Figure 4A), which showed comparable 
performance on the validation set of independent tumors. 
Moreover, patients with short progression-free survival 
(PFS) or with distant metastasis (TNM stage) or with poor 

Figure 4: Clinical significance of the combination of key miRNA-target interactions for 16 human cancers. (A). 
K-means clustering of patients with a given cancer type, according to expression ratios of miRNAs to their target genes is performed. The 
Kaplan-Meier plots are used to visualize the survival probabilities for two groups of patients. The differences between the two curves are 
determined by log-rank test. GBM, COAD and LUAD have an additional validation set. (B). Radar diagrams are used to visualize the –log 
10-transformation P-values from log-rank tests of key miRNA-target interactions, key miRNAs and predicted miRNA-target interactions 
in GBM, OV and 16 cancer types.
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functional status (karnofsky performance status score 
(KPS) <60) are more likely to undergo cancer metastasis. 
Thus, we divided 372 GBM patients into two groups 
according to expression ratio of miRNAs to their key 
targets and performed significance analysis. The results 
showed significant difference between two groups in terms 
of PFS (P-value=0.016, log-rank test, Supplementary 
Figure 4A) and KPS (P-value=0.024, Fisher’s exact test, 
Supplementary Figure 4B). The percentage of GBM 
patients with (M1) or without (M0) distant metastases 
showed extremely close to significance (P-value=0.077, 
Fisher’s exact test, Supplementary Figure 4C).

Additionally, in 93.8% (15 out of 16) of cancer 
types, key miRNA-target interactions could improve the 
significance of between-group survival differences relative 
to miRNAs alone and general miRNA-target interactions 
(Figure 4B). As in GBM and OV, we found that miRNAs 
alone or general miRNA-target interactions could not help 
to distinguish patients with good prognosis from those with 
poor prognosis (P-value>0.05, log-rank test, Figure 4B). 
Furthermore, for each type of cancer, a multivariable Cox 
proportional hazards regression model was used to assess 
the association between the combination of key miRNA-
target interactions and overall survival after adjusting 
for appropriate covariates: gender and age. Most cancer 
types (11 out of 16; 68.8%) showed that key miRNA-

target interactions remained an independent prognostic 
signature for survival (Supplementary Figure 4D). These 
results highlight the important roles of prognosis-related 
key miRNA-target interactions in cancer metastasis.

MiRNAs regulate their key targets in a cancer-
specific manner

Focusing on prognosis-related key miRNA-targets 
in 16 cancer types, we examined the global patterns of 
key miRNAs, target genes and miRNA-target interactions 
across different cancer types. We found that a small 
number of key miRNAs were shared by several cancer 
types. However, we noted that miRNAs tended to 
regulate distinct key target genes in different cancer types, 
revealing highly cancer-specific miRNA-target regulation 
(Figure 5A, Supplementary Table 1, Supplementary Table 
2 and Supplementary Table 3). For example, although 
GBM shared 56.9% (29 out of 51) key miRNAs with 
KIRC, they had only one common key miRNA-target 
interaction. The KIRP shared 70.6% (24 out of 34) key 
miRNAs with KIRC [40], but they had only 6 common 
key miRNA-target interactions. It indicates distinct 
underlying pathogenesis for different cancer types and 
even for two types of kidney cancer, which is consistent 
with previous observations about KIRC and KIRP [32].

Figure 5: MiRNAs regulated their key targets in a cancer-specific manner. (A). The number of common miRNAs, key miRNA 
target genes and key miRNA-target interactions shared among all of 16 cancer types. Bar graph indicates –log 10-transformation P-
values from multivariable Cox proportional hazards regression models which are used to examine whether key miRNA-target interactions 
identified in GBM (B), KIRC (C) or LIHC (D) could be of clinical benefit for other cancer types.
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Then, we sought to examine whether key miRNA-
target interactions identified in a specific cancer type 
could be of clinical benefit for other cancer types. We 
used these key miRNA-target interactions identified in a 
given cancer type to cluster patients with another cancer 
type. A multivariable Cox proportional hazards regression 
model was used to adjust for gender and age. We found 
that in most TCGA cancer types (11 out of 16; 68.8%) 
key miRNA-target interactions did not provide prognostic 
value in more than one other cancer type (Supplementary 
Figure 5). For example, the combination of key miRNA-
target interactions identified in GBM could not have 
an effect on clinical outcome in any other cancer type 
(Figure 5B). Besides, the combined key miRNA-target 
interactions identified in KIRC is significantly associated 
with survival in patients with KIRP, another type of kidney 
cancer, and GBM (Figure 5C).

Interestingly, we found that the combination of 
key miRNA-target interactions identified in malignant 
adenocarcinomas including LUAD, STAD and COAD 
could be an independent predictor for overall survival 
of another adenocarcinoma PAAD patients, individually 
(Supplementary Figure 5). Notably, key miRNA-target 
interactions identified in LUAD which originated from 
lung tissue, could not be an independent predictor for 
overall survival of LUSC from the same tissue (Figure 
5D). It is consistent with a previous study in which 
transcriptome-based pan-cancer clustering showed that 
87.7% of LUSC and 99.7% of HNSC were clustered 
together, however, LUAD and a subset of BRCA were 
clustered together [41]. These results suggest that 

miRNAs contribute to cancer prognosis and metastasis by 
regulating cancer-specific targets.

MiRNATarget: a database of prognosis-related 
key miRNA-target interactions

We developed a free online database named 
miRNATarget (http://biocc.hrbmu.edu.cn/miRNATar/) 
that provides tools for accessing prognosis-related key 
miRNA-target interactions. These key miRNA-target 
interactions have a crucial role in cancer metastasis. The 
database provided a total of 1,956 prognosis-related key 
miRNA-target interactions involving 112 miRNAs and 
1,443 target genes across 16 types of human cancer (Figure 
6A). The miRNATarget allows users to retrieve data on 
the basis of cancer type, miRNA name, or Entrez gene ID 
of interest, and a report page gives a quick overview of 
the prognosis-related key miRNA-target interactions, the 
associated cancer types and Kaplan-Meier survival curves 
(Figure 6B). Search results can be downloaded as a tab-
delimited file (Figure 6C).

DISCUSSION

MiRNAs prove to be associated with cancer 
progression and prognosis by regulating key target 
genes. Identifying prognosis-related key miRNA-target 
interactions helps to prioritize which genes are their 
downstream key targets and to further understand the 
potential molecular mechanisms of how miRNAs are 
involved in cancer prognosis. In this study, we integrated 

Figure 6: Schematic illustration of the miRNATarget database. The home page (A), “Search” module (B) and “Download” 
module (C) of the miRNATarget are provided.

http://biocc.hrbmu.edu.cn/miRNATar/
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miRNA and mRNA expression profiles, and clinical 
information to identify prognosis-related key miRNA-
target interactions across 16 different cancer types.

As a result, 1,956 prognosis-related key miRNA-
target interactions consisting of 112 miRNAs and 1,443 
target genes were identified in 16 types of cancer. To 
explore the function of prognosis-related key miRNA-
target interactions in cancer, GO biological process and 
hallmark analysis of key miRNA targets were performed. 
These key target genes are specifically involved in tumor 
progression-related functions, such as ‘cell adhesion’ 
and ‘cell migration’. For example, our data demonstrate 
that miR-21 and miR-155 are related with progression 
and invasion of GBM by regulating marker genes of 
cancer metastasis, such as LHX6, DRD1, NEUROG1 
and RAB27B, and thereby contributing to GBM patient 
survival. A hallmark of metastasis ‘tissue invasion and 
metastasis’ is significantly influenced by key miRNA 
targets in ten distinct types of cancer. The results appear 
to be consistent with the ideas of several studies that 
cancer metastasis is related to shorter survival and poor 
prognosis [42–44]. Moreover, by searching the PubMed 
database, key miRNAs in GBM (or KIRC) were found 
to be significantly associated with metastasis of GBM 
(or KIRC) when compared with other disease-associated 
miRNAs. These results imply that prognosis-related key 
miRNA-target interactions contribute to cancer metastasis.

By comparing key miRNA-target interactions 
across multiple cancer types, we observed that key 
miRNA-target interactions were markedly cancer-type 
specific, with only a small number of miRNAs shared 
across several cancer types. This finding highlights that a 
miRNA may be involved in cancer metastasis of several 
cancer types, but it works by regulating different targets 
in different cancer types. Interestingly, we found that 
key miRNA-target interactions identified in malignant 
adenocarcinomas could be an independent predictor for 
overall survival of another adenocarcinoma, indicating 
their adenocarcinoma cell features [45]. For example, 
key miRNA-target interactions identified in LUAD are 
significantly associated with survival in PAAD patients. 
However, they would not have an effect on clinical 
outcome in patients with squamous cancer LUSC even 
though it originated from the same tissue type. In addition, 
there are more common miRNAs between two types of 
kidney cancer (KIRC and KIRP) than other cancer types. 
It supports the common traits behind cancers that some 
chemotherapeutic drugs are able to treat several types of 
cancer, such as cisplatin [46]. However, there are very few 
common key miRNA-target interactions between KIRC 
and KIRP, indicating distinct underlying pathogenesis for 
these two types of kidney cancer [32]. More importantly, 
cancer type-specific key miRNA-target signatures may 
provide a robust approach towards personalized medicine 
in cancer prognosis and treatment and reduce the incidence 
of side effects.

In summary, we present a computational approach 
for optimizing prognosis-related key miRNA-target 
interactions by combining large numbers of mRNA and 
miRNA expression profiles and clinical information from 
5,353 patients across 16 TCGA cancer types. The results 
highlighted that prognosis-related key miRNA-target 
interactions were highly associated with cancer metastasis. 
We provided a free online database named miRNATarget 
for optimizing prognosis-related key miRNA-target 
interactions across 16 types of cancer.

MATERIALS AND METHODS

Data sources

MiRNA-seq (n = 6046), RNA-seq (n = 5672) and 
clinical data (n=5042) of 14 cancer types, including 
bladder urothelial carcinoma (BLCA), breast invasive 
carcinoma (BRCA), cervical squamous cell carcinoma 
and endocervical adenocarcinoma (CESC), colon 
adenocarcinoma (COAD), esophageal carcinoma (ESCA), 
head and neck squamous cell carcinoma (HNSC), kidney 
renal clear cell carcinoma (KIRC), kidney renal papillary 
cell carcinoma (KIRP), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD), lung squamous 
cell carcinoma (LUSC), pancreatic adenocarcinoma 
(PAAD), stomach adenocarcinoma (STAD) and thyroid 
carcinoma (THCA), were downloaded from The 
Cancer Genome Atlas project (TCGA) (Table 1). For 
glioblastoma multiforme (GBM) and ovarian serous 
cystadenocarcinoma (OV), the mRNA and miRNA 
microarray data and clinical information were obtained 
from the TCGA project. Detailed sample information is 
described in Table 1.

Identifying differentially expressed genes and 
miRNAs

For sequencing data (RNA-seq and miRNA-seq), 
genes with at least 10 reads in more than 50% samples 
and miRNAs with at least 2 reads in more than 50% 
samples were retained for further analyses. The log-
transformed RPKM (read per kilobase of exon per million 
mapped reads) and log-transformed RPM values (reads 
per million miRNA mapped) were used to calculate 
the mRNA and miRNA levels within each cancer type, 
respectively. Differentially expressed miRNAs and 
mRNAs were identified using DESeq2 [47] (FDR<0.05, 
fold change>1.2). For microarray data, genes or miRNAs 
with missing values in more than 30% sample were 
removed from the analysis. Microarray data processing 
and normalization utilized Robust Multiarray Analysis 
(RMA) and quantile normalization with the Bioconductor 
package Affy. Differential expression relative to matched 
controls was performed with the significance analysis 
of microarrays (SAM) algorithm using Bioconductor 
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Siggenes package (FDR<0.05, fold change>1.2). For each 
type of cancer, a gene (or miRNA) was considered to be 
high- or low-expressed relative to being above or below 
the median expression value across cancer samples.

Identifying prognosis-related key miRNA-target 
interactions

Identifying dysregulated miRNA-target interactions

Cancer-related miRNAs were obtained from 
miR2Disease database [48]. The predicted targets of 
miRNAs were derived from miRDB database [49]. 
For each cancer type, the dysregulated miRNA-target 
interactions were identified by several criteria: (1) cancer-
related miRNAs and their targets were differentially 
expressed, (2) the direction of differential expression 
between miRNAs and their targets was reversed, (3) the 
pattern of a high-expressed miRNA regulating its low-
expressed targets (or vice versa) was present in more 
than 20% cancer samples. A set of 50,805 miRNA-target 
interactions between 131 miRNAs and 11,396 genes was 
obtained.
Optimizing prognosis-related key miRNA-target 
interactions

To evaluate whether the dysregulated miRNA-target 
interactions were associated with prognosis, we selected 
5,353 patients from 16 cancer types who had expression 
of miRNAs and mRNAs and survival data (Table 1). For 
each type of cancer, the upper and lower bound of 95% 
confidence interval (CI) for the median survival time was 
estimated. Patients whose survival time was above (below) 
the upper (lower) CI were categorized into the good (poor) 
outcome group. Next, we generated 1,000 sample sets for 
survival analysis by randomly selecting 80% samples from 
the poor outcome and good outcome group, respectively. 
We performed univariate Cox regression model according 
to expression ratio of a miRNA to its target to evaluate 
the influence of the miRNA-target interaction on 
overall survival (OS) in each of the above sample sets 
individually. A miRNA-target interaction was selected 
under the condition that it’s regression coefficient (β) was 
required to be positive (or negative) in each univariate Cox 
regression analysis and the frequency of P-value<0.05 was 
greater than 0.6. For a miRNA-target interaction, patients 
with specific cancer types were divided into two groups 
on the basis of reverse expression pattern of the miRNA 
and its target. The first group consisted of patients with a 
high-expressed miRNA regulating its low-expressed target 
and the second group of patients with a low-expressed 
miRNA regulating its high-expressed target. The survival 
difference between the two groups was assessed by the 
Kaplan–Meier analysis and P-value was determined using 
log-rank test. MiRNA-target interactions with log-rank 
test P-value<0.05 were considered as prognosis-related 
key miRNA-target interactions.

Identifying hallmarks of cancer affected by 
prognosis-related key miRNA-target interactions

GO Terms associated with the hallmarks of cancer 
were obtained from [50, 51]. Human protein-protein 
interaction network (PPI) is obtained from HPRD. Human 
KEGG pathways from Synapse (syn1741407) which 
shows the semantic similarity score >0.3 with a hallmark-
associated GO term using R package ‘GOSemSim’, are 
considered to be associated with hallmarks of cancer. 
For each hallmark-associated KEGG pathway, random-
walk analysis of the protein interaction network with a 
restart probability of 0.7 [52] was performed to measure 
long-range correlations between the KEGG pathway 
and prognosis-related key targets of miRNAs (seed gene 
set). The probabilities of genes in the PPI network under 
the steady state were obtained, which characterized the 
influence of key miRNA targets on genes in hallmark-
associated KEGG pathways. For each hallmark of cancer, 
the median of probabilities was considered to be a score 
to measure the impact of prognosis-related key miRNA-
target interactions on the cancer hallmark. To investigate 
the significance of impact of prognosis-related key 
miRNA-target interactions on a specific hallmark of 
cancer, we perturbed the PPI network for 1,000 times by 
rewiring every edge (keeping the degree distribution of the 
original network). Based on permutation test, the P-value 
was calculated as the fraction of permutations that lead 
to a greater than or equal number of random scores than 
those observed scores.
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