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ABSTRACT

Apoptosis proteins subcellular localization information are very important for 
understanding the mechanism of programmed cell death and the development of drugs. 
The prediction of subcellular localization of an apoptosis protein is still a challenging 
task because the prediction of apoptosis proteins subcellular localization can help 
to understand their function and the role of metabolic processes. In this paper, we 
propose a novel method for protein subcellular localization prediction. Firstly, the 
features of the protein sequence are extracted by combining Chou's pseudo amino 
acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), 
then the feature information of the extracted is denoised by two-dimensional (2-D) 
wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier 
to predict subcellular location of apoptosis proteins. Quite promising predictions are 
obtained using the jackknife test on three widely used datasets and compared with 
other state-of-the-art methods. The results indicate that the method proposed in this 
paper can remarkably improve the prediction accuracy of apoptosis protein subcellular 
localization, which will be a supplementary tool for future proteomics research.
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 INTRODUCTION

Protein is involved in various forms of life activities. 
The living organism’s growth, development, reproduction 
and other life activities are inseparable from the role of the 
protein. Protein also maintains a highly ordered operation 
of the protection of the cell system [1]. At the cellular 
level, proteins function at specific subcellular locations. 
These locations provide a specific chemical environment 
and set of interaction partners that are necessary to fulfill 
the protein’s function [2]. Apoptosis is cell physiological 

death which are closely related to development of 
organisms, tissue regeneration, immune system regulation 
and other physiological processes [3]. Studies have 
shown that apoptosis protein is a protein related to many 
diseases such as cancer, Alzheimer’s disease and so on. 
It plays an important role in the growth and development 
of organism [4, 5]. Obtaining information on subcellular 
location of apoptosis proteins is very helpful to understand 
the function of apoptosis proteins, the mechanism of cell 
apoptosis and drug development. Therefore, research of 
the prediction of subcellular localization of apoptosis 
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proteins has become a hot research topic in proteomics 
and bioinformatics.

With the life science research has entered into the 
post-genome era, the accumulated protein sequence data 
in database of protein increase exponentially. Traditional 
experimental methods are time-consuming, costly and the 
repeatability is relatively poor [6]. With the rapid growth of 
biological data such as nucleic acid and protein sequences, 
it is far from enough to determine the subcellular location 
of protein by experimental methods. Therefore, in order 
to speed up the annotation process of protein structure and 
function, it is an arduous and challenging task to study 
how to use machine learning methods to predict protein 
subcellular localization for researchers. Since the early 
1990s, the research of protein subcellular localization 
prediction has been a hotspot in bioinformatics research. 
At present, this subject has made great progress [7]. The 
main research focuses on the following two aspects: (1) 
Feature extraction of protein sequences. (2) Research and 
implementation of prediction algorithm.

The feature extraction of protein sequences is 
currently divided into five categories. (1) N-terminal 
information prediction method. As early as 1991, Nakai 
and Kanehisa [8] established a Gram-negative bacterial 
proteins subcellular localization prediction system by 
the use of protein N-terminal sequence information. 
Subsequently, based on the N-terminal sequence 
information and using the neural network approach, 
Emanuelsson et al. [9] designed the TargetP system to 
predict protein subcellular location. (2) Protein amino 
acid composition prediction method. Nakashima et al. 
[10] proposed a prediction method based on the amino 
acid composition and the frequency of residue pairs. By 
using the 20 amino acid composition of proteins, they can 
distinguish intracellular and extracellular proteins, and 
found the relationship between subcellular localization 
of protein and its amino acid composition. It is because 
of their research that many researchers put forward 
more protein subcellular localization prediction method 
using amino acid composition [11–13]. For example, 
Reinhardt et al. [11] used amino acid composition as 
feature information to predict protein subcellular locations 
in prokaryotes and eukaryotes, and constructed the first 
artificial neural network prediction system. The method 
of amino acid composition extraction is convenient, 
but it does not make full use of the amino acid residues 
sequence and various physical and chemical properties, 
so it cannot describe the protein in a comprehensive 
way. (3) The properties of amino acid residue prediction 
method. In general, different subcellular regions have 
different physical and chemical environment. Some 
researchers take into account the physical and chemical 
properties of each residue when extracting the protein 
sequence characteristics. One of the most representative 
is the pseudo-amino acid composition (PseAAC) 
proposed by Chou et al. [14]. Chou et al. [14, 15] defined 

the PseAAC using the physicochemical properties of 
amino acids, such as hydrophilicity, hydrophobicity, 
etc., in combination with the amino acid composition. 
The predicted subcellular localization accuracy has been 
significantly improved on the basis of the original. (4) 
Sequence homology similarity and the protein functional 
domain prediction method. Homology similarity search 
is mainly done by means of sequence comparison. Chen 
et al. [16] used the BLAST tool to search for similarity 
of protein sequences, combined with GO information 
and sequence characteristics for protein subcellular 
localization, and finally obtained better predictions. The 
protein functional domain is a kind of feature extraction 
method based on annotation information. Chou and Cai 
[17] predicted protein subcellular localization by fusing 
PseAAC and functional domain information as feature 
vectors to obtained better predictive results. Nair and Rost 
[18] combined the evolutionary information and structural 
information to predict subcellular localization of proteins, 
and achieved good predictive results. (5) Multi-feature 
fusion method for protein sequences. It is difficult to 
make a big breakthrough in the prediction effect by solely 
using one certain feature. In recent years, researchers are 
more inclined to fuse multiple features to characterize 
the protein sequences, with a view to synthesize the 
advantages of each sequence coding method to obtain 
more protein sequences feature information. Gardy  
et al. [19] proposed a coding method PSORT-B, which 
included amino acid composition, N-terminal sorting 
signal, and motifs to predict the subcellular localization 
of Gram-negative proteins. Chen et al. [20] proposed a 
multi-information fusion method to predict subcellular 
locations of two different types of bacterial proteins 
by combining the physicochemical properties, auto 
covariance transformation of the PSSM matrix and GO 
information, and obtained better results.

Due to the large number of protein sequences and 
the difficulty of revealing hidden information, so the 
performance requirement of the prediction algorithm is 
very high. How to design a predictive algorithm with high 
throughput, high accuracy and high precision has become 
another core problem that needs further study. In recent 
years, pattern recognition methods such as statistics and 
machine learning have been widely used in prediction 
algorithms, such as fuzzy K-nearest neighbor (FKNN) 
[21, 22], neural network [23], hidden Markov model 
(HMM) [24, 25], Bayesian classifier [26, 27], ensemble 
classifier [28] and support vector machine (SVM) [29, 30] 
and so on. Among them, SVM has the advantages of fast 
computation speed, strong ability of extracting implicit 
information in training set, excellent generalization 
performance and so on, which makes SVM as preferred 
classifier for many researchers.

At present, the prediction of apoptosis protein 
subcellular localization has made great progress. Zhou 
and Doctor [31] predicted the subcellular localization of 
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apoptosis proteins for the first time. They used the amino 
acid composition and covariant discriminate algorithm to 
predict four kinds of subcellular locations of 98 apoptosis 
proteins dataset, the overall prediction accuracy achieved 
90.8% and 72.5% by re-substitution and jackknife test. 
Then Bulashevska and Eils [32] used the same dataset with 
Zhou and Doctor, and by using multiple Bayesian classifier 
constructed hierarchical ensemble classifier, the overall 
prediction accuracy was further improved in jackknife 
test. Zhang et al. [33] proposed a new encoding approach 
with grouped weight for protein sequence and used support 
vector machine as classifier (named as EBGW_SVM). 
They constructed a new dataset ZW225 with four apoptosis 
protein subcellular locations. The overall prediction 
accuracy of EBGW_SVM achieved 83.1% by jackknife 
test. Chen and Li [34] proposed a method by combining 
the increment of diversity with support vector machine 
(named as ID_SVM). On the new dataset containing 317 
apoptosis protein sequences classified into six subcellular 
locations, and obtained higher prediction accuracy by 
jackknife test. Based on the CL317 dataset, Ding et al. 
[35] obtained the overall prediction accuracy of 90.9% by 
using the Fuzzy K-nearest neighbor (FKNN) algorithm. 
Qiu et al. [36] proposed a novel approach by combining 
discrete wavelet transform with support vector machine 
(named as DWT_SVM). The overall prediction accuracy 
of DWT_SVM achieved 97.5%, 87.6% and 88.8% for 
CL317, ZW225 and ZD98 datasets, respectively by 
jackknife test. Yu et al. [37] used amino acid substitution 
matrix and auto covariance transformation to extract the 
sequence features of proteins and construct their feature 
vectors, and proposed a novel pseudo-amino acid model 
to predict subcellular localization of apoptosis proteins. 
For ZW225 and CL317, the higher prediction overall 
accuracy was 87.1% and 90.0%, respectively by jackknife 
test. Liu et al. [38] proposed a method for the prediction 
of subcellular localization of apoptosis proteins based on 
tri-gram encoding of position-specific scoring matrices and 
incorporating evolution information of proteins. For the 
ZW225, CL317 and ZD98 datasets, the higher accuracy 
of prediction was 97.8%, 95.9% and 96.9%, respectively 
by jackknife test. Liang et al. [39] proposed a new feature 
extraction method to predict apoptosis protein subcellular 
localization by fusing Geary autocorrelation function and 
detrended cross-correlation coefficient (DCCA) based 
on PSSM. For three benchmark datasets ZD98, ZW225 
and CL317, the overall prediction accuracy achieved 
91.8%, 84.4% and 89.0%, respectively. Dai et al. [40] 
and Xiang et al. [41] proposed an information extraction 
algorithm based on the golden ratio segmentation of 
protein sequences. The PSSM matrix of apoptosis protein 
sequence was split into several different sub-matrixes 
by golden ratio, and the evolution of the statistical sub-
matrices information. It is found that the prediction 
model based on the composition information, position 
information and evolution information can significantly 

improve the subcellular localization prediction accuracy 
of apoptosis proteins.

In this paper, we propose a novel method for 
predicting the subcellular localization of apoptosis 
proteins, called PseAAC-PsePSSM-WD. Firstly, the 
features are extracted from apoptosis protein sequences 
by combining Chou’s PseAAC and PsePSSM algorithms. 
Then, the feature vectors of the extracted proteins are 
denoised by two-dimensional wavelet, which make the 
features of each class of proteins are more prominent after 
wavelet denoising. Finally, the optimal feature vectors 
after wavelet denoising are input to the SVM classifier 
for prediction. By jackknife test, different effects on the 
results are compared due to choosing different λ values, ξ 
values (where the  λ values and ξ the order information of 
protein amino acid sequences), wavelet functions, different 
wavelet decomposition scales, different feature extraction 
algorithm, different kernel functions and classifiers. 
Through the comparative analysis, the optimal parameters 
of the model are determined, and the subcellular 
localization prediction model of apoptosis proteins are 
established. On the three benchmark datasets CL317, 
ZW225 and ZD98, obtain the highest overall prediction 
accuracy of 99.37%, 100% and 98.98%, respectively 
by the most rigorous jackknife test. According to the 
comparision with other existing methods, the experimental 
results show that our method can remarkably improve the 
prediction accuracy of protein subcellular localization.

RESULTS AND DISCUSSION 

Selection of optimal parameter λ and ξ 

The selection of parameters is very important for 
a prediction system. How to extract effective feature 
information from protein sequence is the key to success 
of protein subcellular localization prediction model. In 
order to better discover the merits of the characteristic 
parameters, it is usually necessary to make a comparison. 
The apoptosis protein datasets CL317 and ZW225 are 
used as the research object, and the optimal parameters of 
the predicted model are selected. 

In current study, we use PseAAC and PsePSSM 
algorithm to carry out feature extraction on protein 
sequences. In the process of feature extraction, the 
selection of values λ and ξ play an important role on the 
construction of the model. Both value  λ and ξ represent 
sequence-order information of the amino acid residues 
in the protein sequence. If the value  λ  and ξ are set 
too large, it will make the dimension of feature vector 
of protein sequence too high, bring more redundant 
information, thus affecting the prediction results. If the 
value λ and ξ are set too small, the sequence information 
contained in the feature vectors will be very little, and the 
features of the protein sequence on the apoptosis datasets 
cannot be extracted completely. To find the optimal value  
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λ  in the model, set the values λ, from 0 to 49 in turn. 
For the different values of λ, the SVM is used to classify 
apoptosis datasets CL317 and ZW225, respectively. SVM 
uses the linear kernel function and the results are tested by 
jackknife method. The overall prediction accuracy of each 
class of the apoptosis datasets are shown in Tables 1 and 2. 
Similarly, to find the optimal value ξ in the model, set the 
values ξ   from 0 to 10 in turn. For the different values of ξ, 
the SVM is used to classify apoptosis datasets CL317 and 
ZW225, respectively. SVM uses the linear kernel function 
and the results are tested by jackknife method. The overall 
prediction accuracy of each class of the apoptosis datasets 
are shown in Tables 3 and 4.

As can be seen from Table 1, different prediction 
results will be got by changing the value of λ. With the 
constant change of λ value, the predictive accuracy of 
each class of the proteins and the overall accuracy of 
the model are also constantly changing. For the CL317 
dataset, when λ = 15, the highest prediction accuracy 
of cytoplasmic proteins reach 88.39%. When λ = 25, 
endoplasmic proteins get the highest prediction accuracy 
is 97.87%, 2.13% higher than when λ = 15. Similarly, 
when λ = 25, the highest prediction accuracy of membrane 
proteins, mitochondrial proteins and nuclear proteins reach 
89.09%, 73.53% and 80.76%, respectively. Considering 
the influence of different λ value on the prediction results 
and the analysis of overall prediction accuracy of CL317 
dataset, the highest overall prediction accuracy is 84.23% 
when λ = 15.

As can be seen from Table 2, for the ZW225 dataset, 
the cytoplasmic proteins reach the highest prediction 
accuracy when λ = 5 and λ = 15, which are 85.71%. When 
λ = 10, λ = 20 and λ = 35, membrane proteins reach the 
highest prediction accuracy, which are 91.01%, 3.37% 
higher than when λ = 15. For the mitochondrial proteins, 
the highest prediction accuracy is 64.00% when λ = 15, 
and the prediction accuracy is significantly lower than 
that of other types of protein prediction accuracy. It is 
possibly because the number of mitochondrial proteins in 
the ZW225 dataset is 25, the small amount of data affect 
the model construction effect. When λ = 35 and λ = 49, 
nuclear proteins reach the highest prediction accuracy of 
75.61%. Through the analysis of the prediction results of 
ZW225 dataset, the overall highest prediction accuracy of 
the model is 81.33% when λ = 35.

In order to more intuitively find the optimal λ value, 
Figure 1 is the change of overall prediction accuracy rate 
of CL317 and ZW225 datasets when choose different λ 
values. As can be seen from Figure 1, with the λ value of 
the change, the prediction accuracy of the two datasets 
are also changing. In addition, λ values are different for 
the highest accuracy of two datasets. In order to unify the 
parameters of the model, we choose optimal value λ = 15. 
Therefore, the PseAAC algorithm is used to extract the 
protein sequence, and each protein sequence generates a 
20 + λ = 35 dimension feature vector.

As can be seen from Table 3, the constant change 
of ξ value will have different influence on the prediction 
accuracy of each class of proteins in CL317 dataset. For 
cytoplasmic proteins, the highest prediction accuracy is 
91.96% when ξ values are 6, 7, 8 and 10, respectively. 
For endoplasmic proteins, the highest prediction accuracy 
of the protein is 97.87% when ξ values are 8, 9 and 
10, respectively. For membrane proteins, the highest 
prediction accuracy of the protein is 90.91% when ξ 
values are 2, 3, 5, 6 and 9, respectively. For mitochondrial 
proteins, the highest prediction accuracy of the protein 
is 88.24% when ξ = 10. For nuclear proteins, the highest 
predictive accuracy of the protein is 90.38% when ξ values 
are 5, 6 and 9. For secreted proteins, the highest prediction 
accuracy of the protein is 88.24% when ξ values are 0 
and 3. The highest overall prediction accuracy of dataset 
CL317 is 90.85% when ξ value is 9 or 10.

As can be seen from Table 4, the constant change of 
ξ value will have different effect on prediction accuracy of 
each class of protein in ZW225 dataset. For cytoplasmic 
proteins, the highest prediction accuracy is 85.71% when 
ξ = 6. For membrane proteins, the highest predictive 
accuracy of the protein is 92.13% when ξ = 7. For 
mitochondrial proteins, the highest prediction accuracy of 
the protein is 76.00% when ξ = 7. For nuclear proteins, the 
highest prediction accuracy of the protein is 85.37% when 
ξ = 10. The highest overall prediction accuracy of dataset 
ZW225 is 86.22% when ξ = 7.

Since the two apoptosis protein datasets CL317 and 
ZW225 are selected in this paper, in order to make the 
selection of model parameters consistent, the two datasets 
are analyzed integrally. Figure 2 shows the change in 
overall prediction accuracy when the two datasets choose 
different ξ values. We choose optimal parameter ξ = 10 
of the model, the PsePSSM algorithm can be used to 
extract each protein sequence to obtain 20 + 20 × ξ = 220  
dimension feature vector.

Selection of wavelet function and optimal 
decomposition scale

In order to achieve the ideal prediction accuracy 
of subcellular localization of apoptosis proteins, we 
fused the PseAAC and PsePSSM algorithms to extract 
the characteristics of protein sequences. Each protein 
sequence in the dataset generates (20 + λ) + (20 + 20 × ξ) 
= 35 + 220 = 255 dimension feature vector, and wavelet 
denoising method is used to extract information furtherly. 
Since the wavelet basis function produces different wavelet 
families, each family has its own characteristics, that is 
to say, different wavelet family has different processing 
ability for different data. If the characteristics of the 
wavelet function can better match message structure of the 
signal information, the better feature information can be 
extracted from the sequences [42]. In order to obtain the 
best performance of the model in the data processing, the 
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selection of the wavelet function is very important for the 
construction of the model. In addition, in the analysis of 
protein sequences, different decomposition scales will get 
different prediction results. Decomposing a longer sequence 
with too low a decomposition scale level would omit much 
detailed information, and decomposing a shorter sequence 
with too high a decomposition scale would inevitably 
introduce redundant information [43]. In order to extract the 
protein sequences feature information of apoptosis proteins 
more effectively, this paper examines the effects of different 

wavelet functions and different decomposition scales on the 
prediction model.

When 2-D denoising method is used to carry out 
feature extraction on datasets, there are two different 
methods for threshold selection, the default threshold, 
and the threshold gained by Birge-Massart strategy. In 
the process of noise reduction, using the default threshold 
will result in a uniform global threshold, whereas 
thresholds obtained using the Birge-Massart strategy will 
generate three different thresholds in horizontal, vertical 

Table 1: Prediction results of subcellular localization of the CL317 dataset by selecting different λ values 

Locations
λ

Jackknife test (%)
0 5 10 15 20 25 30 35 40 45 49

Cy 80.36 79.46 86.61 88.39 86.61 84.82 87.50 85.71 83.03 83.93 83.93
Me 74.55 80.00 85.45 90.91 89.09 89.09 87.27 83.64 87.27 87.27 85.45
Mi 58.82 67.65 70.59 73.53 64.71 73.53 61.76 73.53 67.65 61.76 67.65
Se 29.41 47.06 58.82 41.18 47.06 47.06 58.82 64.71 70.59 58.82 58.82
Nu 57.69 76.92 71.15 78.85 71.15 80.76 71.15 75.00 75.00 75.00 75.00
En 89.36 93.62 93.62 95.74 95.74 97.87 95.74 95.74 95.74 93.62 93.62
OA 71.92 78.23 81.70 84.23 81.39 83.60 81.70 82.65 82.02 80.76 81.07

Table 2: Prediction results of subcellular localization of the ZW225 dataset by selecting different λ values 

             
Locations

λ
Jackknife test (%)

0 5 10 15 20 25 30 35 40 45 49
Cy 81.43 85.71 80.00 85.71 84.29 80.00 80.00 81.43 78.57 81.43 78.57
Me 83.15 86.52 91.01 87.64 91.01 88.76 88.76 91.01 88.76 87.64 85.39
Mi 52.00 52.00 56.00 64.00 56.00 60.00 56.00 56.00 56.00 60.00 56.00
Nu 70.73 65.85 56.10 63.41 60.98 65.85 68.29 75.61 70.73 68.29 75.61
OA 76.89 78.67 77.33 80.00 79.56 78.67 78.67 81.33 78.67 79.11 78.22

Table 3: Prediction results of subcellular localization of the CL317 dataset by selecting different ξ values 

Locations
ξ

Jackknife test (%)
0 1 2 3 4 5 6 7 8 9 10

Cy 83.04 83.93 87.50 87.50 87.50 89.29 91.96 91.96 91.96 91.07 91.96
Me 78.18 81.82 90.91 90.91 89.09 90.91 90.91 89.09 89.09 90.91 89.09
Mi 50.00 55.88 70.59 73.53 82.35 82.35 82.35 85.29 85.29 85.29 88.24
Se 88.24 82.35 82.35 88.24 82.35 82.35 82.35 82.35 82.35 82.35 82.35
Nu 67.31 61.54 78.85 80.77 86.54 90.38 90.38 88.46 88.46 90.38 88.46
En 87.23 91.49 93.62 93.62 93.62 93.62 93.62 95.74 97.87 97.87 97.87
OA 76.97 77.92 85.49 86.44 87.70 89.27 90.22 90.22 90.54 90.85 90.85
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and diagonal. There are two methods to get the default 
threshold, one is to use the wavelet function to obtain 
the default threshold, and the other is to use the wavelet 
packet to obtain the default threshold. For the apoptosis 
protein datasets CL317 and ZW225, after several 
experiments, it is found that using the wavelet function to 
obtain the default threshold can obtain the highest overall 
prediction accuracy on the two datasets at different 
decomposition scales and different wavelet functions 
(The specific results see Supplementary Tables 1 and 2). 
In the following discussion, we use the wavelet function 
to obtain the default threshold for 2-D wavelet denoising. 
The PseAAC and PsePSSM algorithms are used to extract 
the features of the protein sequence. When PseAAC is 
used to extract feature information, λ = 15 is chosen. When 
PsePSSM is used to extract feature information, ξ = 10  

is chosen. The linear kernel function with SVM is used 
to classify and the results is validated by jackknife test. 
The prediction results of subcellular localization of 
two apoptosis protein datasets under different wavelet 
functions and different decomposition scales are obtained, 
as shown in Table 5.

It can be seen from Table 5 that choosing different 
wavelet functions and different decomposition scales 
can affect the overall prediction accuracy of the model. 
For the CL317 dataset, when the decomposition scale 
is 3, the db1, db8 and bior1.1 wavelet function are 
selected respectively, and the highest overall prediction 
accuracy of subcellular localization is 99.05%. When the 
decomposition scale is 4, the highest prediction accuracy 
is 99.37%, and the corresponding wavelet function is db8. 
When the decomposition scale is 5, the db8 wavelet is 

Table 4: Prediction results of subcellular localization of the ZW225 dataset by selecting different ξ values

Locations         
ξ

Jackknife test (%)
0 1 2 3 4 5 6 7 8 9 10

Cy 81.43 80.00 82.86 84.29 80.00 81.43 85.71 84.29 84.29 84.29 84.29
Me 82.02 85.39 89.89 91.01 91.01 91.01 91.01 92.13 91.01 91.01 91.01
Mi 36.00 60.00 68.00 68.00 72.00 72.00 72.00 76.00 72.00 72.00 72.00
Nu 63.41 65.85 70.73 75.61 80.49 78.05 82.93 82.93 82.93 82.93 85.37
OA 73.33 77.33 81.78 83.56 83.56 83.56 85.78 86.22 85.33 85.33 85.78

Figure 1: Effect of selecting different values of λ on the prediction results of subcellular localization for CL317 and 
ZW225 datasets.



Oncotarget107646www.impactjournals.com/oncotarget

used to obtain the highest prediction accuracy of 99.05%. 
Therefore, with the difference of wavelet decomposition 
scales, the prediction model also changes the wavelet 
function corresponding to the highest prediction accuracy 
of CL317 dataset. It is worth noting that the db8 wavelet 
function achieves the highest accuracy at different 
decomposition scales. For ZW225 dataset, db8 wavelet 
is chosen, when the decomposition scale are 3, 4 and 5, 
the overall prediction accuracy of subcellular localization 
are 100%, 100% and 99.56%, respectively. When the 
decomposition scale is 4, the highest prediction accuracy 
of 100% is achieved by choosing db8 wavelet, which 
is 2.22% higher than the prediction accuracy of bior2.4 
wavelet. In this paper, the CL317 and ZW225 protein 
datasets are selected to provide the best performance 
for the predicted model of subcellular localization of 
apoptosis proteins. We need to consider the two datasets 
at the same time under different decomposition scales 
and different wavelet functions. Good effect of wavelet 
function and decomposition scale. We need to consider 
the wavelet function and decomposition scale which 
obtained the best effect of the two datasets at the same 
time. In order to more intuitively analyze the best wavelet 
function and decomposition scale in two datasets, we 
draw the histogram of the overall prediction accuracy of 
subcellular localization of apoptosis proteins at different 
decomposition scales, as shown in Figures 3 and 4.

It can be seen from Figures 3 and 4 that when the 
db8 wavelet is selected and decomposition scale is 4, the 
highest overall prediction accuracy of the model can be 
obtained for datasets CL317 and ZW225. As we all know, 
wavelet function has many excellent properties, such as 

compactly support, orthogonality, symmetry, smoothness 
and high order of vanishing moments. In practice, wavelet 
function selection has some conflicting constraints, and 
none of these wavelet functions share simultaneously all 
of these properties.

As shown in Table 5, when we choose the db8 
wavelet function and the decomposition scale is 4, the 
overall accuracy of the subcellular localization prediction 
of the two datasets CL317 and ZW225 are the highest, 
which are 99.37% and 100%, respectively. The db8 
wavelet function has good locality characteristics in both 
time and frequency domain, which can also effectively 
remove high frequency noise and reduce dimensionality, 
eliminate the redundant information of protein sequences, 
reduce the leakage and aliasing of feature information, 
so that the extracted feature vector can better express the 
original sequence information, and improve the prediction 
performance of protein subcellular localization [42].

Effect of feature extraction algorithm on results

Using the feature extraction algorithm to extract the 
effective information of protein sequences is an important 
step in protein subcellular localization prediction. PseAAC 
algorithm is a feature extraction algorithm based on amino 
acid residues. PsePSSM is a feature extraction algorithm 
based on sequence homology. By combining the PseAAC 
algorithm with the PsePSSM algorithm, more feature 
information of the protein sequence will be obtained, 
but it will also bring more redundant information. The 
use of 2-D wavelet denoising can effectively remove 
the redundant information in the protein sequence and 

Figure 2: Effect of selecting different values of ξ on the prediction results of subcellular localization for CL317 and 
ZW225 datasets.
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extract the characteristic signals of each protein itself. 
In this paper, we compare the different effect of feature 
extraction methods on prediction results, and select the 
optimal feature extraction algorithm. 

Among them, when PseAAC is used for feature 
extraction, λ = 15 is selected. When PsePSSM is used 
for feature extraction, ξ = 10 is selected. When the two 
algorithms PseAAC and PsePSSM are combined, the 
optimal λ = 15 and ξ = 10 are chosen to generate 255 
dimension feature vector. In the 2-D wavelet denoising, 
we use the db8 wavelet function and the decomposition 
scale is 4. Four kinds of feature extraction methods 
using the linear kernel function with SVM to classify 

and obtain the different prediction results of the two 
apoptosis protein datasets CL317 and ZW225, as shown 
in Tables 6 and 7. 

In addition, we use ROC (receiver operating 
characteristic) curve to compare the robustness of the 
model under different feature extraction algorithms. 
In general, ROC curve is applicable to evaluate the 
prediction performance of a binary classifier, but apoptosis 
proteins subcellular localization prediction is a multi-class 
prediction problem. We first use the one-versus-rest (OVR) 
strategy to transform the multi-classification problem 
into two-classification problems. And then for these two-
classification true positive rate and false positive rate, the 

Figure 3: Prediction performance of dataset CL317 under different wavelet functions and different decomposition 
scales.

Table 5: Prediction results of subcellular localization in the datasets CL317 and ZW225 under different wavelet 
functions and different decomposition scales

Datasets
Functions

Jackknife test (%)
db1 db4 db8 sym3 sym7 coif2 coif4 bior1.1 bior2.4 bior3.3

CL317
3 99.05 98.11 99.05 98.74 98.11 98.11 97.48 99.05 98.42 98.74
4 98.74 97.48 99.37 98.11 97.79 98.74 98.42 98.74 98.42 98.74
5 98.74 97.79 99.05 98.74 98.42 98.11 98.42 98.74 98.42 98.74

ZW225
3 98.67 98.67 100 99.11 99.11 99.56 99.56 98.67 98.22 99.11
4 98.22 98.67 100 98.22 98.67 99.11 99.11 98.22 97.78 99.11
5 97.78 98.22 99.56 99.11 99.11 98.67 99.56 97.78 97.78 98.67
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average of them are taken as the final result. Figures 5 
and 6 are the ROC curves obtain by four different feature 
extraction methods for the CL317 dataset and ZW225 
dataset, respectively.

As can be seen from Table 6, different feature 
extraction algorithms make the prediction accuracy of 
each protein in CL317 data set different. The overall 
prediction accuracy is 84.23% by using PseAAC 
algorithm, which is 6.62% lower than that of using 
PsePSSM algorithm. The prediction accuracy of the 
PseAAC-PsePSSM algorithm is 89.91%, which is 0.94% 
lower than that of PsePSSM algorithm. The possible 
reason is that the two algorithms combine to bring more 
redundant information for protein sequence, which leads 
to the decrease of prediction accuracy. The prediction 
accuracy of the six kinds of proteins in CL317 dataset 
has been improved obviously by 2-D wavelet denoising 
on feature data after combining two algorithms, and 
the overall prediction accuracy of the model has reach 
99.37%. For the secreted protein in the CL317 dataset, the 
prediction accuracy of the PseAAC algorithm is 41.18%, 
and the accuracy is significantly improved using the 
other three feature extraction algorithms. The prediction 
accuracy of the PseAAC-PsePSSM-WD algorithm is 
100% for the secreted protein, which is 58.82% higher 
than PseAAC algorithm. It can be seen from Figure 
5 that for the CL317 dataset, the coverage area of the 
ROC curve using the PseAAC-PsePSSM-WD feature 
extraction method is the largest, and the AUC value is 
0.9842, which is significantly higher than that of the other 

three methods. The AUC values of PseAAC, PsePSSM 
and PseAAC-PsePSSM methods are 0.9358, 0.9540 and 
0.9532, respectively.

As can be seen from Table 7, different feature 
extraction algorithms make the predictive accuracy of 
each type of protein in the ZW225 dataset different. Using 
the PseAAC algorithm, the overall prediction accuracy is 
the lowest, the prediction accuracy is 80.00%, which is 
5.78% lower than that of using the PsePSSM algorithm. 
After the PseAAC algorithm and PsePSSM algorithm 
are fused, the overall prediction accuracy rate is 87.56%, 
which is higher than the overall prediction accuracy rate 
when the two algorithms are used respectively. We use 
the 2-D wavelet denoising method to combine the two 
algorithms to further extract the sequence data, and the 
prediction accuracy of the four kinds of proteins in the 
ZW225 dataset has been improved remarkably, and the 
overall prediction accuracy of the model has reached 
100%. It can be seen from Figure 6 that for the ZW225 
dataset, the AUC value of the ROC curve is 0.9805 using 
the PseAAC-PsePSSM-WD feature extraction method, 
and the robustness of the algorithm is the best, obviously 
higher than the other three methods. The AUC values of 
the PseAAC, PsePSSM and PseAAC-PsePSSM methods 
are 0.8823, 0.9391 and 0.9342, respectively. By comparing 
the influence of different feature extraction algorithms 
on the prediction results and comparing the robustness of 
four different feature extraction algorithms from the ROC 
curve, we determined that PseAAC-PsePSSM-WD is the 
best feature extraction algorithm for this study.

Figure 4: Prediction performance of dataset ZW225 under different wavelet functions and different decomposition 
scales.
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Effect of kernel function on results

When SVM is used to classify, the selection of kernel 
function will have important influence on the prediction 
results. In this paper, using PseAAC and PsePSSM 
algorithms for feature extraction of protein sequence. 

When PseAAC is used for feature extraction, λ = 15 is 
chosen. When PsePSSM is used for feature extraction, 
ξ = 10 is chosen and 2-D wavelet denoising using db8 
wavelet function, the decomposition scale of 4, select 
the different kernel functions to get prediction results of 

Table 6: Prediction results of subcellular localization by four different feature extraction methods on dataset CL317 

Algorithm
Locations

Jackknife test (%)
Cy Me Mi Se Nu En OA

PseAAC 88.39 90.91 73.53 41.18 78.85 95.74 84.23
PsePSSM 91.96 89.09 88.24 82.35 88.46 97.87 90.85
PseAAC-PsePSSM 90.18 89.09 85.29 88.24 90.38 93.62 89.91
PseAAC-PsePSSM-WD 100 100 94.12 100 100 100 99.37

Figure 5: This graph shows the ROC curves of CL317 dataset.

Table 7: Prediction results of subcellular localization by four different feature extraction methods on dataset ZW225

Algorithm
Locations

Jackknife test (%)
Cy Me Mi Nu OA

PseAAC 85.71 87.64 64.00 63.41 80.00
PsePSSM 84.29 91.01 72.00 85.37 85.78
PseAAC-PsePSSM 87.14 93.26 80.00 80.49 87.56
PseAAC-PsePSSM-WD 100 100 100 100 100
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subcellular localization of two apoptosis datasets, as is 
shown in Tables 8 and 9. Where, 0 denotes a linear kernel 
function, 1 denotes a cubic polynomial kernel function, 2 
denotes an RBF kernel function, and 3 denotes a sigmoid 
kernel function. Figure 7 shows the variation of the overall 
prediction accuracy of the two datasets under different 
kernel functions.

It can be seen from Figure 7 that the prediction 
effect by linear kernel function and RBF kernel function 
is better than that of the other two kernel functions when 
using SVM for datasets CL317 and ZW225. As can be 
seen from Table 8, the accuracy of the cytoplasmic 
proteins, membrane proteins, secreted proteins, nuclear 
proteins and endoplasmic reticulum proteins in the dataset 
CL317 are 100% using the linear kernel function, and 
the overall prediction accuracy of the model is 99.37%. 
The overall prediction accuracy is 99.05% using the RBF 
kernel function, which is 0.32% lower than that using 
linear kernel function. In addition, the overall prediction 
accuracy of polynomial kernel function and sigmoid 
kernel function are 71.61% and 77.29%, respectively, 
which are 27.76% and 22.08% lower than that of linear 
kernel function respectively. It can be seen from Table 
9 that the overall prediction accuracy is 100% in the 
dataset ZW225 using the linear kernel function, which are 
16.44%, 0.44% and 14.22% higher than using polynomial 
kernel function, RBF kernel function and sigmoid 
kernel function respectively. Considering the influence 
of different kernel functions on the datasets CL317 and 

ZW225, the linear kernel function is used as the kernel 
function of SVM algorithm.

Selecting classification algorithms

Because of the large number of protein sequences 
and hidden information which is difficult to reveal, the 
performance of the prediction algorithm has a high 
demand. In recent years, pattern recognition methods such 
as statistics and machine learning have been widely used 
in prediction algorithms. In this study, we mainly studied 
five classification algorithms: support vector machine 
(SVM), k-nearest neighbor (KNN), random forest (RF), 
naïve Bayes, decision tree (DT). SVM algorithm uses 
linear kernel function, KNN algorithm using Euclidean 
distance, the number of neighbors is 3, the number of 
decision trees selected in RF is 100, naïve Bayes algorithm 
and DT algorithm adopt default parameters. 

For the CL317 and ZW225 apoptosis protein 
datasets, the PseAAC and PsePSSM algorithms are used 
to extract features of the protein sequences in the datasets. 
The 2-D wavelet denoising method are used to further 
process for the feature data, the db8 wavelet function is 
still used, and the decomposition scale is 4. Under the 
jackknife test, the main predictions of the five different 
classification algorithms are shown in Tables 10 and 11. 
Five classification algorithms for the two datasets CL317 
and ZW225 subcellular localization prediction of specific 
results see the Supplementary Tables 3 and 4.

Figure 6: This graph shows the ROC curves of ZW225 dataset.
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It can be seen from Table 10 that for the dataset 
CL317, SVM algorithm is used as the prediction algorithm 
of the model, the overall prediction accuracy of the model 
is 99.37%, and the sensitivity, specificity and Matthew’s 
correlation coefficient (MCC) are 99.02%, 99.87% and 
0.9908, respectively. The results of these evaluation 
indicators are superior to the other four classification 
algorithms. Using the naïve Bayes algorithm, the overall 

prediction accuracy of the model is 88.33%, which is 
11.04% lower than that using the SVM algorithm.

It can be seen from Table 11 that for the dataset 
ZW225, the SVM algorithm is used as the prediction 
algorithm of the model, and the overall prediction accuracy 
of the model is 100%, and the sensitivity, specificity and 
Matthew’s correlation coefficient (MCC) are 100%, 
100% and 1, respectively. The results of these evaluation 

Table 8: Prediction results of subcellular localization of the CL317 dataset under different kernel functions

Locations
Functions

Jackknife test (%)
0 1 2 3

Cy 100 100 100 87.50
Me 100 30.91 100 80.00
Mi 94.12 0 91.18 61.76
Se 100 94.12 100 0.00
Nu 100 71.15 100 73.08
En 100 95.74 100 93.62
OA 99.37 71.61 99.05 77.29

Table 9: Prediction results of subcellular localization of the ZW225 dataset under different kernel functions

Locations
Functions

Jackknife test (%)
0 1 2 3

Cy 100 84.29 100 100
Me 100 100 98.88 86.52
Mi 100 0.00 100 52.00
Nu 100 97.56 100 80.49
OA 100 83.56 99.56 85.78

Figure 7: The overall prediction accuracy of two apoptosis datasets CL317 and ZW225 under four different kernel 
functions.
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indicators are superior to the other four classification 
algorithms. Based on the influence of different prediction 
algorithms on the prediction results, Figure 8 shows the 
change of the overall prediction accuracy in datasets CL317 
and ZW225 under different classification algorithms.

It can be clearly seen from Figure 8 that the overall 
prediction accuracy is significantly higher than that of the 
other four prediction algorithms when SVM is used as the 
prediction algorithm in the two datasets. Because of the 
fast computation speed of SVM, the extraction ability of 
the training set implicit information is strong, and it has 
the advantages of excellent generalization performance, 
which can effectively avoid over-fitting. Considering that 
we selected the SVM classification algorithm combined 
with the PseAAC-PsePSSM-WD model constructed by 
2-D wavelet denoising to predict the apoptosis proteins 
subcellular localization.

Performance of prediction model

In this paper, the protein sequence features are 
extracted by fusing PseAAC and PsePSSM, and then the 
subcellular localization of apoptosis proteins is predicted 
by SVM based on 2-D wavelet denoising. According to 
the above analysis, PseAAC is used to extract feature 
information, λ = 15 is chosen, when PsePSSM is used to 
extract feature information, ξ = 10 is chosen. In the process 
of 2-D wavelet denoising, the default threshold is obtained 
by using the wavelet function, the wavelet function is db8, 
the decomposition scale is 4, and the linear kernel function 

is selected as the kernel function of SVM. In this paper, 
self-consistency and jackknife test are used to verify the 
datasets CL317 and ZW225. The main results are shown 
in Tables 12 and 13. In order to further validate the actual 
predictive ability of the model, we use the independent 
testing dataset ZD98 to evaluate our proposed prediction 
model, the results are shown in Table 14. In addition, 
since the ROC curve can test the robustness of the model, 
Figure 9 is the ROC curve obtained by four different 
feature extraction methods for the ZD98 dataset.

It can be seen from Tables 12 and 13 that the datasets 
CL317 and ZW225 are tested by the self-consistency test 
method respectively. The overall prediction accuracy 
is 100%, and the sensitivity, specificity and Matthew's 
correlation coefficient of each protein in the two 
datasets all reach 100%, 100% and 1, respectively. The 
experimental results show that the proposed model can 
grasp the autocorrelation of subcellular localization of 
each type of apoptosis proteins. Jackknife method are 
used to test two datasets. For the dataset CL317, the 
sensitivity of cytoplasmic proteins, membrane proteins, 
secreted proteins, nuclear proteins and endoplasmic 
reticulum proteins all reached 100%. The sensitivity 
of mitochondrial protein is 94.12%. The specificity of 
cytoplasmic proteins, secreted proteins and endoplasmic 
reticulum proteins reached 100%, and MCC is 1. The 
overall prediction accuracy of PseAAC-PsePSSM-WD 
model is 99.37%. For the dataset ZW225, the overall 
prediction accuracy of the PseAAC-PsePSSM-WD model 
is 100%. The sensitivity, specificity, and Matthew’s 

Table 10: Prediction results of subcellular localization of the CL317 dataset under different classification algorithms

Classifiers
Evaluate

Jackknife test 
Sens (%) Spec (%) MCC OA (%)

SVM 99.02 99.87 0.9908 99.37
KNN 99.01 99.79 0.9889 99.05
RF 97.26 99.52 0.9690 97.79
Naïve Bayes 89.61 97.51 0.8629 88.33
DT 93.61 98.98 0.9164 94.64

Table 11: Prediction results of subcellular localization of the ZW225 dataset under different classification algorithms

Classifiers
Evaluate

Jackknife test 
Sens (%) Spec (%) MCC OA (%)

SVM 100 100 1 100
KNN 93.72 98.77 0.9447 96.89
RF 98.72 99.65 0.9871 99.11
Naïve Bayes 95.35 98.04 0.9087 93.78
DT 97.44 99.34 0.9710 98.22
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correlation coefficients of each protein are 100%, 100%, 
and 1, respectively, and the best results are obtained.

It can be seen from Table 14 that the self-consistency 
method is used to test dataset ZD98, the overall prediction 
accuracy is 100%. The sensitivity, specificity and 
Matthew’s correlation coefficient of each class proteins 
in the dataset are 100%, 100% and 1, respectively. The 
experimental results show that the proposed model can 
grasp the autocorrelation of subcellular localization of each 
class of apoptosis proteins. The most rigorous jackknife 
method is used to test the dataset. The sensitivity of 
cytoplasmic proteins, mitochondrial proteins and plasma 
membrane proteins all reached 100%, and the specificity of 
cytoplasmic proteins, other proteins and plasma membrane 
proteins all reached 100%. The overall prediction accuracy 
of PseAAC-PsePSSM-WD model is 98.98%. It can be 
seen from Figure 9 that for the ZD98 dataset, the coverage 
area of the ROC curve using the PseAAC-PsePSSM-WD 
feature extraction method is the largest, and the AUC value 
is 0.9760, which is significantly higher than that of the other 
three methods. The AUC values of PseAAC, PsePSSM and 
PseAAC-PsePSSM methods are 0.9152, 0.9615 and 0.9595, 
respectively. The above results show that the PseAAC-
PsePSSM-WD model proposed in this paper is an effective 
tool for subcellular localization prediction.

Comparison with other methods

A number of prediction methods have been proposed 
for the prediction of subcellular localization of apoptosis 

proteins. In order to evaluate the validity of the PseAAC-
PsePSSM-WD model proposed in this paper, based on the 
jackknife test, we compared the prediction accuracy of 
the model with the predicton method of the same dataset. 
Tables 15 and 16 details the comparison of the proposed 
method and other prediction methods on the datasets 
CL317 and ZW225, respectively.

As can be seen from Table 15, for the CL317 
dataset, the overall prediction accuracy of this method 
is 99.4%, 1.9%–16.7% higher than other prediction 
methods. The overall prediction accuracy of the PseAAC-
PsePSSM-WD model is 1.9% higher than that of the 
DWT_SVM prediction method proposed by Qiu et al. 
[36], which is 16.7% higher than that proposed by 
Chen et al. [44]. The overall prediction accuracy of our 
model is obviously improved. Besides, the prediction 
accuracy of cytoplasmic, membrane, secreted, nuclear 
and endoplasmic reticulum proteins all reached 100% 
using this method, which is significantly higher than the 
predictive accuracy of other methods on these protein 
subcellular. For the secreted proteins, the accuracy 
of the PseAAC-PsePSSM-WD method is 100% and 
41.2% higher than the ID_SVM [34] algorithm. For the 
mitochondrial proteins, the accuracy of the PseAAC-
PsePSSM-WD method is 94.1% and 14.7% higher than 
the EN_FKNN [47] algorithm. In summary, our proposed 
method has achieved satisfactory prediction results on 
CL317 dataset.

As can be seen from Table 16, for dataset ZW225, 
the overall prediction accuracy of this method is 100%, 

Figure 8: The overall prediction accuracy of subcellular localization of the five classification algorithms for datasets 
CL317 and ZW225.
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which is 2.2%–16.9% higher than other prediction 
methods, 12.4% higher than DWT_SVM prediction 
method proposed by Qiu et al. [36], and 16.9% higher 
than that proposed by EBGW_SVM [33]. In addition, the 
prediction accuracy of cytoplasmic proteins, membrane 
proteins, mitochondrial proteins and nuclear proteins 
all reached 100% by this method, which is significantly 
higher than that of other methods on these proteins. 
For mitochondrial proteins, the prediction accuracy of 
PseAAC-PsePSSM-WD method is 100%, which is 40.0% 
higher than that of EBGW_SVM [33], 36.0% higher than 
that of DF_SVM [45]. It is shown that the model proposed 
in this paper has excellent robustness for the prediction of 
mitochondrial proteins in apoptosis proteins. In summary, 
our proposed method has achieved satisfactory predictions 
on the ZW225 dataset.

 In order to further validate the actual predictive 
ability of PseAAC-PsePSSM-WD model, we used the 
independent testing dataset ZD98 and compared with other 
reported prediction methods. Table 17 shows the prediction 
results of the subcellular localization on the ZD98 dataset.

As can be seen from Table 17, the overall prediction 
accuracy of PseAAC-PsePSSM is 99.0%, which is 
2.1%–10.2% higher than other prediction algorithms, 
10.2% higher than DWT_SVM method proposed by 
Qiu et al. [36] and 2.1% higher than SVM_RFE method 
proposed by Liu et al. [38]. In addition, the prediction 

accuracy of cytoplasmic proteins, membrane proteins and 
mitochondrial proteins is 100% using our method, which 
is significantly higher than that of other methods on these 
proteins. For the mitochondrial proteins, the prediction 
accuracy of  DWT_SVM [36] is 53.9%, 46.1% lower 
than the PseAAC-PsePSSM-WD method. It indicated 
that our approach for mitochondrial proteins prediction 
has achieved good results. In addition, the method 
proposed in this paper on the other proteins accuracy 
rate is 91.7%, due to ZD98 dataset, the other proteins has 
12 sequences, and only one protein sequence belonging 
to the other class is predicted to be wrong, but it also 
achieves the highest prediction accuracy. It indicates that 
the model of this paper has excellent properties for the 
prediction subcellular localization of apoptosis proteins. 
In conclusion, our proposed method has achieved 
satisfactory prediction results.

CONCLUSIONS

With the advent of the big data age, massive protein 
sequences are exponentially growing into the database. 
The traditional method of biological experiments has 
been unable to meet the needs of life science research, so 
it is more and more important to study protein subcellular 
localization prediction method based on machine learning. 
In this paper, a novel protein subcellular localization 

Table 13: Prediction performance of different test method for protein subcellular localization on the ZW225 dataset

Locations     
Test

Self-consistency test Jackknife test
Sens (%) Spec (%) MCC Sens (%) Spec (%) MCC

Cy 100 100 1 100 100 1
Me 100 100 1 100 100 1
Mi 100 100 1 100 100 1
Nu 100 100 1 100 100 1
OA 100 100

Table 12: Prediction performance of different test method for protein subcellular localization on the CL317 dataset

Locations
Test

Self-consistency test Jackknife test
Sens (%) Spec (%) MCC Sens (%) Spec (%) MCC

Cy 100 100 1 100 100 1
Me 100 100 1 100 99.62 0.9891
Mi 100 100 1 94.12 100 0.9667
Se 100 100 1 100 100 1
Nu 100 100 1 100 99.62 0.9886
En 100 100 1 100 100 1
OA 100 99.37
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prediction method is proposed. Three apoptosis protein 
datasets are selected, fuse Chou’s PseAAC and PsePSSM 
algorithms to carry out feature extraction on protein 
sequences, and subcellular localization of proteins is 
predicted by SVM algorithm based on 2-D wavelet 
denoising. PseAAC feature extraction can avoid the loss 
of protein sequence-order information, and obtains more 
detailed protein sequence information. PseAAC feature 
extraction not only contains the frequency of various 
amino acids in the protein sequences, but also makes 
full use of the order of amino acids in the sequence and 
various physical and chemical properties. PsePSSM 
feature extraction can obtain the evolutionary information 

of the protein sequences and also retain the sequence 
information of the amino acid residues in the protein 
sequences. Wavelet transform has the characteristics 
of multiresolution analysis, and can have the ability to 
characterize the local characteristics of signal in the time 
domain and frequency domain. Therefore, 2-D wavelet 
denoising can effectively remove redundant information in 
the protein sequences, and extract the characteristic signals 
of each protein itself, which is very important to ensure 
the high prediction accuracy. SVM classification algorithm 
can deal with high-dimensional data, to avoid over-fitting 
and effective removal of non-support vector. By the most 
rigorous jackknife test, the overall prediction accuracies 

Table 14: Prediction performance of different test method for protein subcellular localization on the ZD98 dataset

Locations     
Test

Self-consistency test Jackknife test
Sens (%) Spec (%) MCC Sens (%) Spec (%) MCC

Cy 100 100 1 100 100 1
Me 100 100 1 100 100 1
Mi 100 100 1 100 98.82 0.9579
Other 100 100 1 91.67 100 0.9519
OA 100 98.98

Figure 9: This graph shows the ROC curves of ZD98 dataset.
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of the three benchmark datasets reach 99.37%, 100% and 
98.98%, respectively, and compared with other existing 
methods. The experimental results show that our proposed 
method not only can effectively improve the prediction 
accuracy of protein subcellular localization, but also is 
expected to be used for the prediction of other attributes 
of proteins. We expect that the proposed method can be 
a powerful tool in the field of bioinformatics, proteomics 
and molecular biology. Since user-friendly and publicly 
accessible web-servers represent the future direction for 
developing practically more useful predictors [42, 50], we 
shall make efforts in our future work to provide a web-
server for the method presented in this study.

MATERIALS AND METHODS

Datasets 

In order to facilitate the comparison with the 
previous works, three widely used benchmark datasets: 
CL317, ZW225 and ZD98 are adopted in our work. 
The CL317 dataset consists of 317 apoptosis proteins 
constructed by Chen and Li [34] with six subcellular 
locations, including 112 cytoplasmic proteins, 55 
membrane proteins, 34 mitochondrial proteins, 17 secreted 
proteins, 52 nuclear proteins and 47 endoplasmic reticulum 
proteins. The ZW225 dataset consists of 225 apoptosis 
proteins constructed by Zhang et al. [33] with 41 nuclear 
proteins, 70 cytoplasmic proteins, 25 mitochondrial 

Table 16: Prediction results with different methods on the ZW225 dataset using jackknife test

Methods
Jackknife test (%)

Sensitivity for each class  
Cy Me Mi Nu OA

ID_SVM  [34] 92.9 91.0 68.0 73.2 85.8
DF_SVM [45] 87.1 92.1 64.0 73.2 84.0
FKNN [35] 84.3 93.3 72.0 85.5 85.8
EN_FKNN [47] 94.3 94.4 60.0 80.5 88.0
DWT_SVM [36] 87.1 93.2 64.0 90.2 87.6
Liu et al. [38] 97.1 98.9 96.0 97.6 97.8
Auto_Cova [37] 81.3 93.3 85.7 84.6 87.1
EBGW_SVM [33] 90.0 93.3 60.0 63.4 83.1
Dual-layer SVM [49] 91.4 94.4 76.0 78.1 88.4
PseAAC-PsePSSM-WD 100 100 100 100 100

Table 15: Prediction results with different methods on the CL317 dataset using jackknife test

Methods
Jackknife test (%)

Sensitivity for each class  
Cy Me Mi Se Nu En OA

ID [44] 81.3 81.8 85.3 88.2 82.7 83.0 82.7
ID_SVM [34] 91.1 89.1 79.4 58.8 73.1 87.2 84.2
DF_SVM [45] 92.9 85.5 76.5 76.5 93.6 86.5 88.0
FKNN [35] 93.8 92.7 82.4 76.5 90.4 93.6 90.9
PseAAC_SVM [46] 93.8 90.9 85.3 76.5 90.4 95.7 91.1
EN_FKNN [47] 98.2 83.6 79.4 82.4 90.4 97.9 91.5
DWT_SVM [36] 100 98.2 82.4 94.1 100 100 97.5
APSLAP [48] 99.1 89.1 85.3 88.2 84.3 95.8 92.4
Liu et al. [38] 98.2 96.4 94.1 82.4 96.2 95.7 95.9
Auto_Cova [37] 86.4 90.7 93.8 85.7 92.1 93.8 90.0
DCCA coefficient [39] 91.1 92.7 82.4 76.5 80.8 93.6 88.3
PseAAC-PsePSSM-WD 100 100 94.1 100 100 100 99.4



Oncotarget107657www.impactjournals.com/oncotarget

proteins and 89 membrane proteins. The ZD98 dataset 
consists of 98 apoptosis proteins constructed by Zhou 
and Doctor [31] with 43 cytoplasmic proteins, 30 plasma 
membrane-bound proteins, 13 mitochondrial proteins 
and 12 other proteins. The protein sequences in the three 
datasets are extracted from SWISS-PROT database 
(version 49.5), and the accession numbers can be found in 
the literatures [31, 33, 34]. In this study, datasets CL317 
and ZW225 are selected as the training datasets, used to 
select the parameters of the prediction model, and the 
ZD98 dataset is selected as an independent testing dataset, 
used to test the applicability of the prediction model.

Feature extraction of protein sequences

PseAAC

In order to avoid losing sequence-order information 
of proteins, Chou [51] proposed pseudo-amino acid 
composition (PseAAC) approach to solve the problem 
of extraction of feature vectors in protein sequences. 
They developed an online server [52] that calculates the 
composition of pseudo-amino acids at http://www.csbio.sjtu.
edu.cn/bioinf/PseAA/. On this server, the researchers can 
obtain a variety of different forms of PseAAC by selecting 
different parameters. At present, the researchers have made 
extensive use of the PseAAC methods in predicting protein 
structure [50, 53–57], protein function prediction [58, 59], 
protein-protein interaction prediction [60–62], protein 
subcellular localization prediction [42, 63–66] and protein 
posttranslational modification sites [67] and so on.

According to Chou’s PseAAC discrete model, the 
protein sequence could be represented by (20 + λ – D) 
(dimensional) vector.

1 2 20 20 1 20, ,..., , ,..., TP p p p p p λ+ +=     (1)
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where ω is the weight factor, which was set at 0.05 in Ref. 
[51]. τk is the k-tier sequence correlation factor, which reflects 
the sequence-order information. fu is the occurrence frequency 
of u(u = 1, 2, …, 20)  amino acid in proteins. As can be seen 
from the above formula, the first 20 dimension of the feature 
vector P is the amino acid composition and the posterior λ 
dimension is the sequence correlation factor reflecting the 
different levels of amino acid sequence information. Sequence 
correlation factor can be calculated from the hydrophobicity 
value, hydrophilicity value, and side chain mass of the amino 
acids residue. Because the length of the shortest protein 
sequence is 50 amino acids in the three benchmark datasets, 
the maximum value allowed for λ in Eqs. (1) and (2) is 49.

In this study, we used PseAAC online server 
developed by Shen and Chou [52] to carry out feature 
extraction of protein sequences. On this server, by 
selecting different parameters, the optimal λ can be 
determined from the accuracy of the prediction results.

PsePSSM 

Jones et al. [68] proposed a position specific 
scoring matrix (PSSM), it uses an iterative BLAST search 

Table 17: Performance comparison of the independent testing dataset by the jackknife test on the ZD98 dataset

Methods
Jackknife test (%)

Sensitivity for each class 
Cy Me Mi Other OA

ID [44] 90.7 90.0 92.3 91.7 90.8
ID_SVM [34] 95.3 93.3 84.6 58.3 88.8
DF_SVM [45] 97.7 96.7 92.3 75.0 93.9
FKNN [35] 95.3 96.7 100 91.7 95.9
PseAAC_SVM [46] 95.3 93.3 92.3 83.3 92.9
DWT_SVM [36] 95.4 93.3 53.9 91.7 88.8
APSLAP [48] 95.3 90.0 100 91.7 94.9
Liu et al. [38] 95.3 100 100 91.7 96.9
EBGW_SVM [33] 97.7 90.0 92.3 83.3 92.9
DCCA coefficient [39] 93.0 86.7 92.3 75.0 88.9
PseAAC-PsePSSM-WD 100 100 100 91.7 99.0
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method to discover more protein sequences that have an 
evolutionary relationship with the search sequence. This 
paper mainly used the localization of BLAST to obtain the 
PSSM of the protein sequence. The BLAST package was 
downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/release/
LATEST/ to the local, you can call the corresponding 
executable file by the form of the command line. This 
paper downloaded a non-redundant (nr) protein database 
provided by NCBI (ftp://ftp.ncbi.nih.gov/blast/db/nr), 
which contains about 85,107,862 protein sequences. The 
PSI-BLAST [69] program to search the non-redundant 
(NR) database through three iterations with 0.001 as the 
E-value cutoff for multiple sequence alignment against 
the sequence of the protein P, which has L × 20 scores as 
shown in Eq.(3).

1,1 1,2 1,20

,1 ,2 ,20

,1, ,2 ,20

PSSM i i i

L L L

P P P

P P P P

P P P

 
 
 
 =
 
 
  
 



   



   


 

 (3)

where L is the length of the protein sequence, the Pi,j 
represents the score of the amino acid residue in the i th 
of the protein sequence being mutated to amino acid type j 
during the evolution process. The rows of matrix represent 
the positions of the sequence and the columns of the matrix 
represent the 20 types original amino acids. PSSM scores 
are generally shown as positive or negative integers.

In this work, the PSSM matrix is normalized, and 
the elements in the PSSM matrix are transformed between 
0 and 1 using the following sigmoid function:

  ( ) 1/ (1 )xf x e−= +  (4)

Because a protein sequence generates a L × 20 
matrix and the length L of the protein sequence in the 
dataset is different, the PSSM matrix of different protein 
sequences is transformed into a uniform vector of 
dimensions by the following formula.

  1 2 20( , , , )PSSMP P P P=   (5)

where jP  represents the average score of the amino  
acid residues in the protein P being mutated to amino acid 
type j during the evolution process, that is, jP  represents the 
composition of the amino acid type j in the PSSM. PSSMP  
is denoted by PSSM-ACC [70]. However, this method 
only takes into account the average score of the amino acid 
residues in the protein sequence changing into the amino type 
j, without taking into account the sequence-order information 
of the amino acid residues in the protein sequence. Due to 
this drawback, pseudo-position specific scoring matrix 
(PsePSSM) was proposed [71], and then obtained the 
PsePSSM features through the following equations [50]:

 1 2 20( , , , , )T
PsePSSM jPξ ξ ξ ξ ξθ θ θ θ=     (6)
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where jP  is the correlation factor of amino acid type j, 
whose contiguous distance is ξ along the protein sequence. 
Then, the PsePSSM feature vector can be expressed as 
follows:

1 1 1
1 2 20 1 2 20 1 2 20( , , , , , , , , , , , , )T

PsePSSMP P P P ξ ξ ξθ θ θ θ θ θ=      (8)
It can be seen from the formula (8) that a protein 

sequence PsePSSM generates a 20 + 20 × ξ dimension 
feature vector. This algorithm transforms the protein 
sequences of different lengths in the dataset into dimension 
united vector by feature extraction, which is convenient to 
facilitate the implementation of the next algorithm. 

Two-dimensional wavelet denoising

In recent years, wavelet analysis has attracted 
wide attention in the field of bioinformatics research 
[36, 72–74], especially for protein sequence analysis and 
structural prediction [75–76]. It has the characteristics of 
multiresolution analysis, and has the ability to characterize 
the local characteristics of the signal in the time domain 
and frequency domain. It is a time-frequency localized 
analysis method in which the window size is fixed but the 
shape can be changed and the time window and frequency 
window can be changed.

Wavelet denoising (WD) is one of the important 
applications of wavelet analysis. For the biological signal, 
their energy is highly concentrated in a small amplitude 
of the larger wavelet coefficients or wavelet packet 
coefficients, due to its randomness of the noise, the energy 
is more evenly distributed in the wavelet transformation 
domain. So threshold method is used to suppress the noise 
to the maximum while preserving the signal in the transform 
domain [77, 78]. The decomposition of the protein amino 
acid signals by wavelet analysis can effectively remove the 
redundant information and extract the characteristic signals 
of each protein itself, which is very important for ensuring 
the high prediction accuracy [79].

A two-dimensional (2-D) model with noise [77, 80] 
can be expressed as: 

( , ) ( , ) ( , ) , 1, 2,3, 1s i j f i j e i j i j mσ= + = −  (9)
where (i, j) is the size of the signal, f (i, j) is the real 
signals, e (i, j) is the noise, s (i, j) is the signals with noise, 
and σ  is the noise intensity. The purpose of wavelet 
denoising is to suppress noise e (i, j) and recover real 
signals f (i, j).

In this paper, we fuse PseAAC and PsePSSM 
algorithms to extract the features of each protein 
sequence in the dataset, so that each sequence generates   
(20 + λ) + (20 + 20 × ξ) dimension features. For apoptosis 
protein datasets CL317 and ZW225, the 317 × ((20 + λ)  
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+ (20 + 20 × ξ)) matrix and 225 × ((20 + λ) + (20 +  
20 × ξ)) matrix is generated respectively. The each matrix 
is treated as a two-dimensional signal, and the entire 2-D 
signal is denoised. 

Two-dimensional wavelet denoising steps are as 
follows:

 (1) Wavelet decomposition of 2-D signal. Using 
2-D wavelet transform, make 2-D data decompose to the 
four scales spatial frequency band, that is, low-frequency 
scale spatial frequency band signals f 1, horizontal scale 
spatial frequency band signals dH, vertical scale spatial 
frequency band signals dH, and the diagonal scale spatial 
frequency band signals dD. It is orthogonal decomposition 
process on different scales, that is 1 H V Df f d d d= ⊕ ⊕ ⊕ .  
The low-frequency signals f1 can also continue to 
be decomposed into four directions: the signals of 
apoptosis proteins on the low-frequency scale space f 2, 
the signals on the horizontal scale spatial band d1,H, the 
signals on the vertical scale spatial frequency band d1,V, 
and the signals on the diagonal scale spatial frequency 
band d1,D. The decomposition process is still orthogonal 
which is 1 2 1, 1, 1,H V Df f d d d= ⊕ ⊕ ⊕ . Since the signals 
energy of the apoptosis protein is limited, so the number 
of decomposition of the 2-D wavelet is also limited, 
and the process of the nth wavelet decomposition is 

1 1, 1, 1,n n n H n V n Df f d d d− − − −= ⊕ ⊕ ⊕ .
 (2) Threshold quantization of the decomposed 

high-frequency coefficients. Threshold quantization is 
performed by selecting the appropriate thresholds for the 
high-frequency coefficients from 1 to the N horizontal, 
vertical and diagonal directions of each layer.

 (3) Reconstruct the two-dimensional signals. 
The 2-D signals are reconstructed according to the low-
frequency coefficients of the wavelet decomposition 
and the high-frequency coefficients after the threshold 
quantization. The reconstructed signals are the noise 
reduction signals.

In these three steps, the most critical is how to select 
the threshold and the threshold quantization. Because the 
selection of thresholds directly affects the quality of noise 
reduction, a variety of theoretical and empirical models 
are proposed, but none of them is general. 2-D signals 
commonly used threshold models: default threshold 
determination model, and threshold model determined 
by Birge-Massart strategy. We can choose the wavelet 
functions or wavelet packets to confirm the default 
threshold. In the process of numerical experiment, this 
study aims at select appropriate methods to improve the 
overall prediction accuracy. 

In the process of noise reduction, the wavelet 
coefficients were subjected to threshold processing 
operation. The selection of soft threshold and hard 
threshold has certain influence on the results of wavelet 
denoising [81]. Soft threshold is a more smooth way to 
produce a smoother effect after noise reduction. While 
hard threshold processing preserves some features such 

as spikes in the signal, we choose soft threshold wavelet 
denoising method.

In this study, we fused PseAAC and PsePSSM 
algorithms to extract the features of each protein sequence 
in the dataset, and then extract feature vectors of the 
proteins by 1-D and 2-D wavelet denoising respectively. 
The specific process is as follows: Firstly, the wavelet 
decomposition function of two denoising methods both 
use db8 wavelet, the scale level is 4. Then the high-
frequency coefficients are processed by threshold, and 
the thresholds are selected by wavelet function to get the 
default threshold. Finally, the signals are reconstructed 
based on the low-frequency coefficients of the wavelet 
decomposition and the high-frequency coefficients after 
the threshold quantization. In order to more intuitively 
compare the influence of 1-D and 2-D wavelet denoising 
on the datasets, we pick the protein No. Q13323 in the 
cytoplasmic protein sequences from the apoptosis protein 
dataset CL317 as an example, and the results are shown 
in Figure 10.

It can be seen from Figure 10, Q13323 protein 
sequence after 1-D and 2-D wavelet denoising, the 
use of 2-D wavelet denoising can not only effectively 
removed redundant information in the protein sequence, 
but also has more advantage over 1-D wavelet denoising 
in extracting feature signals of the protein itself. From 
the principle of 1-D and 2-D wavelet denoising, we can 
see that the frequency band of 1-D wavelet denoising 
decomposition is not detailed enough. 2-D wavelet 
denoising can deal with the entire dataset, and the data is 
denoised from the low-frequency, horizontal, vertical and 
diagonal scale space. The frequency band of 2-D wavelet 
denoising decomposition is detailed. We found that 2-D 
wavelet denoising can effectively improve the feature of 
each class of apoptosis protein sequences after several 
comparisons. Therefore, we adopt use the 2-D wavelet 
denoising method for the apoptosis protein datasets.

Support vector machine

Support vector machine (SVM) is a machine 
learning method based on statistical learning theory 
proposed by Vapnik et al. [82]. In recents years, it has 
been introduced to solve various pattern recognition 
problems. For the bioinformatics data with high 
dimensionality, small sample and non-linearity, SVM 
has excellent learning performance under the principle of 
structural risk minimization. It is widely used to predict 
membrane protein types [83], G protein-coupled receptors 
[84], protein structural classes [55, 85, 86], protein-protein 
interaction [87], protein subcellular localization [42, 88], 
protein post-translational modification sites [89, 90] and 
other protein function prediction research.

For a two-class classification problem, 
suppose a training set with n samples 

( ){ } { }, | 1, 2, , , 1, 1 ,d
i i i iG x y i n x R y= = ∈ ∈ + −  where xi 
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is d dimension feature vectors of sample i, yi is the class 
labels of sample i. In order to complete the classification 
of the two classes of samples, SVM maps the samples of 
the input vector into a high-dimensional feature space 
using some nonlinear kernel function, and constructing an 
optimal separating hyperplane in this space to make the 
two samples linearly separable.

The kernel function K(xi, xj) is used to replace the 
dot product in the optimal classification hyperplane, the 
decision function is given by:

( )
1

( , )
n

i i i j
i

f x sgn y K x x bα
=

 = + 
 
∑  (10)

where ai denotes Lagrange multiplier, b is classification 
threshold value, K(xi, xj) is the kernel function. The 
selection of kernel function is very important in the 
process of training the support vector. It can effectively 
overcome the “curse of dimensionality”. The appropriate 
kernel function can improve the prediction accuracy of 
the classification model. Generally, four kinds of kernel 

functions, i.e. linear kernel function, polynomial kernel 
function, radial basis function (RBF) and sigmoid kernel 
function, can be available to perform prediction.

SVM is originally designed for two-class 
classification, and protein subcellular localization 
prediction is a multi-class classification problem. 
Currently, there are three main strategies for multi-
classification: one-versus-one (OVO), one-versus-rest 
(OVR) [91] and direct acyclic graph (DAG) [92]. In this 
paper, we use the OVO strategy. For a k-class problem, 
we need to train ( 1) / 2k k× −  two-class SVM classifiers. 
Each classifier is used to distinguish which class it belongs 
to respectively. Votes for each class are counted and the 
class with the most votes as the predict class. This study 
used LIBSVM package developed by Chang and Lin [93], 
which can be freely downloaded from http://www.csie.ntu.
edu.tw/~cjlin/libsvm/.

Figure 10: Wavelet denoising using db8 wavelet function and decomposition scale is j = 4. The x axis indicates the 
residue position along the sequence, the y axis indicates the intensity of signal.
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Performance evaluation and model building

In statistical prediction, four validation tests are 
often used to evaluate the prediction performance: 
independent dataset test, jackknife test, self-consistency 
test and k-fold cross-validation. In this study, jackknife 
test and self-consistency test method are used to examine 
the performance of the prediction model.

To evaluate the performance of related predictive 
methods, we report five standard performance measures, 
including Sensitivity, Specificity, Matthew’s correlation 
coefficient (MCC), Overall accuracy (OA) and Area 
Under the ROC Curve (AUC). These measures are 
defined as follows:

  

TP
Sens

TP FN
=

+  
(11)

  

TN
Spec

TN FP
=

+
 (12) 

 ( ) ( ) ( ) ( )
TP TN FP FN

MCC
TP FP TP FN TN FP TN FN

× − ×
=

+ × + × + × +   (13)

  

TP TN
OA

TP FN FP TN

+
=

+ + +
 (14)

where TP represents the number of true positives, FB 
represents the number of false positives, TN represents 
the number of true negatives, FN represents the number 
of false negatives. In addition, the receiver operating 

characteristic (ROC) curve can test the generalization 
performance of the model. The AUC is used as a 
quantitative indicator of the robustness of the model. In 
general, the larger the area covered by ROC, the higher the 
AUC value and the better the generalization performance 
of the model.

For convenience, the method for predicting apoptosis 
protein subcellular localization in this paper is called 
PseAAC-PsePSSM-WD, and the general framework is 
shown in Figure 11. We have implemented it in MATLAB 
R2014a in windows Server 2012R2 running on a PC with 
system configuration Intel (R) Xeon (TM) CPU E5-2650 
@ 2.30GHz 2.30GHz with 32.0GB of RAM.

The steps of the PseAAC-PsePSSM-WD prediction 
method are described as follows: 

1) Input protein sequences of two different apoptosis 
datasets CL317 and ZW225, respectively, and the class 
label corresponding to all kinds of proteins; 

2) Use PseAAC online service system developed 
by Shen and Chou [52] to carry out feature extraction 
on the protein sequences and generate 20 λ+  dimension 
feature vector. The 20 20 ξ+ ×  dimension feature 
vector is generated by PsePSSM. Two methods are 
combined to generate ( )317 (20 ) (20 20 )X λ ξ= × + + + ×  and 

( )225 (20 ) (20 20 )X λ ξ= × + + + ×  dimension feature vectors 
from the CL317 and ZW225 datasets, respectively;

3) Wavelet denoising method is used to denoise the 
numerical sequences extracted in 2), and the redundant 
information in the sequence is eliminated;

Figure 11: Flow chart of apoptosis protein subcellular localization prediction based on PseAAC-PsePSSM-WD method.
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4) The optimal feature vectors of noise reduction are 
input to the SVM classifier, and to the protein subcellular 
localization is predicted by jackknife test;

5) According to the accuracy of prediction, choose the 
optimal parameters of the model, including the λ values and 
ξ values of parameters, wavelet function selection, different 
decomposition scales and kernel functions in SVM; 

6) According to the optimal parameters of the 
predicted model, Sens, Spec, MCC and OA are calculated, 
and the prediction performance of the model is evaluated; 

7) Using the model constructed by 1) – 6), the 
independent testset ZD98 is used to test the prediction 
model.
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