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ABSTRACT

Rationale: Malignant pleural mesothelioma (MPM) is mainly caused by previous 
exposure to asbestos fibers and has a poor prognosis. Due to a long latency period between 
exposure and diagnosis, MPM incidence is expected to peak between 2020-2025. Screening 
of asbestos-exposed individuals is believed to improve early detection and hence, MPM 
management. Recent developments focus on breath analysis for screening since breath 
contains volatile organic compounds (VOCs) which reflect the cell’s metabolism.

Objectives: The goal of this cross-sectional, case-control study is to identify VOCs 
in exhaled breath of MPM patients with gas chromatography-mass spectrometry (GC-
MS) and to assess breath analysis to screen for MPM using an electronic nose (eNose).

Methods: Breath and background samples were taken from 64 subjects: 16 
healthy controls (HC), 19 asymptomatic former asbestos-exposed (AEx) individuals, 
15 patients with benign asbestos-related diseases (ARD) and 14 MPM patients. 
Samples were analyzed with both GC-MS and eNose.

Results: Using GC-MS, AEx individuals were discriminated from MPM patients 
with 97% accuracy, with diethyl ether, limonene, nonanal, methylcyclopentane and 
cyclohexane as important VOCs. This was validated by eNose analysis. MPM patients 
were discriminated from AEx+ARD participants by GC-MS and eNose with 94% 
and 74% accuracy, respectively. The sensitivity, specificity, positive and negative 
predictive values were 100%, 91%, 82%, 100% for GC-MS and 82%, 55%, 82%, 
55% for eNose, respectively.

Conclusion: This study shows accurate discrimination of patients with MPM from 
asymptomatic asbestos-exposed persons at risk by GC-MS and eNose analysis of 
exhaled VOCs and provides proof-of-principle of breath analysis for MPM screening.
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INTRODUCTION

Malignant pleural mesothelioma (MPM) is an 
aggressive tumor originating from the pleural lining of the 
thorax and is causally associated with previous asbestos 
exposure [1, 2]. Despite a ban on asbestos use in the 
entire European Union in 2005, asbestos is still being 
produced and consumed in several countries in need for 
industrial growth. Together with a long average latency 
period of 40-50 years between first asbestos exposure and 
MPM diagnosis, this indicates that MPM incidence will 
further increase [3]. With a 5-year survival rate below 
5%, prognosis remains poor, stressing the need for an 
earlier diagnosis by screening. Serum biomarkers have 
not proven to be useful for the screening and diagnosis of 
MPM [4, 5]. Therefore, recent research focused on breath 
analysis [6]. Breath contains volatile organic compounds 
(VOCs) which arise from the body’s (patho)physiological 
processes and have demonstrated to be useful in the 
detection of asthma, COPD, and tumors [7-12].

Asbestos fibers are known to initiate oxidative stress 
at the mesothelium [13], inducing lipid peroxidation of 
the mesothelial cell wall, releasing VOCs, and mutagenic 
DNA lesions. Furthermore, asbestos fibers activate the NF-
κB pathway and promote cell survival which contributes 
to MPM development [14]. VOCs enter the bloodstream, 
are transported to the lungs where they enter the alveoli 
through the gas exchange mechanisms and finally are 
exhaled. Few studies have addressed the use of VOCs 
for MPM detection. One study analyzed breath samples 
from 13 MPM patients, 13 occupationally asbestos-
exposed persons, and 13 healthy non-exposed controls 
using gas chromatography-mass spectrometry (GC-MS) 
[15]. Cyclohexane allowed to discriminate MPM patients 
with 97.4% accuracy. Two studies used pattern recognition 
of exhaled VOCs by cross-reactive sensor technology 
(electronic nose: eNose) to compare breath samples of 
the same 3 groups. Dragonieri et al. [16] and Chapman 
et al. [17] distinguished MPM patients from controls 
with 92.3% and 90% sensitivity, respectively. Recently, 
our research group was able to discriminate 23 MPM 
patients from 22 asymptomatic occupationally asbestos-
exposed persons and 21 healthy non-exposed controls with 
87% sensitivity and 70% specificity using multicapillary 
column-ion mobility spectrometry (MCC/IMS) [18]. 
Nevertheless, these studies have not been replicated nor 
has GC-MS been directly validated against eNose.

Since MPM is linked to asbestos exposure 
and oxidative stress, we hypothesize that VOCs and 
VOC patterns will differ between MPM patients, 
persons occupationally exposed to asbestos, and 
those unexposed. To that end, we aimed to identify 
discriminating VOCs by GC-MS and assess the 
between-group comparisons with eNose in order to 
provide the proof-of-principle of screening for MPM 
by breath analysis.

RESULTS

Patient characteristics

Sixty-four participants were included: 14 treatment-
naïve MPM patients, 15 patients with benign asbestos-
related diseases (ARD), 19 AEx persons, and 16 HC 
individuals (Table 1).

MPM patients were significantly older than the other 
groups; AEx persons were the youngest. No significant 
differences were found in smoking status, pack years or 
BMI between the groups although we observed a trend 
with AEx persons having have more current smokers. 
Among the ARD patients, 14 (93%) had pleural plaques 
and 1 (7%) had asbestosis.

GC-MS analysis

In total, 14 MPM patients, 19 AEx subjects, 15 ARD 
patients and 14 HC controls gave a breath sample for GC-
MS analysis. We analyzed 5 different models (Table 2, 
Figure 1): MPM vs. HC (model 1), MPM vs. AEx (model 
2), MPM vs. ARD (model 3), MPM vs. AEx+ARD 
(model 4) and ARD vs. AEx (model 5). Model 1 showed a 
diagnostic accuracy of 71% (52.9%-85.7%). The AUCROC 
was 0.770.

Since asbestos-exposed individuals can have a 
lifetime risk of MPM up to 10%, [13] we examined if it 
was possible to discriminate AEx and ARD participants 
from MPM patients in view of using it as screening tool 
(models 2-4). Discriminating MPM from AEx persons 
was possible with 97% accuracy (86.0%-99.8%), 93% 
sensitivity, 100% specificity, 100% PPV, and 95% NPV. 
The AUCROC was 0.989. Discriminating MPM from ARD 
patients was possible with 79% accuracy (61.9%-91.2%), 
79% sensitivity, 80% specificity, 79% PPV, and 80% NPV. 
The AUCROC was 0.838. By pooling ARD and AEx persons, 
we could discriminate MPM patients with 94% accuracy 
(84.0%-98.4%), 100% sensitivity, 91% specificity, 82% 
PPV, and 100% NPV. The AUCROC was 0.943.

The most frequently selected VOCs in these 
discriminations were diethyl ether, limonene, cyclohexane, 
nonanal, VOC IK 1287 and isothiocyanatocyclohexane 
(Table 2, Supplementary Figures 1-2).

As negative control analysis, we tried to discriminate 
ARD patients from AEx persons (model 5). This was not 
possible, showing 50% accuracy (33.6%-66.4%) and an 
AUCROC of 0.365, even when important discriminators 
from the other models were included.

eNose analysis

In total, 11 MPM patients, 15 AEx subjects, 12 
ARD patients and 12 HC controls gave a breath sample 
for eNose analysis. We analyzed the same 5 models as 
with GC-MS analysis (Table 3, Figure 2). We were able 
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to discriminate MPM patients from HC controls (model 
1) with 65% accuracy (44.5%-82.3%). The AUCROC 
was 0.667. Discriminating MPM from AEx persons 
was possible with 73% accuracy (53.9%-87.4%), 80% 
sensitivity, 64% specificity, 75% PPV, and 70% NPV. The 
AUCROC was 0.655.

MPM patients could be discriminated from ARD 
patients with 70% accuracy (48.9%-85.6%), 75% 
sensitivity, 64% specificity, 69% PPV, and 70% NPV. The 
AUCROC was 0.758. When ARD and AEx persons were 
pooled, we could discriminate MPM patients with 74% 
accuracy (58.1%-85.8%), 82% sensitivity, 55% specificity, 
82% PPV, and 55% NPV. The AUCROC was 0.747.

Again, it was not possible to discriminate AEx 
persons from ARD patients, showing 52% accuracy 
(33.4%-70.0%) and an AUCROC of 0.550.

DISCUSSION

In this cross-sectional study, breath analysis by 
GC-MS allows to discriminate with acceptable accuracy 
mesothelioma patients from healthy controls, patients 
with benign asbestos-related diseases, and asymptomatic 
individuals occupationally exposed to asbestos fibers 
in the past. This was replicated with an eNose. To our 
knowledge, this is the first time these discriminations are 
shown using multiple control groups and taking samples 
in parallel for GC-MS analysis and eNose replication by 
using previously validated methods [12]. Considering 
that occupationally asbestos-exposed persons have a 
lifetime increased risk for MPM and the latter is a lethal 
condition with a late-onset development, early detection is 

of utter importance to improve the disease’s management. 
Therefore, we examined whether it was possible to 
discriminate MPM patients from AEx and ARD persons. 
By GC-MS, we discriminated MPM from AEx and 
ARD persons with 97% and 79% accuracy, respectively. 
When both groups were pooled, the accuracy was 94%. 
Given the large sensitivity and NPV of these findings, the 
present study underlines the capacity of breath analysis as 
screening tool for persons at risk for MPM.

The most important VOCs selected in all of these 
GC-MS discriminations are nonanal, diethyl ether, 
limonene, methylcyclopentane, cyclohexane, a VOC with 
IK 1287, and isothiocyanatocyclohexane. Furthermore, 
AEx persons were not easily discriminated from ARD 
patients, even when including the VOCs that discriminated 
MPM from the at risk groups, serving as negative controls. 
This underlines their importance as breath biomarkers for 
the presence of MPM.

Our results confirm and extend the findings from 
previous studies [15-19]. Using GC-MS, de Gennaro et al. 
discriminated 13 MPM patients from 13 HC controls and 
13 AEx persons with 97.4% accuracy using cyclopentane, 
cyclohexane, dodecane, dimethyl nonane, limonene and 
β-pinene [15]. The group showed cyclohexane to be an 
important MPM marker and cyclopentane as marker 
for asbestos-exposure. We also found cyclohexane and 
limonene to be important in the discrimination of MPM 
from AEx patients and β-pinene to discriminate ARD 
from MPM patients. Furthermore, we found diethyl 
ether and nonanal important discriminators of MPM 
from AEx and/or ARD patients. These compounds are 
also found discriminative for lung cancer and are likely 

Table 1: Patient characteristics

HC AEx ARD MPM p-value

N 16 19 15 14

Gender

 Male 15 (93.8%) 19 (100%) 14 (93.3%) 11 (78.6%) 0.173a

 Female 1 (6.3%) 0 (0.0%) 1 (6.7%) 3 (22.4%)

Age 56 (52.5 – 59.4) 50 (49.6 – 53.2) 60 (58.3 – 63.8) 69 (65.7 – 73.6) <0.001b

Smoke status

 Current 0 (0.0%) 6 (31.6%) 1 (6.7%) 1 (7.1%)

 EX 8 (50.0%) 7 (36.8%) 5 (33.3%) 9 (64.3%) 0.079a

 Never 8 (50.0%) 6 (31.6%) 9 (60.0%) 4 (28.6%)

Pack years 0.3 (0.0 - 6.1) 9.0 (0.0 - 36.0) 0 (0.0 – 10.5) 7 (0.0 – 30.0) 0.106b

BMI (kg/m2) 27 (23.4 – 29.3) 27 (25.4 – 28.4) 27 (24.5 – 32.8) 26 (23.9 – 27.1) 0.529b

aFisher’s exact test.
bNon-parametric Kruskal-Wallis test.
AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos related diseases. BMI: body 
mass index. HC: healthy controls. MPM: malignant pleural mesothelioma.
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to be associated with tumorigenesis [20-22]. This adds 
to the plausibility of the discriminating capacity of these 
compounds of MPM.

Furthermore, Cakir et al. discriminated ARD 
patients and HC controls using ion mobility spectrometry 
with 99.9% accuracy, 96% sensitivity, and 50% specificity 
based upon α-pinene and 4-ethyltoluol [19]. We did not 
find these compounds as important discriminators in our 
models, weakening their importance as markers for ARD.

The GC-MS findings were replicated by pattern 
recognition of VOCs obtained by the cross-reactive 
sensors from the eNose. We discriminated MPM patients 
from HC controls, AEx persons and ARD patients 

with 65%, 73%, and 70% accuracy, 67%, 80%, and 
75% sensitivity and 64%, 64%, and 64% specificity, 
respectively. When AEx and ARD patients were pooled, 
MPM patients were discriminated with 74% accuracy, 
82% sensitivity and 55% specificity. The finding that the 
discriminative capacity by the eNose were somewhat 
lower as compared to the GC-MS results is due to the 
smaller number of patients who gave a sample for eNose 
analysis and the fact that eNoses recognize the bulk of the 
breath rather than specific individual VOCs.

Although we are reaching the same conclusions, 
our results slightly differ from those previously reported. 
Using the Cyranose, Dragonieri et al. discriminated 13 

Table 2: Model characteristics from GC-MS data

Model 1 Model 2 Model 3 Model 4 Model 5

Cases vs 
controls

MPM vs HC MPM vs AEx MPM vs ARD MPM vs AEx+ARD AEx vs ARD

N 14 vs 14 14 vs 19 14 vs 15 14 vs 34 19 vs 15

Sensitivity 64.3% (37.6%-85.6%) 92.9% (69.5%-99.6%) 78.6% (52.1%-94.2%) 100% (80.7%-100%) 60.0% (34.6%-81.9%)

Specificity 78.6% (52.1%-94.2%) 100% (85.4%-100%) 80.0% (54.7%-94.6%) 91.2% (77.9%-97.7%) 42.1% (21.9%-64.6%)

PPV 75.0% (45.9%-93.2%) 100% (79.4%-100%) 78.6% (52.1%-94.2%) 82.4% (59.2%-95.3%) 45.0% (24.7%-66.7%)

NPV 68.8% (43.7%-87.5%) 95.0% (77.8%-99.7%) 80.0% (54.7%-94.6%) 100% (90.8%-100%) 57.1% (31.2%-80.4%)

Accuracy 71.4% (52.9%-85.7%) 97.0% (86.0%-99.8%) 79.3% (61.9%-91.2%) 93.8% (84.0%-98.4%) 50.0% (33.6%-66.4%)

AUCROC 0.770 (0.577-0.923)# 0.989 (0.955 – 1.000)# 0.838 (0.671-0.962)# 0.943 (0.866-1.000)# 0.365 (0.435-0.818)

VOCs (≥50% 
of times 
selected)

Nonane
VOC IK 1349
Propylbenzene
Benzonitrile
Isoprene
Limonene
3-methylpentane
1,3-dichlorobenzene

Ethanol
Diethyl ether
2-ethyl-1-hexanol
Limonene
Nonanal
2-methyl-1-propanol
Methylcyclopentane
Cyclohexane
1,2,4-trichlorobenzene
Naphtalene
VOC IK 679
Phenol
Chloroform
Linalool
Furfural
VOC IK 1287
Bromobenzene

VOC IK 931
VOC IK 1493
Beta-pinene
Diethyl ether
Limonene
Hexane
1,2-dichlorobenzene

Ethanol
Diethyl ether
Isothiocyanatocyclohexane
VOC IK 1233
VOC IK 1287
VOC IK 1309
1,2-dichlorobenzene
n-Butylbenzene
Methylbenzoate
1,2,3-trichlorobenzene
Limonene
Bromobenzene
VOC IK 1100
Tert-butylbenzene
m/p-xylene
2,2,4-trimethylpentane
Hexamethyldisiloxane
VOC IK 1493
VOC IK 720

Limonene
Isopropyl acetate
1,3,5-triisopropylbenzene
Diethyl ether
3,7-dimethyl-3-octanol
Trichloroethylene
Dimethyl disulfide
Ethanol
Phenol
Acetophenone
2-methyl-1-propanol
1-butanol
Naphtalene
VOC IK 615
1-methylthio-1-propene
Isothiocyanatocyclohexane
Isopropyl benzene
VOC IK 566
VOC IK 1111
Hexanal
VOC IK 767
Ethylbenzene
VOC IK 1349
1,3-dichlorobenzene
Dimethylsulfide
VOC IK 1105
2-hexanone
VOC IK 732
Nonane
3-methylpentane
n-Butylbenzene

AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos related diseases. AUCROC: area under the receiver operator 
characteristic curve. HC: healthy controls. IK: Kováts retention index. MPM: malignant pleural mesothelioma. NPV: negative predictive value. PPV: 
positive predictive value. VOC: volatile organic compound. #: AUCROC statistically different from 0.5.
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MPM patients from 13 AEx controls with 92% sensitivity 
and 86% specificity and from 13 HC controls with 
92% sensitivity and 69% specificity [16]. Furthermore, 
Chapman et al. discriminated 10 MPM patients from 32 
HC controls with 90% sensitivity and 91% specificity 
and from 18 ARD patients with 90% sensitivity and 83% 
specificity [17]. This may not be unexpected because of 
the lower number of patients and the fact we merged the 
sensor defections of 4 devices as final eNose profile.

The strength of our study lies in the multiple 
groups design and the replication of the results 
between two essentially different technologies for 
molecular assessment in exhaled air. Nevertheless, 
we acknowledge our study has important limitations. 
First of all, the low number of included participants 
restricts its application in the whole population. 
However, our results are in line with previous 
research and stresses its potential as screening tool. 
Secondly, our patients and controls were not matched 
for age and a trend in difference in smoking status 
was found. This can be due to the long latency 
period between first asbestos-exposure and MPM 

diagnosis, delaying diagnosis to late stages in more 
elderly people. Furthermore, it is hard to find healthy 
controls without substantial comorbidities at matched 
age. The difference in smoking status can originate 
from the fact that asbestos workers were blue-collar 
workers; an industry known to have an increased 
incidence of smokers [23]. Nevertheless, since MPM 
development is independent of smoking, the impact 
of smoking status on our results is expected to be 
minimal and smoking-associated VOCs (benzene, 
2,5-dimethylfuran, and toluene) were not selected in 
either model, underlining the independency. Thirdly, 
since this study retrospectively questioned the 
participants, we cannot exclude potential recall bias 
and, hence, we have no information about the duration 
and intensity of asbestos exposure in our patients and 
controls nor about the time of last exposure on the 
breath composition. Fourthly, although an inspiratory 
VOC-filter was used, it is possible that exogenous 
compounds could have contaminated the breath since 
inhaled VOCs can be stored for a long time in the 
body’s fat compartments [24], and the sampling and 

Figure 1: ROC curves of the different models based upon GC-MS analysis.



Oncotarget91598www.impactjournals.com/oncotarget

analysis materials used can also release compounds. 
Finally, despite a cross-sectional, case-control design, 
our study was not blinded and we took breath samples 
from participants with known diagnosis. The next step 
should be to perform a blinded, prospective, case-
control, cohort study to assess the diagnostic features 
of the breath test.

Despite these limitations, we found MPM patients 
to be discriminated from the at risk groups with 
clinically relevant accuracy by both GC-MS and eNose 
analysis. The large sensitivity and NPV allows breath 
analysis to be used as screening tool for exclusion of 
disease in at risk persons and to enrich the fraction 
of individuals at risk for further screening. By doing 

Table 3: Model characteristics from eNose data

Model 1 Model 2 Model 3 Model 4 Model 5

Cases vs 
controls

MPM vs HC MPM vs AEx MPM vs ARD MPM vs AEx+ARD AEx vs ARD

N 11 vs 12 11 vs 15 11 vs 12 11 vs 27 15 vs 12

Sensitivity 66.7% (37.7%-88.4%) 80.0% (54.7%-94.6%) 75.0% (45.9%-93.2%) 81.5% (63.7%-92.9%) 58.3% (30.3%-82.8%)
Specificity 63.6% (33.7%-87.2%) 63.6% (33.7%-87.2%) 63.6% (33.7%-87.2%) 54.5% (26.0%-81.0%) 46.7% (23.2%-71.3%)
PPV 66.7% (37.7%-88.4%) 75.0% (50.1%-91.5%) 69.2% (41.3%-89.4%) 81.5% (63.7%-92.9%) 46.7% (23.2%-71.3%)
NPV 63.6% (33.7%-87.2%) 70.0% (38.0%-91.7%) 70.0% (38.0%-91.7%) 54.5% (26.0%-81.0%) 58.3% (30.3%-82.8%)
Accuracy 65.2% (44.5%-82.3%) 73.1% (53.9%-87.4%) 69.6% (48.9%-85.6%) 73.7% (58.1%-85.8%) 51.9% (33.4%-70.0%)
AUCROC 0.667 (0.434-0.900) 0.655 (0.416-0.893) 0.758 (0.548-0.967)# 0.747 (0.582-0.913)# 0.550 (0.322-0.778)

AEx: asymptomatic former asbestos-exposed controls. ARD: patients with benign asbestos related diseases. AUCROC: area under the 
receiver operator characteristic curve. HC: healthy controls. MPM: malignant pleural mesothelioma. NA: not applicable. NPV: negative 
predictive value. PPV: positive predictive value. #: AUCROC statistically different from 0.5.

Figure 2: ROC curves of the different models based upon eNose analysis.



Oncotarget91599www.impactjournals.com/oncotarget

so, not every asbestos-exposed person is subjected to 
repeated chest imaging procedures, which will help 
the monitoring of asbestos-exposed individuals to be 
more cost-effective and reduce the associated radiation 
exposure [25]. Future research should focus on the next 
step: validating our results in an independent, large, 
multicenter series with blinding of the investigator 
for the underlying disease, monitoring AEx persons 
over time and see how breath analysis can be used 
to screen for MPM. In addition, the VOCs should be 
compared and correlated to mesothelin and linked with 
the pathophysiology of MPM by comparing the VOCs 
in breath with those in the headspace of mesothelioma 
cell lines and pleural fluid. This will ultimately improve 
the specificity.

MATERIALS AND METHODS

Study design and participants

We performed a multicenter, cross-sectional, case-
control study in 64 subjects. Fourteen MPM patients, 
fifteen patients with well-defined benign asbestos-related 
diseases (ARD), and sixteen healthy non-asbestos exposed 
(HC) controls were recruited in the three participating 
university hospitals. Nineteen asymptomatic former 
asbestos-exposed individuals with well-documented 
asbestos exposure, were recruited via the occupational 
health service of a Belgian fiber-cement factory that 
processed asbestos until 1997. Treatment-naïve MPM 
patients were included after diagnosis, confirmed by 
the Belgian Mesothelioma Pathology Panel. Exclusion 
criteria were the start of any anti-tumor treatment before 
breath sampling, and the presence of non-asbestos-related 
diseases in the control groups. Before inclusion, a recent 
CT scan or chest X-ray (<12 months) had to be present to 
confirm the medical condition. The study was approved 
by the Institutional Review Board of Ghent University 
Hospital (LONG 11-01; Belgian registration number 
B670201111954) and was conducted in accordance 
with the Helsinki Convention. Participants had to give 
their written informed consent and two questionnaires 
had to be completed: one to check if the participants 
met the inclusion criteria and one to collect data about 
demographics and past occupational asbestos exposure. 
For all patients, a detailed medical record had to be 
available.

Breath sampling

Breath was sampled using a previously validated 
method [8, 12]. In short, participants breathed tidally 
with a nose clip into a 2-way non-rebreathing valve 
(Hans Rudolph 2700, Hans Rudolph, Kansas City, 
USA) with an inspiratory VOC-filter (A2, North Safety, 
Middelburg, NL) at the inlet side. After 5 minutes of 

tidal breathing, the participants inhaled maximally and 
the expiratory port was connected to a 10L Tedlar bag 
(SKC Inc., Eighty Four, PA, USA). Subsequently, the 
subjects exhaled a full vital capacity volume into the 
Tedlar bag which was closed afterwards. Within 10 
minutes, the bag was connected to an external pump and 
500ml of the breath sample was loaded onto a sorbent 
tube (3.5” long, 0.25” outer diameter) filled with 200mg 
Tenax®GR (35/60 mesh; Markes International Ltd., 
Llantrisant, UK) for GC-MS analysis at a flow rate of 
100ml.min-1 for 5 minutes. Immediately afterwards, 
500ml of the breath sample was loaded onto another 
Tenax®GR tube (Tenax®GR SS 6mm x 7” (CAMSCO, 
Houston, Texas, USA)) for eNose analysis at a flow rate 
of 250ml.min-1 for 2 minutes. The sampling tubes were 
tightened, packed in a glass jar, and sent out for central 
analysis.

Gas chromatography – mass spectrometry (GC-
MS) analysis

Prior to use, the Tenax®GR-tubes were conditioned 
for 1 hour at 300°C while being flushed with helium 
(50 ml.min-1). After conditioning but before sampling, 
the tubes were loaded with 10.7 ng toluene-d8 internal 
standard, by making a two-phase system and using a 
home-made injector system. After sampling, breath 
analytes were desorbed from the Tenax®GR-column using 
a Unity series 2 Thermal Desorption system (Markes, 
Llantrisant, UK) by heating the tube to 260°C (10 min at 
20ml.min-1). Prior to desorption, tubes were dry purged for 
4 minutes at 20ml.min-1. Next, analytes were refocused on 
a microtrap filled with Tenax®TA, cooled at -10°C. After 
flash-heating the microtrap at 280°C for 3 min, analytes 
were carried by a He-flow (constant pressure: 50 kPa) 
and injected with a split-flow of 5 ml.min-1 onto a 30m 
FactorFour VF-1ms low-bleed bounded-phase capillary 
GC-column (Varian, Sint-Katelijne-Waver, Belgium; 
100% polydimethylsiloxane, internal diameter 0.25mm, 
film thickness 1mm). The flow path was heated to 130°C. 
The GC (Focus GC, Thermo Finnigan, Milan, Italy) 
oven temperature was initially set at 35°C for and kept 
for 10 minutes, then heated to 60°C at a rate of 2°C.min-

1. Afterwards the temperature was increased to 170°C at 
8°C.min-1 and finally to 240°C (at 15°C.min-1), maintained 
for 10 min. The MS transfer line was heated to 240°C. 
The ion source was put at 220°C. Masses with m/z 29 
to 300 were recorded in full scan mode (200 ms/scan) 
on a DSQII Single Quadrupole MS (Thermo Finnigan, 
Austin, TX, USA), hyphenated to the GC, and operating 
at an electron impact energy of 70 eV. Chromatograms 
and mass spectra were processed using XCalibur software 
(Thermo Finnigan, v2·2) and the NIST database. For 
unidentified compounds, the Kováts retention index (IK) 
was calculated.
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Electronic nose (eNose) analysis

Exhaled VOCs were thermally desorbed from 
Tenax®GR tubes using nitrogen as carrier gas. Next, 
samples were analyzed by an assembly of four different 
eNoses, based on deviant sensor technologies: Cyranose 
C320 [26], Tor Vergata eNose [27], Common Invent 
eNose [28], and Owlstone Lonestar [29]. When exposed 
to a gas mixture, the sensors swell, resulting in a change 
of electrical resistances (ΔR). The ΔR/R-values are stored 
as raw data, producing a breathprint that describes the 
VOC mixture which can be used for pattern-recognition 
algorithms [30, 31]. The final eNose-based breath profiles 
were established by merging the sensor defections of all 
four devices.

Statistics

R (v3.3.1) using the R studio interface was used 
for data analysis. Categorical variables are compared 
using a Pearson Chi2-test and reported as ratios. For 
continuous variables, normality was checked by a 
Shapiro-Wilk test. Dependent on the outcome, variables 
are given as mean (standard deviation) or median 
(quartile 1-quartile 3).

The raw eNose data were reduced by principle 
components analysis into principle components (PC). 
PCs explaining at least 70% of variance were retained 
and subsequently used as independent variables for linear 
discriminant analysis. The leave-one-out cross-validated 
(LOOCV) accuracy was reported in order to limit false 
discoveries. Receiver operating characteristic (ROC) 
curves were constructed.

For GC-MS data, the high number of variables 
and the rather low number of samples requires penalized 
logistic regression using the least absolute shrinkage and 
selection operator (lasso) to search for VOCs that have 
the most discriminative power for distinguishing MPM 
patients from controls. We used the glmnet R-package 
(v2.0-2) for fitting binomial lasso logistic models. This 
involves the selection of a tuning parameter (λ) that 
determines the number of selected VOCs. The optimal λ 
is selected by fitting the model for a sequence of λ-values, 
and for each of the λ-values the fitted model is evaluated 
by estimating the misclassification error rate by LOOCV. 
The λ-value minimizing this error rate was selected and 
used to fit the final model. Using the predicted outcomes 
of all of the patients, we then constructed an ROC curve 
(using the ROCR R-package (v1.0-7)) and estimated 
sensitivity, specificity, positive (PPV) and negative 
predictive value (NPV), the diagnostic accuracy of the 
final model, and the area under the curve (AUCROC) with 
their 95% confidence intervals. We furthermore examined 
the number of times a VOC was selected by the lasso 
regressions. Variables selected in >50% of folds were 
considered important.

CONCLUSION

GC-MS and eNose analysis allowed to discriminate 
MPM persons from asymptomatic, former asbestos-exposed 
persons at risk for MPM with great accuracy. The VOCs 
diethyl ether, methylcyclopentane, nonanal, limonene, 
cyclohexane, VOC IK 1287 and isothiocyanatocyclohexane 
were identified as promising biomarkers for MPM. These 
data provide the proof-of-principle for future screening of 
persons at risk for MPM as a step-up tool in its diagnosis, 
making it less-invasive for the patient.
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