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ABSTRACT

Objective: To investigate the topological organization of functional brain 
networks in chemotherapy-treated breast cancer (BC) patients with source memory 
impairment.

Methods: Twenty-eight patients with BCfollowingchemotherapyand40age-and 
education-matched healthy controls (HCs) were recruited in the current study. All 
participants underwent source memory tests and resting-state functional MRI scans. 
Individual whole-brain functional brain networks were constructed and analyzed 
using graph-based network approaches.

Results: Compared with the HCs, the BC patients showed lower scores in the 
source memory tests (P < 0.001).Graph-based analyses revealed that the patients 
showed higher absolute global and local efficiency (both P < 0.01) but lower 
normalized global and normalized local efficiency (both P< 0.001) compared with the 
HCs. Locally, several prefrontal, occipital, and parietal regions exhibited higher nodal 
efficiency and functional connectivity in the patients(P< 0.05, corrected). Finally, 
positive correlations were observed between normalized global efficiency and Mini-
Mental State Examination scores (r = 0.398, P = 0.036) and between normalized 
local efficiency and the source memory scores (r = 0.497, P = 0.01) in the patients.

Conclusion: Chemotherapy-treated BC is associated with abnormal organization 
of large-scale functional brain networks, which could account for source memory 
dysfunction in patients with BC.

INTRODUCTION

Chemotherapy-induced cognitive impairments (CICI) 
involve multiple cognitive domains including attention, 
memory, executive function, and information processing 
speed in patients with cancer during or after chemotherapy. 
Breast cancer (BC) is one of the most prevalent types 
of cancer, with a higher incidence, but it also has better 
treatment outcomes than others. Patients with BC can survive 
for a long time, and chemotherapy has therefore become an 

important issue with long-term effects on the life quality 
of patients with BC. In 2014, experts suggested initiating 
guidelines for assessment and management of chemobrain 
[1]. JCO also published a new study on chemobrain, which 
indicated that chemobrain is one of the most important areas 
of research [2].However, the neural mechanism underlying 
BC chemobrain is not currently well established, particularly 
from a system-level network integrity perspective.

Previous neurophysiological studies have 
documented that patients with BC after chemotherapy 
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have subjective and objective cognitive damage [3, 4]. 
However, CICI occurs heterogeneously in BC. A meta-
analysis showed that CICI in BC is present in language 
and visual space [5], while Morean et al.[6]found that 
it mainly appeared in memory, attention, and social 
cognition. More recently, several studies found that 
memory impairment is prominent in CICI in BC, but 
the degree of damage is specific to different memory 
components [7]. BC chemobrain is mainly associated 
with impairment of event-based prospective memory 
(EBPM) in terms of prospective memory(PM), and with 
source memory in terms of episodic memory. Overall, 
these studies collectively suggest that different cognitive 
domains, rather than a single one, are affected by CICI in 
patients with BC, indicative of an involvement of multiple 
functional systems in the disease. This makes network-
level studies vital for understanding the neural substrates 
of CICI in patients with BC.

Brain networks can be derived from different 
modalities of non-invasive neuroimaging techniques in 
vivo [8]. Specifically, resting-state functional MRI (rs-
fMRI) is a promising tool for mapping intrinsic brain 
connectivity network sand has been widely applied to 
various brain disorders [9]. This technique measures 
spontaneous brain activity as low-frequency fluctuations 
in blood oxygen level-dependent (BOLD) signals [10], 
which exhibit coherent temporal dynamics within and 
across different neuroanatomical systems. Using this 
technique, Kesler et al. [11]found that BC chemobrain 
was related to decreased functional connectivity of the 
default mode network. On a more global scale, Bruno 
and colleagues [12]showed that whole-brain functional 
networks exhibited a reduced normalized clustering 
coefficient for patients with BC receiving chemotherapy. 
However, the study found no correlation between 
cognitive decline and the network alterations.

In the present study, we systematically investigated 
the topological organization of functional brain networks 
in28patients with BC after chemotherapy and 40 age- and 
education-matched healthy controls (HCs).Specifically, 
individual functional brain networks were constructed 
by calculating interregional functional connectivity of 

spontaneous brain time series signals among 90 regions 
of interest (ROIs).Graph-based network efficiency was 
then calculated to topologically characterize the resultant 
networks at both global and nodal levels. BC-related 
alterations in these network properties were further 
statistically tested. Finally, a correlation analysis was 
carried out to examine the relationship between network 
alterations and cognitive performance in the patients.

RESULTS

Between-group differences in demographic and 
neuropsychological variables

There were no significant differences in age or 
education between the patient and control groups (both 
P > 0.05). However, the patients had significantly lower 
scores on the digit span test, the verbal fluency test, the 
Mini-Mental State Examination (MMSE) scores, and the 
source memory task compared to the HCs (all P < 0.001) 
(Table 1).

Between-group differences in small-world 
efficiency

The mean correlation matrices of the BC and HC 
groups are shown in Figure 1. Both groups exhibited small-
world organization of their functional brain networks over 
the whole sparsity range studied (i.e., normalized global 
efficiency ~ 1 and normalized local efficiency > 1) (Figure 
2). Further statistical comparisons of the AUCs revealed 
that the patients showed significantly increased global (P 
= 0.007) and local (P < 0.001) efficiency compared with 
the HCs. However, after the normalization by random 
networks, these two measures exhibited significantly 
lower values in the patients compared to the HCs (both P 
< 0.001) (Table 2).

We further examined the effect of imbalanced 
sample numbers between the BC and HC groups (i.e., 28 
vs. 40) on the above results. First, we randomly chose 28 
HCs from the control group, and computed and recorded 
the difference in the mean of each network measure 

Table 1: Demographics and clinical characteristics and cognition of the participants

BC (n=28) HCs (n=40) P value

Age(years) 51.46±8.72 50.23±8.15 0.551

Education (years) 9.25±3.22 9.58±3.44 0.695

MMSE 25.89±2.41 28.35±1.46 <0.001

Digit span 6.64±0.91 11.73±2.09 <0.001

Verbal fluency test 5.43±1.07 6.60±1.03 <0.001

Source memory 0.53±0.04 0.75±0.04 <0.001

BC, breast cancer; HCs, healthy controls; MMSE, Mini-Mental State Examination.
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Figure 1: The mean correlation matrices within each group.  HC, healthy control; BC, breast cancer.

Figure 2: Small-world properties of functional brain networks as a function of sparsity.  HC, healthy control; BC, breast 
cancer.

Table 2: Between-group differences in global network measures

HCs (n = 40) BC (n = 28) P value

Local efficiencyauc 0.136 ± 0.022 0.166 ± 0.029 <0.001

Global efficiencyauc 0.084 ± 0.007 0.089 ± 0.008 0.003

Normalized local efficiencyauc 0.604 ± 0.086 0.527 ± 0.059 <0.001

Normalized global efficiencyauc 0.265 ± 0.018 0.243 ± 0.022 <0.001

BC, breast cancer; HCs, healthy controls; auc, area under the curve.
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between all the BC patients and the subset of HCs. This 
procedure was iteratively performed 10,000 times to 
obtain a distribution, which was used to determine whether 
the between-group network differences derived from 
all the participants (i.e., 28 BC patients vs. 40 HCs) fell 
outside its 95% confidence intervals. The results showed 
that between-group differences of all network derived 
from all the participants fell within the 95% confidence 
intervals of the corresponding distributions derived from 
the balanced sample numbers. Further, we statistically 
compared network efficiency of the BC patients with each 
subset of HCs (permutation test), and found significant 
(P< 0.05) between-group differences in most cases (10,000 
out of 10,000 for local efficiency, 9,936 out of 10,000 for 
global efficiency, 10,000 out of 10,000 for normalized 
local efficiency, and 10,000 out of 10,000 for normalized 
global efficiency) with the same altered directions to those 
derived from all the participants. These findings indicate 
limited effect of imbalanced sample numbers between the 
BC and HC groups on the above results.

Between-group differences in nodal efficiency

Figure 3 shows spatial distribution of hubs for each 
group. In the HC group, we identified 14 hub regions, 
including 10 association cortex regions, two paralimbic 
cortex regions and two primary cortex regions. These hubs 
were mainly located in frontal/prefrontal (the bilateral 
middle frontal gyri, the opercular part of the right inferior 
frontal gyrus, the orbital part of the right inferior frontal 
gyrus, the right rolandic operculum, and the left medial 
superior frontal gyrus), parietal (the bilateral postcentral 
gyri, the bilateral inferior parietal, but the supramarginal 
and angular gyri and the bilateral supramarginal gyri), and 
temporal (the left superior temporal gyrus and the right 
temporal pole: superior temporal gyrus) regions. In the 
BC group, we identified fifteen hub regions, including 

eight association cortex regions, five paralimbic cortex 
regions, and two primary cortex regions. These hubs were 
predominantly located in parietal (the bilateral postcentral 
gyri, the bilateral superior parietal gyri, the left inferior 
parietal, but the supramarginal and angular gyri, the 
right angular gyrus, and the left precuneus), prefrontal 
(the orbital part of the bilateral superior frontal gyrus, 
the orbital part of the right middle frontal gyrus, and the 
bilateral gyrus rectus), and occipital (the bilateral superior 
occipital gyri and the right middle occipital gyrus) regions. 
Notably, only three regions were commonly identified as 
hubs in both groups, including the bilateral postcentral 
gyrus and the left inferior parietal, but the supramarginal 
and angular gyri).

Further between-group comparisons revealed that 
nine regions showed increased nodal efficiency in the 
patients with BC compared to the HCs(Figure 4). The 
regions included the orbital part of the bilateral superior 
frontal gyrus, the bilateral gyrus rectus, and the bilateral 
superior occipital gyrus, the left superior parietal gyrus and 
the left precuneus, and the right middle occipital gyrus. 
Notably, all these regions were identified as hubs in the 
patient group. There were no regions showing decreased 
nodal efficiency in the patients compared to the HCs.

Between-group differences in functional 
connectivity

We identified two connected components that 
exhibited increased functional connectivity in the patients 
with BC compared with the HCs (P< 0.001, corrected) 
(Figure 5). The first component included 22 nodes and 42 
edges that were mainly situated in parietal and occipital 
regions. The other included 13 nodes and 37 edges that 
were predominantly located in prefrontal regions. It is 
worth mentioning that all the regions showing increased 
nodal efficiency described above were included in these 

Figure 3: Hubs within each group.  HC, healthy control; BC, breast cancer. Refer to Table 3  for regional abbreviations.
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Figure 4: Increased nodal efficiency in the patients.  Refer to Table 3  for regional abbreviations.

Figure 5: Increased functional connectivity in the patients.  Refer to Table 3  for regional abbreviations.
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two components. No components were found to show 
significantly decreased functional connectivity in the 
patients.

Relationship between network measures and 
neuropsychological variables

Significantly positive correlations were observed 
between normalized global efficiency and the MMSE 
scores (r = 0.398, P = 0.036) and between normalized 
local efficiency and the source memory scores (r = 
0.497,P = 0.01) in the patients (Figure 6). Of note, these 
correlations did not survive after correcting for multiple 
comparisons (P> 0.05, corrected by the False Discovery 
Rate procedure). No significant correlations were found 
between other network/connectivity measures and 
cognitive variables(all P > 0.05).

DISCUSSION

The current study investigated topological 
organization of functional brain networks of 
chemotherapy-treated patients with BC by combining 
rs-fMRI and graph theory methods. We observed that 
compared with the HCs, the patients had cognitive 
dysfunction in general cognition, short-term memory, 
executive function, episodic memory, and prospective 
memory. Further network analyses revealed that the 
patients showed abnormal network organization of parallel 
network efficiency in their brain networks. Moreover, the 
altered network efficiency was associated with clinical 
variables of the patients. Locally, several prefrontal, 
occipital, and parietal regions showed increased nodal 
efficiency and functional connectivity in the patients. 
Overall, these findings provide empirical evidence 

for network dysfunction in survivors of BC that may 
contribute to disturbances of cognitive functions in these 
patients.

We found that the patients showed cognitive 
obstacles in multiple cognitive domains including 
language, memory, and other cognitive functions. This 
is consistent with previous studies [13, 14]. Particularly, 
memory impairment seems to be one of the most 
prominent features of BC chemobrain. Based on the same 
cohort of patients, these findings confirm that rather than 
affecting a single domain, BC chemobrain is related to 
cognitive dysfunction in multiple domains.

Graph-based network analyses of the human brain 
are becoming popular in neuroscience, because they 
can provide valuable information for our understanding 
of how the wiring diagram of the brain might promote 
information transfer and processing [15]. Moreover, 
this analytical framework is becoming more and more 
popular in atypical populations, because accumulating 
evidence indicates that many neuropsychiatric diseases 
are associated with abnormal coordination between 
regions, indicative of network dysfunction. Here, we 
applied a graph-based network analysis to BC chemobrain 
and discovered that although functional brain networks 
of both groups exhibited small-world organization, 
absolute global efficiency and local efficiency were 
significantly increased in the BC group compared to 
the HC group. Global efficiency reflects integrative 
information processing between and across remote 
regions of the brain and is mainly associated with long-
range connections. Local efficiency reflects modular 
information processing or fault-tolerance of a network and 
is predominantly associated with short-range connections 
between nearby regions. The increase in absolute global 
and local efficiency thus suggests that the functional 

Figure 6: Relationship between network efficiency and cognition in the patients.  AUC, area under curve; MMSE, Mini-
Mental State Examination.
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Table 3: Regions of interest

Index Regions Abbreviations Index Regions Abbreviations

1,2 Superior frontal gyrus, dorsolateral SFGdor 47,48 Middle frontal gyrus, orbital part ORBmid

3,4 Middle frontal gyrus MFG 49,50 Inferior frontal gyrus, orbital part ORBinf

5,6 Inferior frontal gyrus, opercular part IFGoperc 51,52 Superior frontal gyrus, medial orbital ORBsupmed

7,8 Inferior frontal gyrus, triangular part IFGtriang 53,54 Gyrus rectus REC

9, 10 Rolandic operculum ROL 55,56 Insula INS

11,12 Supplementary motor area SMA 57,58 Anterior cingulate and paracingulate gyri ACG

13,14 Superior frontal gyrus, medial SFGmed 59,60 Median cingulate and paracingulate gyri DCG

15,16 Cuneus CUN 61,62 Posterior cingulate gyrus PCG

17,18 Lingual gyrus LING 63,64 Parahippocampal gyrus PHG

19,20 Superior occipital gyrus SOG 65,66 Temporal pole: superior temporal gyrus TPOsup

21,22 Middle occipital gyrus MOG 67,68 Temporal pole: middle temporal gyrus TPOmid

23,24 Inferior occipital gyrus IOG 69,70 Olfactory cortex OLF

25,26 Fusiform gyrus FFG 71,72 Hippocampus HIP

27,28 Superior parietal gyrus SPG 73,74 Amygdala AMYG

29,30 Inferior parietal, but supramarginal and angular gyri IPL 75,76 Caudate nucleus CAU

31,32 Supramarginal gyrus SMG 77,78 Lenticular nucleus, putamen PUT

33,34 Angular gyrus ANG 79,80 Lenticular nucleus, pallidum PAL

35,36 Precuneus PCUN 81,82 Thalamus THA

37,38 Paracentral lobule PCL 83,84 Precental gyrus PreCG

39,40 Superior temporal gyrus STG 85,86 Calcarine fissure and surrounding cortex CAL

41,42 Middle temporal gyrus MTG 87,88 Postcentral gyrus PoCG

43,44 Inferior temporal gyrus ITG 89,90 Heschl gyrus HES

45,46 Superior frontal gyrus, orbital part ORBsup

Regions of left and right hemispheres are indexed by odd and even numbers, respectively.

brain networks of the patients are more efficient in favor 
of information propagation, exchange, and processing at 
both global and local levels. This is consistent with our 
subsequent analyses of nodal efficiency and functional 
connectivity, which revealed increased nodal efficiency 
and interregional coordination of multiple regions in 
the patients (see below for further discussions on these 
increases).However, after normalization by random 
networks, functional brain networks of the patients showed 
lower normalized global and normalized local efficiency 
than the HCs. Normalized network efficiency quantifies 
the deviation or optimization degree of an actual network 
from matched random networks that have the same number 
of nodes and edges and the same degree distribution as 
the actual brain networks. This normalization procedure 
is important because it corrects for potential differences 
in network features between groups, such as degree 
distribution. Indeed, we found that random networks 
derived from the patient group had significantly higher 
network efficiency (global and local) than those derived 
from the HC group (P< 0.001). This explains why opposite 
patterns were observed between absolute and normalized 

network efficiency in revealing BC-related alterations. 
The opposite patterns are also consistent with our view 
that absolute efficiency and normalized network efficiency 
complement each other to fully characterize topological 
organization of brain networks. Given that the small-world 
organization reflects an optimal balance between local 
specialization and global integration, our findings imply a 
break of the normal balance in BC. This is consistent with 
a previous study that showed lower normalized clustering 
coefficients in functional brain networks of patients with 
BC [12]. Interestingly, the altered network efficiency 
was related to cognitive impairments in the patients as 
evidenced by positive correlations between normalized 
local efficiency and source memory and between 
normalized global efficiency and the MMSE scores. That 
is, the lower the normalized network efficiency of the 
patient’s brain, the worse the cognitive performance of 
the patient. This suggests a neurocognitive significance of 
small-world network efficiency in monitoring cognitive 
impairments in patients with BC. It should be noted that 
the brain-behavior relationships were not corrected for 
multiple comparisons, and thus the correlations should be 
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explained with cautions. Future studies are warranted to 
systematically investigate the associations between brain 
network alterations and cognitive disturbances in BC.

In addition to topological characterization of the 
whole brain network, we also investigated regional nodal 
efficiency and interregional functional connectivity. Nodal 
efficiency measures the extent of information exchange 
between a given node and all other nodes in a network 
and therefore reflects the importance or information load 
of the node [16]. We found that functional brain hubs 
were mainly located in association and paralimbic cortex 
regions of prefrontal and parietal lobes for both groups. 
Most of these regions have been identified as hubs in 
previous morphological, structural, and functional brain 
networks [17–23]. Nevertheless, only three hubs were the 
same between the two groups, suggesting a remarkable 
redistribution of functional brain hubs in patients with 
BC. Further, we found that several regions of the frontal, 
occipital, and parietal lobes exhibited increased nodal 
efficiency in the patients. These regions were also found 
to have increased functional connectivity in the patients. 
Studies employing voxel-based morphometry [24–26]
and multimodal MRI techniques [27]found that patients 
with BC showed decreased gray matter and white matter 
volume after chemotherapy in the prefrontal cortex, the 
posterior parietal cortex, the parahippocampal gyrus, 
the thalamus, the cingulate, and the precuneus. These 
findings have shown that brain structural changes caused 
by chemotherapy are mainly inparietal, frontal, and 
occipital regions [24-26, 28-30]. These brain regions 
are consistent with those showing increased nodal 
efficiency and functional connectivity in the patients in 
the present study. Because it is highly plastic, the brain 
can adaptively reorganize to maintain normal function 
by adjusting regional connectivity profiles when some 
neurons are inefficient or damaged [31]. The increased 
nodal efficiency and functional connectivity found in the 
present study thus suggests that the patients’ brains add 
or establish new connections to compensatefor destructive 
effects caused by the disease. The compensatory increases 
of functional connectivity further lead to increased 
absolute network efficiency in the patients as discussed 
above. Indeed, by summarizing findings from 126 network 
studies, a recent study showed that hyperconnectivity is a 
common response of the brain to neurological disruption 
[32]. One possible reason for the hyperconnectivity is that 
neurological disruption requires ongoing recruitment of 
available detour paths, and the hyperconnectivity may be 
optimally expressed by increasing connections through 
the most central and metabolically efficient regions [33]. 
This is consistent with our findings that all the regions 
showing increased nodal efficiency in the patients were 
hubs. Nevertheless, the biological mechanism accounting 
for the observed hyperconnectivity is not clear particularly 
given relatively few network studies in BC. Future studies 
may provide deeper insights into this issue by combining 

multimodal imaging methods (e.g., arterial spin labeling 
and positron emission tomography) and biochemical 
techniques. Notably, using a seed-based approach, 
only decreased functional connectivity was found 
with the anterior cingulate cortex for BC patients with 
chemotherapy in a previous study [34]. This discrepancy 
could be attributable to remarkable differences in the 
interval between the last chemotherapy and subsequent 
MRI scan (i.e., with in1 month vs. 36.6 ± 4.4 months) and/
or different analytical approaches (e.g., regional level vs. 
voxel level).

This study has several limitations. First, the sample 
size is relative small for the current pilot study, which 
could challenge the generality of the current findings 
and limit the power to detect more subtle effects. For 
example, our correlation results did not survive after 
multiple comparison correction. Moreover, stage IV 
patients with BC were included in the current study. This 
may further increase the heterogeneity of the disease 
status and the pathogenesis among the patients, and thus 
confound the current findings. Future studies are needed to 
examine BC-related functional brain network alterations 
and their associations with cognitive disturbances of 
the patients by recruiting more clinically homogeneous 
samples. Second, this study is a cross-sectional study. It 
is difficult to exclude the possibility that brain networks 
are heterogeneous before chemotherapy. So far there is no 
literature reporting on the inherent heterogeneity of brain 
networks in patients with BC. Future studies may help 
explain the current findings by investigating brain network 
dysfunctions before chemotherapy and longitudinal 
network changes between pre-chemotherapy and post-
chemotherapy. Third, the human brain is a complex 
system with many non-trivial organizational principles. 
In addition to efficient small-world organization, future 
studies need to examine other network features in 
patients with BC, such as rich-club organization, modular 
structures, and dynamic network evolution. Fourth, this 
study only explores functional brain networks of CICI in 
BC. Although accumulating evidence suggests a strong 
relationship between structural and functional connectivity 
[35, 36], there is a lack of one-to-one correspondence [37]. 
Moreover, different topological features are observed 
between structural and functional brain networks [38]. 
Thus, a fusion analysis of multimodal neuroimaging 
data is needed in the future to examine similarities and 
differences between structural and functional brain 
networks, to reveal BC-related topological abnormalities. 
Finally, we note that the patients included in this study 
are less well-educated than those in previous studies. It 
is interesting to investigate whether and how BC-related 
functional brain network alterations depend on different 
levels of education and thus cognitive reserve of the 
patients.

In summary, this study provides evidence for brain 
dysfunction in survivors of BC from the viewpoint of 
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the global organization of brain functional networks, by 
using rs-fMRI. In addition, we also report for the first 
time that the brain network changes are correlated to 
the source memory disorder, which may provide novel 
implications for the possible mechanisms underlying 
CICI in BC.

MATERIALS AND METHODS

Participants

This study is a case-control study. It included 28 
patients with breast cancer who underwent postoperative 
adjuvant chemotherapy in the Department of Oncology 
of the Affiliated Second Hospital of Anhui Medical 
University in China from January 2014 to June 2015. 
Neuropsychological tests and MRI scans were performed 
one month after the last chemotherapy for the patients. 
Forty age-matched and education-matched adults (mainly 
relatives of the breast cancer patients and workers of the 
same hospital) were recruited through advertisements 
as control subjects. All subjects were right-handed. All 
patients were at BC stages I–IV and were treated with six 
cycles of standard dose TEC chemotherapy (docetaxel 
75 mg/m2 intravenous drip d1 (doxorubicin 50 mg/
m2 intravenous drip d1; cyclophosphamide 500 mg/m2 
intravenous drip d1; 21 days per cycle). The pathology of 
all patients was infiltrating ductal carcinoma, ECOG 0-1. 
Chemotherapy regimens and doses for all patients were 
in accordance with NCCN guidelines. The exclusion 
criteria included the following: (1) central nervous 
system radiation or intrathecal therapy; (2) current or 
past alcohol or drug dependence; (3) neurobehavioral 
risk factors including neurologic, medical, or psychiatric 
conditions known to affect brain structure or function, 
except a history of depression or anxiety; (4) any MRI 
contraindications; (5) patients with brain metastases; 
(6) patients with obvious psychological distress and 
fatigue in terms of the Distress Thermometer and 
National Cancer Institute Common Toxicity Criteria. 
The MRI data of all patients were collected within one 
month after six cycles of chemotherapy. This study was 
approved by the Research Ethics Review Board of the 
Second Affiliated Hospital of Anhui Medical University, 
and written informed consent was obtained from each 
participant.

Neuropsychological tests

The following neuropsychological tests were 
administered to all participants: (1) the MMSE to measure 
global cognitive functions, (2) the verbal fluency (number 
of animals per minute) test to measure frontal-temporal 
functions, and (3) the digit span test to estimate short-term 
memory and executive function, including forward and 
backward spans.

Source memory tests

Materials

There were eight categories of daily-life common 
objects (fruits, animals, clothing, tools, furniture, 
transportation tools, stationery and household electrical 
appliances). Two objects were selected from each 
category; one was presented with a Jane diagram (selected 
images from Snodgrass), while the other was presented 
with content words.
Procedure

(1) Learning phase: Subjects were visually 
presented with one content word and one real figure 
from each category. The participants were then asked 
to choose another object of the same category and 
remember it. There were a total of 24 things from eight 
categories. (2) Testing phase: After 5 minutes of studying, 
the subjects were randomly presented with48 content 
words that belonged to eight categories. Of these 48 
content words,24 items were learned (content words, 
real figures, or associated objects). The other 24 objects 
were interferential. Subjects were asked to make a new 
(interferential object) or old (learned object) judgment in 
of the recognition task. Subjects were then asked to make 
a judgment of the source memory task from the learned 
object. In addition, subjects were asked to indicate the 
order of the project presentation in the learning phase 
(content words, real figures, or associated objects) [39].
Source memory performance

Performance was calculated as correct numbers/total 
target numbers. All tests were completed by one doctor to 
eliminate bias.

MRI image acquisition and preprocessing

All MR images were acquired using a Siemens Verio 
3.0 T scanner (Siemens, Erlangen, Germany) at the Second 
Affiliated Hospital Cancer Institute of Anhui Medical 
University. Functional images were collected using an 
echo-planar imaging (EPI) sequence with the following 
acquisition parameters:32 axial slices; repetition time (TR) 
= 2000ms; echo time (TE) = 30 ms; flip angle (FA) = 9°; 
slice thickness = 4 mm; no gap; matrix = 64×64; and field 
of view (FOV) = 220×220 mm2. During the scanning, all 
participants were instructed to keep their eyes closed, relax 
their minds, and remain as motionless as possible. The 
scan lasted for 480 s. Additionally, individual structural 
images were also acquired for the registration purpose 
using a T1-weighted gradient echo spiral pulse sequence: 
192 axial slices; TR = 1700 ms; TE = 2.98 ms; FA = 9°; 
slice thickness = 1.0 mm; no gap; matrix = 256×256; and 
FOV = 256×256 mm2.

All functional data preprocessing, network 
construction, topological analysis, and statistical 
comparisons were performed using the GRETNA toolbox 
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[40] based on SPM 8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). First, the first five volumes were removed 
for each participant to allow for T1 equilibration effects. 
The remaining images were then corrected for intra-
volume time offsets between slices (Sinc interpolation) 
and inter-volume geometrical displacements due to head 
motion (six-parameter rigid-body transformation). No 
participants were excluded based on the criterion of a 
displacement > 2.5 mm or an angular rotation > 2.5 degree 
in any direction. There were no significant differences 
in summary measures of head motion profiles between 
the patients and controls, including the maximum, root 
mean square and mean frame-wise displacement (all P 
> 0.05). Subsequently, all corrected functional images 
were normalized to the Montreal Neurological Institute 
(MNI) space using the transformation fields that were 
derived from tissue segmentation of individual structural 
images and were resampled to 3-mm isotropic voxels. The 
normalized images further underwent removal of linear 
drifts and temporal band-pass filtering (0.01 - 0.08 Hz) 
to reduce the effects of low-frequency drift and high-
frequency physiological noises. Finally, several nuisance 
signals were regressed out from each voxel’s time series 
to exclude non-neuronal sources, including 24-parameter 
head motion profiles, white matter signals, cerebrospinal 
fluid signals and global signals. The whiter matter, 
cerebrospinal fluid and global signals were derived by 
averaging signals within white matter, cerebrospinal fluid 
and whole-brain masks, respectively, in terms of prior 
probability maps and brain mask file in SPM8 (threshold 
= 0.8).

Network construction and analysis

Correlation matrix

In the current study, we calculated interregional 
functional connectivity matrix for each participant at a 
macroscopic level. First, the cerebrum was divided into 90 
ROIs (45 for each hemisphere; Table 3 ) in terms of a prior 
Anatomic Automatic Labeling atlas [41]. The Anatomic 
Automatic Labeling atlas is one of the most commonly 
used one in previous brain network studies [42]. Then, the 
mean time series was extracted for each ROI by averaging 
the time series of all voxels within it, therefore resulting 
in 90 regional mean time series for each participant. The 
resultant regional mean time series were subsequently 
correlated (Pearson correlation) with each other and finally 
generated a 90 × 90 correlation matrix for each participant. 
The correlation matrices could be modeled as graphs and 
further topologically characterized by graph theory-based 
network approaches. In graph theory, a network or graph 
is composed of nodes and edges, with nodes representing 
ROIs and edges representing interregional functional 
connectivity in the current study. Notably, before 
subsequent network analyses, negative correlations were 
excluded (set to 0) in all correlation matrices given their 

ambiguous interpretation [43–45]and distinct connectivity 
patterns [46].
Threshold selection

Before the graph theory-based network analysis 
of the correlation matrices derived above, a thresholding 
procedure was first used to convert them into binary 
networks, whose elements were either 0 or 1, indicating 
the absence or presence of an edge between two nodes, 
respectively. This was achieved by applying a correlation 
coefficient threshold to individual correlation matrices 
such that correlation coefficients greater than the threshold 
were set to 1, and others were set to 0. However, if the 
same correlation coefficient threshold was applied to all 
individual correlation matrices, the resultant networks will 
have different numbers of edges across participants and 
particularly between the two groups due to differences 
in overall connectivity strength of the correlation 
matrices. This could confound subsequent between-group 
comparisons of network topology [9, 47]. To address 
this concern, a subject-specific correlation threshold 
was used in the current study to ensure that all resultant 
networks have the same number of edges and network 
cost by assigning a fixed sparisty, S, which is defined as 
the ratio of the number of actual edges divided by the 
maximum possible number of edges in a network. For 
example, for a given sparsity S = 0.1, only the strongest 
10% correlation coefficients were retained and set to 
1 for each individual correlation matrix. The sparsity-
based thresholding procedure therefore allows examining 
network organization after ruling out confounding effect 
of different network costs between groups. However, 
given the lack of a canonical way to determine a single 
sparsity, we repeatedly thresholded each correlation matrix 
to generate binary networks with different sparsity values 
in a continuous range of 0.05 <S< 0.4 (interval = 0.02). 
This enabled us to characterize network organization as 
a function of sparsity and thus minimize potential bias 
introduced by a precise selection of single sparsity. The 
inferior limit of the sparsity was determined to guarantee 
that the resultant networks were estimable for small-
worldness [48] and the superior limit was empirically 
chosen to ensure that resultant networks had sparse 
properties [16]. Subsequently, we studied the small-world 
organization and nodal efficiency for all brain networks at 
each sparsity threshold.
Small-world efficiency

In the current study, we employed both abo 
efficiency metric (local efficiency and global efficiency) 
to characterize economical small-world properties of 
functional brain networks derived above. Compared 
with conventional small-world parameters of clustering 
coefficient and characteristic path length [48], the 
efficiency metric is biologically more sensible and has 
a number of technical and conceptual advantages. For 
example, it can represent how efficiently a network 



Oncotarget105658www.impactjournals.com/oncotarget

exchanges information at local and global levels with 
a single measure, and deal with either the disconnected 
or nonsparse graphs or both [16, 49, 50]. Moreover, the 
efficiency metric has been widely used to study the small-
world behavior in previous brain network studies under 
both normal and pathological conditions [16, 42, 51]. 
Mathematically, the global efficiency of a network G with 
N nodes is defined as [50]:

E G
N N dglob

i j G ij
( ) =

−
≠ ∈
∑1

1
1

( )
,

where dij is the shortest path length between node i and 
nodej and is calculated as the smallest number of edges 
among all possible paths from node i to node j. The global 
efficiency measures the ability of parallel information 
transfer over the entire network. The local efficiency of G 
is calculated as [50]:

E G
N

E Gloc
i G

glob i( ) ( )=
∈
∑1 ,

where Eglob(Gi) is the global efficiency of Gi, the subgraph 
composed of the neighbors of node i (i.e., nodes linked 
directly to node i). The local efficiency reflects how well 
the network exchanges information locally or how much 
the network is fault tolerant.

To determine whether the brain networks were 
organized in a small-world manner, the global and local 
efficiency of each participant derived at each sparsity level 
were normalized by dividing them by the corresponding 
mean of 100 random networks. The random networks 
were generated using a topological rewiring algorithm that 
preserved the same number of nodes, edges and degree 
distributions as the real brain networks [52, 53]. Typically, 
a network with approximately equal global efficiency and 
larger local efficiency (i.e., normalized global efficiency 
or λ ~ 1 and normalized local efficiency or γ > 1) than 
matched random networks is said to be small-world [48].
Nodal efficiency

For each node, we calculated the nodal efficiency to 
capture their roles in the brain network. Specifically, for 
a given node i in the network G, the nodal efficiency is 
defined as the average shortest path length between node i 
and all other nodes in the network [16]:

e
N di

j i G ij
=

−
≠ ∈
∑1

1
1

,

where dij is the shortest path length between node i and 
nodej in G. Nodal efficiency reflects the ability of a node 
to exchange information with the rest of the nodes in the 
network. Regions with high nodal efficiency are typically 
considered hubs in the brain. In the current study, regions 

with nodal efficiency at least one standard deviation above 
the group mean (across all nodes and participants) were 
identified as hubs within each group.

Statistical analysis

Between-group differences

For demographic and clinical variables, between-
group differences were examined with two-sample, two-
tailed t-tests; these variables included age, education, digit 
span, verbal fluency test, source memory, item memory, 
MMSE, retrospective memory(RM) and prospective 
memory(PM). For network topological measures (global 
efficiency, local efficiency, normalized global efficiency, 
normalized local efficiency, and nodal efficiency), we 
computed their areas under the curve (AUCs, i.e., the 
integral over the whole sparsity range), which were 
used to simplify statistical analysis. Specifically, a non-
parametric permutation test was used to examine between-
group differences in these network measures. In brief, for 
each metric, we initially calculated the between-group 
difference in mean values. An empirical distribution of 
the difference was then obtained by randomly reallocating 
all values to two groups and re-computing the mean 
differences between the two randomized groups (10,000 
permutations). The 95th percentile points of the empirical 
distribution were used as critical values in a one-tailed 
test to determine whether the observed real-group 
differences occurred by chance. To examine between-
group differences in interregional functional connectivity, 
a network-based statistic (NBS) method[54] was performed. 
Briefly, a primary threshold (P< 0.01) was applied to the 
t values (90 × 90 matrix) derived from an edge-by-edge 
between-group comparison of interregional functional 
connectivity (two-sample t-test). Among the resultant 
suprathreshold connections, we identified all connected 
components and recorded their size (i.e., number of links). 
To estimate the significance of each identified component, 
a null distribution of the connected component size was 
empirically derived by using a permutation approach 
(10,000 permutations). For each permutation, all subjects 
were randomly rearranged into two groups, and the 
same primary threshold (i.e., P< 0.01) was used to filter 
suprathreshold links in the comparison between the two 
randomized groups. The size of the maximal connected 
component among these links was recorded to form the 
null distribution. Finally, for any connected component 
of size M that was observed in the comparison of the 
right grouping, the corrected P value was determined by 
calculating the proportion of the 10,000 permutations for 
which the maximal connected component was larger than 
M. Notably, only connections that were positive in > 80% 
of all participants were included in the NBS analysis. 
Hubs, regions showing abnormal nodal efficiency (P 
< 0.05, Bonferroni corrected), and NBS components 
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showing altered functional connectivity in the patients 
were visualized on the brain surface using the BrainNet 
viewer [55].
Relationships between network metrics and cognition

Pearson correlation analysis was used to study 
the relationships between network metrics/functional 
connectivity showing significant between-group 
differences and cognitive variables in the patient group.
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