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ABSTRACT

Functional magnetic resonance imaging (fMRI) studies have revealed group 
differences in the frontal area between the subcortical vascular cognition impairment 
(SVCI) patients and the controls. However, most of the existing research focused 
on average differences between the two groups, and therefore had limited clinical 
applicability. The aim of our study was to investigate whether inter-regions functional 
connectivity of the dorsal frontal cortex (DFC) can be used to discriminate the SVCI 
from the controls at the level of the individual. Thirty-two SVCI patients and 32 
demographically similar healthy individuals underwent resting-state functional 
magnetic resonance imaging. The DFC, derived from a prior atlas, was divided into 
10 clusters. Features based on DFC were obtained through functional connectivity 
analysis between pairs of DFC. A nonlinear kernel support vector machine was used 
for classification and validated using 8-fold cross validation. An excellent classification 
accuracy was obtained from both the left and the right DFC functional connectivity 
(accuracy=75.07%, sensitivity=81.57% and specificity=61.71%; accuracy=45.38%, 
sensitivity=60.74% and specificity=39.48%; P<0.001). These findings shed further 
light on the pathogenesis of SVCI and showed promising classification performance 
using machine learning analysis based on DFC fMRI data, which may be useful for 
the differentiation of SVCI.

INTRODUCTION

Subcortical vascular cognition impairment (SVCI) 
is characterized by executive dysfunction, which 
was consistently thought to be associated with the 
dysregulation in frontal-subcortical loop [1]. In these 
loops, the frontal cortex exerts key high-level top-down 
control by influencing processing in other brain regions 
and is also considered to be the main driving force of the 
subcortical region [2]. At the neuroanatomy level, the 
frontal cortex consists of the dorsal frontal cortex (DFC) 
and the ventral frontal cortex (VFC), which play different 

roles in cognition and behavior. The VFC is considered to 
be mainly involved in valuation processes and language 
[3], while the DFC is regarded as an important brain 
structure in attention processing and cognition controls, 
both of which are significantly disrupted in patients 
with SVCI [4]. Several lines of evidence have showed 
the abnormal structural as well as functional impairment 
in the area of the DFC in SVCI patients, underlining 
its essential roles in the pathogenesis of SVCI [5–7]. 
However, these studies did not allow for direct assessment 
of specific DFC region to SVCI. According to previous 
study, the DFC contains several spatially separated 
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regions in each hemisphere in both humans and macaques, 
based on diffusion-weighted magnetic resonance imaging 
(DW-MRI) and functional MRI (fMRI) techniques [8].

Functional MRI, especially the resting-state fMRI 
provides us a promising viewpoint to explore the function 
alteration of SVCI. However, in our daily life, the SVCI 
patients are prone to be ignored, especially during the 
early stages, due to the subtle clinic symptom or obscure 
onset. Therefore, it is necessary to find an objective 
biomarker, which could be used to assist the diagnosis 
of SVCI and to improve the accuracy. Multivariate 
pattern analysis (MVPA) is a promising and potentially 
powerful data-driven tool in clinical research that permits 
the differentiation of patients from healthy controls at 
individual subject level [9]. The most common pattern 
recognition used MVPA in neuroimaging literature 
is support vector machine (SVM), which has been 
successfully applied to classify various neuropsychiatric 
disorders and achieved good classification accuracy [10]. 
For resting-state functional MRI, functional connectivity, 
measured by the correlation of two functional MRI 
time series, has been used for the discrimination of 
several neurological and psychiatric disorders, including 
Alzheimer’s disease, epilepsy and depression [11–13]. 
However, to the best of our knowledge, there is no study for 
automatic identification of the SVCI and healthy controls.

Thus, in the present study, we aim to examine DFC 
functional connectivity maps in differentiating SVCI 
patients from healthy controls and to find out which side 
of the DFC brain functional connectivity contribute more 
to the discrimination. We also sought to examine the 
relationship between identified group differences in DFC 
region and behavioral measures of cognition.

RESULTS

Demographic and clinical characteristics

Demographic and clinical characteristics for all 
of participants are shown in Table 1. No significant 
differences were found in age, gender ratio and education 
years between the SVCI patients and healthy controls 
(p>0.05). Compared to healthy controls, SVCI patients 
present significantly lower Cambridge Cognitive 
Examination-Chinese version (CAMCOG-C), Mini-
Mental State Examination (MMSE), Clinical Dementia 
Rating (CDR) scores and higher Activities of Daily Living 
(ADL) scores, all of which indicated the impaired global 
cognition. Additionally, in the subtypes of CAMCOG-C, 
SVCI patients also exhibited lower scores in praxis item 
compared to the controls, which suggested the deficit in 
executive function of SVCI patients.

Classification results

The classification results indicated that the final 
correct classification rate of the training data set was 

45.38% using the right DFC discriminating functional 
connections, while the classification rate in the left 
DFC was up to 75.07% (Table 2). Receiver operating 
characteristic (ROC) showed excellent sensitivity and 
specificity when classifying connectivity features between 
groups (60.74% sensitivity and 39.48% specificity for 
the right DFC, p<0.001; 81.57% sensitivity and 61.71% 
specificity for the left DFC, p<0.001). We also examined 
the correct classification rate using both the left and the 
right DFC. The accuracy was 58.46% with the usage of 
the Regions of interest (ROIs) of both sides, which was 
intermediate between the right DFC and the left DFC. The 
area under ROC curves (AUCs) of the classifier for the right 
DFC and the left DFC were 0.814 and 0.887, respectively. 
The ROC curve for the left classifier is shown in Figure 1.

Voxel-based morphometry results

Voxel-based morphometry (VBM) results are shown 
in Table 3. No significant difference was found in the 
mean gray matter volume of both sides of DFC between 
the SVCI and the controls using the two sample t test.

Correlation analysis result

There was a positive correlation between 
CAMCOG-C and the strength of functional connectivity 
(area 46-pre-SMA) in the left DFC (r=0.694, p<0.0001). 
We also found a trend for a positive relationship between 
praxis function and the connectivity between area 8d and 
area 9/46d (r= 0.420, p=0.002) (Figure 2).

DISCUSSION

To the best of our knowledge, the current study is 
the first to examine the capability of SVM with functional 
connectivity in bilateral DFC in distinguishing patients 
with SVCI from healthy subjects. By identifying the 
subregional differences in both the left and the right 
hemispheres of brain DFC functional connectivity 
patterns, the present study demonstrates that MVPA allows 
discrimination between SVCI patients and healthy controls 
at a relatively high level of accuracy.

MVPA is an increasingly popular analytic technique 
in neuroimaging field, which renders a high discriminative 
power by considering spatially distributed patterns of brain 
activity instead of focusing on an isolated voxel. In the 
current study, we used MVPA based on fMRI and achieved 
75.07% and 45.38% prediction accuracy in the left and the 
right DFC, respectively, for identifying SVCI patients. The 
excellent classification accuracy and sensitivity may imply 
the essential roles of the DFC, especially the left DFC in 
identifying the SVCI and also indicate the critical roles 
in the pathophysiology of SVCI. The DFC consists of 10 
subregions connected to each other, which may be seen 
as the modularity. Integration within subregions allows 
faster local processing, while sparse connections between 
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Table 1: Demographic and clinical characteristic of SVCI patients and healthy controls

Variables SVCI (n=32) Controls (n=32) p-Value

Age (Years) 70.09±8.26 68.87±7.05 0.557b

Gender (F/M) 18/14 14/18 0.454a

Years of education 8.47±3.16 10.09±2.98 0.670b

CAMCOG-C 76.78±9.26 92.83±4.63 0.002b

praxis 8.75±2.37 11.28±0.92 <0.001b

MMSE 23.78±2.66 28.38±1.10 <0.001b

ADL 25.47±7.42 20.19±0.59 <0.001b

CDR 0.5(0.5-2.0) 0 <0.001c

MMSE=Mini-Mental State Examination; CAMCOG-C=Cambridge Cognitive Examination-Chinese version. 
ADL=Activities of Daily Living scale.
GDS=Global Deterioration Scale; CDR=Clinical Dementia Rating.
a two-tailed Pearson chi-square test, b two-sample two-tailed t-test, c Mann-Whitney U test.

Table 2: Classification results in 8-fold cross validation using the functional connectivity maps of the DFC

Features Accuracy (%) Sensitivity (%) Specificity (%) AUC

the left DFC 75.07 81.57 61.71 0.887

the right DFC 45.38 60.74 39.48 0.814

the left D+the right DFC 58.46 71.43 48.39 0.877

Figure 1: ROC curves and AUC of the final SVM model (the left DFC) for each patient.
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Table 3: VBM analysis showing the difference of the subregions of DFC volume between SVCI patients and the 
controls

ROIs Subregions of DFC p t

ROI 1 SMA 0.35647 -0.92883

ROI 2 pre-SMA 0.4244 -0.80396

ROI 3 area 9 0.43384 -0.7876

ROI 4 area 10 0.88732 -0.14226

ROI 5 area 9/46d 0.66624 -0.43332

ROI 6 area 9/46v 0.46504 -0.73497

ROI 7 area 46 0.45793 -0.74678

ROI 8 area 8d 0.77892 -0.28192

ROI 9 rostral PMd 0.47772 -0.71417

ROI 10 area 8v 0.66459 -0.43561

Figure 2: Correlation between cognition and functional connectivity in the DFC.  Pearson correlation analyses revealed that 
CAMCOG-C scores positively correlated with the functional connectivity between area 46 and pre-SMA, and the praxis function positively 
correlated with the functional connectivity between area 8d and area 9/46d.

subregions reduce the efficiency. It is thus suspected 
that a less modular may decrease the development of a 
functional brain network and directly result in cognitive 
impairments.

To further explore whether the brain function 
alteration in DFC in SVCI patients was induced by 
structural atrophy, the gray matter in DFC was examined. 
No significant difference was found between the SVCI 
and the controls. Taking both the function and structure 
into consideration, we suggested that the aberrant function 
in DFC may contribute more to the pathophysiology 
of SVCI. The high capability of SVM methods in 
combination with functional connectivity metrics in our 
study may also indicate the important roles of DFC on 
SVCI. Furthermore, it is worth noting that the accuracy 
of the left DFC was greater than that of the right DFC. 
It is acceptable that there is a hemispheric difference in 
the human brain function. Compared to the right DFC, 
the left DFC may play leading roles in executive function, 

which has been shown by Stroop test [14]. Apparently, our 
results of the DFC classifier were consistent with those 
of a previous study [14], indicated the left DFC as the 
dominant hemisphere in execution. Thus, the dysfunction 
of the left DFC may lead to the executive impairment, 
which is the hallmark symptom of SVCI.

We also found that strength of functional 
connectivity between area 46 and pre-SMA was 
correlated with clinical measures. Area 46 is a hub region 
located in the anterior middle frontal gyrus, which has 
been suggested to possess extensive intracortical as well 
as fronto-subcortical connections [15]. The correlation 
between the functional connectivity metrics and the 
clinical measures supports its central hub role on the 
global cognition of SVCI, with flexible integration 
and projection of information. Moreover, in the DFC 
the connectivity between the area 8d and area 9/46d 
was also correlated with the executive function. Area 
8d was located in the superior frontal gyrus. Clinical 
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Figure 4: Flowchart of the proposed classification framework.

Figure 3: Tractography-based parcellation revealed ten clusters in human dorsal frontal cortex.  ROI 1 resembled SMA, 
ROI 2 resembled pre-SMA, ROI 3 resembled area9, ROI 4 resembled area10, ROI 5 resembled area 9/46d (e), ROI 6 resembled area 9/46v, 
ROI 7 resembled area 46, ROI 8 resembled area 8d, ROI 9 resembled rostral PMd, and ROI 10 resembled area 8v.
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research has shown that patients with lesions in the 
superior frontal gyrus had worse executive function 
[16]. Our findings agree with those of previous studies, 
suggesting that the altered functional connectivity 
may be the reason for executive function impairments. 
Taken together, these results and our previous findings 
provide evidence that the DFC may consider being the 
key characteristics region in SVCI patients, which was 
attributable to the high discriminative accuracy of its 
functional connectivity based on MVPA.

The classification results of this study using MVPA 
based on DFC resting-state functional connectivity are 
encouraging. However, there are still some limitations 
needed to be clarified, such as scanner variability, micro-
head movement and some physiological noises and so on. 
Although we have undertaken a set of proven strategies, 
such as nuisance regressors at the first level, noting the 
patients to be quite repeatedly, to counteract the effect 
of group differences in movement, it is still impossible 
to achieve an ideal state. Furthermore, considered the 
limited sample and the known groups of subjects, the 
supervised classification methods were used to analyze 
the data, which was prone to inter-user bias, while the 
unsupervised classification can perform discrimination 
without any prior labeling knowledge, so future study with 
a larger sample size using the unsupervised classification 
combined with the supervised classification would yield 
more powerful results. In addition, because of the small 
sample (64 subjects in total) in the study, the obtained 
classifier was only specific to the current data and not 
general enough. Future investigations with large database 
and the integration of functional connectivity with other 
neuroimaging methods will be needed to confirm these 
preliminary findings.

MATERIALS AND METHODS

Participants

Thirty-two right-handed SVCI patients and 32 
age-matched controls were enrolled in our study. Each 
subject provided written informed consent, and this 
study was approved by the Institutional Review Board 
of the first affiliated hospital of Anhui medical university 
Subcommittee on Human Studies. Patients with SVCI 
met the previous criteria [17]. Exclusion criteria of 
SVCI including: a history of known stroke, head injury, 
Parkinson’s disease, epilepsy, major depression or other 
neurological or psychiatric illness, severe visuo-spatial 
deficits, dentures or metallic stent in vivo. Twenty-three 
healthy controls were recruited from either the spouses 
of patients or recruited via advertisement. All subjects 
performed a neuropsychological battery assessment, 
including CAMCOG-C, MMSE, ADL and CDR Clinical 
dementia rating to evaluate the function of episodic 

memory, attention, psychomotor speed, executive 
function, visuo-spatial skills and emotion respectively.

MRI data acquisition

Functional imaging data were acquired using a 
3.0 T GE Signa HDxt MRI scanner (GE Milwaukee, 
WI, USA). At the beginning of the resting scan, the 
participants were asked to keep their eyes closed without 
falling asleep and relax. Resting state images were 
obtained using echo-planar imaging (EPI) sequence 
(TR=2 s, TE=30 ms, FOV=240 mm, flip angle=80°, 
matrix size=64 × 64, thickness=4 mm, gap=0.6 mm, 
number of slice=33 and time point=230). A 3D high-
resolution T1-weighted anatomical images were also 
acquired using an inversion recovery fast spoiled 
gradient-recalled echo pulse sequence (TR=9.5 ms; 
TE=3.9 ms; TI=450 ms; flip angle=20°; field of 
view=256 mm; matrix size=512×512).

FMRI data preprocessing

Functional connectivity analysis was performed 
on the MATLAB platform using the correlated and 
anticorrelated brain networks (CONN) Toolbox [18]. The 
main preprocessing procedure included discarding the 
first ten volumes, conventional slice timing correction, 
realignment, coregistration, normalization, and spatial 
smoothing with an 8-mm Gaussian kernel of full width 
at half-maximum. Head motion of more than 3 mm 
maximum displacement in any direction (x, y, and z) or 
3 degrees of any angular motion throughout the course of 
the scan were excluded. We also compared the six head 
motion parameters. No significant difference was found 
in each parameter between the two groups (two sample 
t test, p>0.05). Moreover, to remove possible effects, six 
head motion parameters and the mean time series of gray 
matter, white matter and cerebrospinal fluid signals were 
introduced as covariates into the random effects model. 
A component-based noise correction method (Comp Cor) 
was also employed to reduce physiological and other 
noise artifacts [19]. A temporal band-pass filter (0.01< f 
<0.08 HZ) was performed to remove the effects of low-
frequency drift and high-frequency noise.

FMRI data analysis

Ten subregions of the DFC in each hemisphere were 
defined in standard MNI space using the previous criteria, 
and then registered into each individual subject’s MRI 
using FSL. We selected the DFC template as the ROI, 
which consists of 10 clusters (Figure 3). The results of the 
DFC parcellations in the form of atlases could be viewed 
in FSL (http://www.rbmars.dds.nl/CBPatlases.htm). It was 
noted that the DFC anatomical scheme appeared similar in 
both hemispheres according to a previous study [8].
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Regional mean time series were obtained for each 
individual by averaging the fMRI time series over all 
voxels in each ROI. Pearson’s correlation coefficients 
were calculated between the time courses of ROI and 
ROI, and a 10×10 symmetric correlation matrix were 
yielded, which contained normalized z-scores for each 
subjects. Results of exploratory analyses were considered 
significant if clusters survived family wise error (FWE) 
correction p<0.05.

Voxel-based morphometry

To assess the influence of gray matter on functional 
connectivity, we analyzed our data for structural 
differences in ROIs between the groups using statistical 
parametric mapping (SPM) software and VBM toolbox. 
Structural MRI data processing was performed using 
VBM and the diffeomorphic anatomical registration 
using exponentiated Lie algebra (DARTEL) registration 
method, which has been reported in a previous study 
[20]. In addition, spatial smoothing with an 8-mm 
Gaussian kernel of full width at half-maximum was 
performed. Finally, the gray volume of 10 ROIs of DFC 
was calculated and the difference of ROI-wise gray 
volume between two groups was detected using two 
sample t test (p<0.05, false discovery rate correction).

SVM-based classification

Connectivity matrices for each individual were 
converted to a feature vector containing 45 unique ROI-
to-ROI connections (10×9/2).

SVM is one of the most powerful classification 
algorithms in terms of predictive accuracy. In this 
study, SVM-based classification method adopted radius 
bases function (RBF) as a kernel function because of its 
suitability for nonlinear mapping, few parameters and low 
numerical difficulty. A grid search algorithm was used 
to optimize the two parameters of SVM: γ, width of the 
RBF, and C, an input parameter for the SVM algorithm. 
The detailed description of the application of RBF kernel 
SVM in MRI data has been introduced in previous studies 
[21–22]. During the training phase, the SVM uses data 
was categorized into groups to determine the largest 
margin “hyperplane” to optimally separate the two groups. 
This process involves searching for a weight vector that 
maximizes the margin of separation between the groups 
by using the data points that are closest to the hyperplane 
as the defining points. These minimally distant data points 
are considered as “support vectors” and the classifier is 
thus fully specified by this subset of training samples. 
The flowchart of the proposed classification framework is 
shown in Figure 4.

To estimate the performance of the classifiers, 
8-fold cross-validations were used. The performance of 
each classifier can be quantified using sensitivity (SS), 
specificity (SC) and generalization rate (GR) ROC curves 

were used to quantify the sensitivity and specificity of the 
classifier [23]. The AUC was used to quantitatively assess 
the classification power of a predictive model.

To assess the statistical significance of the observed 
classification accuracy, permutation tests were then 
employed to estimate the probability of obtaining GR 
higher than those obtained using the correct labels by 
chance [24]. We randomly assigned labels to each image 
and repeated the entire classification procedure 10,000 
times and then counted the number of times that the 
GR for the permutated labels achieved higher than that 
obtained using the true labels.

Correlation analysis

To identify the relationship between the strength 
of functional connectivity in DFC and the clinical scores 
in SVCI, the average strength of functional connectivity 
in the left and right DFC was extracted separately and 
correlated with the cognitive scores for all patients 
using Pearson’s correlation analysis. Only the functional 
connectivity that differed significantly between groups 
was included in this analysis.

CONCLUSIONS

This study used a MVPA method, which is based on 
functional connectivity pattern, to distinguish individuals 
with SVCI from the controls. The final model gave 
promising classification results with prediction accuracies 
from 45.38% to 75.07%. We proposed that functional 
connectivity within the DFC provided great potential for 
SVCI patient discrimination.
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