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ABSTRACT

Enhancers are short regulatory regions (50-1500 bp) of DNA that control 
the tissue-specific activation of gene expression by long distance interaction 
with targeting gene regions. Recently, genome-wide identification of enhancers 
in diverse tissues and cell lines was achieved using high-throughput sequencing. 
Enhancers have been associated with malfunctions in cancer development resulting 
from point mutations in regulatory regions. However, the potential impact of copy 
number variations (CNVs) on enhancer regions is unknown. To learn more about 
the relationship between enhancers and cancer, we integrated the CNVs data on 
enhancers and explored their targeting gene expression pattern in high-grade ovarian 
cancer. Using human enhancer-gene interaction data with 13,691 interaction pairs 
between 7,905 enhancers and 5,297 targeting genes, we found that the 2,910 copy 
number gain events of enhancer are significantly correlated with the up-regulation 
of targeting genes. We further identified that a number of highly mutated super-
enhancers, with concordant gene expression change on their targeting genes. We 
also identified 18 targeting genes by super-enhancers with prognostic significance 
for ovarian cancer, such as the tumour suppressor CDKN1B. We are the first to report 
that abundant copy number variations on enhancers could change the expression 
of their targeting genes which would be valuable for the design of enhancer-based 
cancer treatment strategy.

INTRODUCTION

To establish and maintain specific physiological 
states in different developmental stages and cell types, 
gene expression is highly regulated by thousands of 
transcription factors (TFs), cofactors and chromatin 
regulators [1]. For accurate gene regulation, the TFs and 

cofactors are often binding in specific genomic regions 
that include promoters and enhancers. Compared to 
the proximal promoters for gene regulation, enhancers 
are often physically located up to 1Mbp away from the 
target genes [2]. In addition, these gene-distal regulatory 
elements can be upstream or downstream from the 
transcription starting site and either in the forward or 
reverse strand. In general, enhancers have more tissue 
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specificity compared to promoter-based gene regulation 
[2].

As the most lethal gynecologic malignancy in 
women, ovarian cancer (OVC) can be classified as 
low-grade (well-differentiated) or high-grade (poorly 
differentiated) [3]. Due to the absence of symptoms in an 
early stage, OVC is regarded as a ‘silent killer’ with an 
estimation of 15,500 deaths in the United States in 2012 
[3]. Although the steady accumulation of genetic and 
pathogenesis studies in OVC, there is rare focus on the 
interplay of regulatory events at promoter regions [4]. The 
roles of enhancer in ovarian cancers have been reported in 
only one recent publication and at single gene level [5].

Despite a number of studies on enhancer methylation 
dynamics in promoter regions of other cancer types [6], 
the global mutational patterns of enhancers are unknown. 
Due to the limitation of precise enhancer and target gene, 
the interaction of enhancers and their target genes in 
ovarian cancer are unexplored as well. Since recent studies 
confirm the dosage effect of copy number variation (CNV) 
in genes [7], we present the first systematic study of CNV 
in enhancer regions and explore the potential effects on 
their target genes. In summary, the integrative mutation 
and expression analyses was conducted in ovarian cancer 
to elucidate the relationship between enhancer CNVs 
and targeting gene expression changes in the hundreds 
of matched ovarian cancer samples from The Cancer 
Genome Atlas (TCGA) [8].

RESULTS

A computational framework to identify the gene 
expression change induced by copy number 
variation of enhancer

To explore the CNV of a specific DNA region, 
the genomic coordinate is necessary to intersect all the 
known CNV regions. Since enhancers are DNA fragment 

on the chromosome, they could easily to be represented 
as genomic coordinates. Based on the overlapping 
genomic coordinates, we mapped enhancers to CNV 
data. By further incorporating the gene expression of 
enhancer targeting genes, we could check whether the 
CNVs on enhancer have effects on the expression change 
of targeting genes. To survey the role of enhancers in 
ovarian cancer, we focused on the CNVs on enhancer 
regions and constructed a computational framework 
with extensive data integration (Figure 1, see Methods). 
We downloaded 7905 ovary-specific enhancers 
(Supplementary Table 1) from EnhancerAtlas that all 
human enhancers were predicted based on three or more 
independent high throughputs experimental evidence 
(e.g. histone modification, enhancer RNA, transcription 
factor binding, DNase I hypersensitive sites) [9]. In 
addition, EnhancerAtlas provided the predicted target 
genes. In order to use the reliable target genes, we set a 
limit of 0.7 for the confidence score and collected 5297 
associated targeting genes with 7905 enhancers in ovary 
tissue (Supplementary Table 1). We then used genomic 
intersecting functionality from Bedtools to intersect 
each enhancer with those characterized CNVs from 
TCGA ovary cancer [10]. In total, we found 4620 CNVs 
associated with 7357 ovary enhancers in 507 TCGA ovary 
cancer samples (Supplementary Table 2). By checking the 
expression of those targeting genes in the same TCGA 
cancer samples, we identified those concordant regulatory 
pairs which reflect the CNV-based enhancer dosage 
effects on target gene expression. We also defined the 
super-enhancers if multiple enhancers in the chromosome 
targeting the same genes with up-regulating effects. By 
correlated those targeting genes to the human interaction 
network and the functional features of those targeting 
genes regulated by enhancers with copy number gain, we 
further associated key cancer signaling pathways with the 
enhancer CNV-based regulation. Finally, we surveyed 
those key genes with prognostic features associated with 

Figure 1: The computational pipeline to explore the CNV of enhancers.
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survival data and which provided a list of genes with 
potential clinical applications.

The consistency of gene expression changes 
induced by CNVs in enhancer regions

There are 13,691 regulatory pairs with 7,905 
ovary enhancers and 5,297 target genes according to 
enhancerAtlas (Supplementary Table 1). To evaluate the 
effect of the enhancers with CNVs, we integrated the 
gene expression data from the same TCGA ovarian cancer 
sample and evaluated the regulation of their associated 
genes. We further classified these CNV-based expression 
change based on CNV type and the concordance of the 
gene expression change. Since we aimed to explore the 
involvement of enhancer in targeting gene regulation, we 
only studied two possible concordant changes: enhancer 
copy number gain/gene up- regulation and copy number 
loss/gene down-regulation. We found 4,353 concordant 
regulatory pairs with copy number gain of enhancer and 
up-regulation of target genes in 212 TCGA tumor samples 
(Supplementary Table 3). By contrast, we found 1,037 
pairs with copy number loss and consistent gene down-
regulation in 61 TCGA tumor samples. In those enhancer-
expression pairs, there were 2910 unique enhancers 
associated with gain/up-regulation and 887 associated 
with loss/down-regulation. Therefore, we further focused 
on the 4230 regulatory pairs with 2862 enhancer and 1743 
target genes.

By counting the number of samples with the same 
concordant regulatory events, we identified 129 regulatory 
pairs detected in 15 or more ovary tumor samples 
(Supplementary Table 3). These 129 pairs consisted of 115 
enhancers and 64 target genes. For example, the enhancer 
at “chr8:124034530-124034920” has the concordant 
regulatory effects on its target gene DERL1 in 54 TCGA 
ovarian cancer samples. This target gene encoding 
Derlin-1 has been detected over-expressed in multiple 
cancers, including breast [11], colon [12], and non-small 
cell lung cancer [13]. Derlin-1 can participate in the ER-
associated degradation response and retrotranslocate 
misfolded or unfolded proteins from the ER lumen to 
the cytosol for proteasomal degradation. This process 
may have clinical application as a novel cancer target in 
attempt to develop a new tumor targeting therapy [14]. 
These 64 genes are enriched in a number of cytobands 
(Supplementary Table 4) in 3q27, 8q24, 19p13 and 
19q13, which may imply the potential active regions for 
enhancer regulation. These genes are also enriched in 
nuclear regions, such as nucleoplasm (corrected P-value 
= 0.00131), nuclear body (corrected P-value = 0.0285), 
and perinuclear region of cytoplasm (corrected P-value = 
0.0429).

Usually, the gain of copy number in enhancer 
regions has multiple predicted targeting genes with 
concordant up-regulation in the matched ovarian cancer 

samples in TCGA. In our data, we identified two enhancers 
with seven target genes: “chr19:13189550-13190960” and 
“chr14:23316840-23319540” (Supplementary Table 1). 
For the enhancer in chromosome 19, the target genes are 
TRMT1, TNPO2, NFIX, DNASE2, PRDX2, NANOS3, and 
LYL1, which was detected in 22 unique tumor samples. 
Although the other one in chromosome 14 has 7 target 
genes, it was only detected in three unique tumor samples. 
In summary, the consistent expression changed in multiple 
tumor samples, potentially induced by enhancer, are ideal 
candidate therapeutic target that may be translated into 
clinical application.

The identification of 210 target genes regulated 
by super-enhancers

A super-enhancer was defined as a cluster of 
enhancers located in a specific genomic region and that 
collectively drives transcription of genes [15]. To further 
examine the potential of super-enhancer regulation, we 
explored those genes targeted by multiple enhancers for 
each tumor sample. By using a cutoff of three proximal 
enhancers, we identified a total of 1909 gene-sample 
pairs with the potential to be subject to super-enhancer 
regulation (Supplementary Table 5). These regulations 
involved 585 target genes in 184 tumor samples. For 
example, the nuclear receptor corepressor 2 (NCOR2) 
has a cluster of 20 upstream enhancers detected in 
a sample (TCGA-24-1562-01) with amplifications. 
Although NCOR2 was related to breast cancer [16], this 
regulation was only observed in a single tumor sample. To 
survey those reliable regulations with multiple samples-
based evidence, we selected 210 target genes with an 
upstream super-enhancer in at least three tumor samples. 
Interestingly, the target genes are enriched in cytobands in 
chromosome 19 including 19p13.2 (21 genes, corrected 
P-value = 1.33E-16), 19p13.11 (8 genes, corrected P-value 
= 1.16E-6), 19p13.1 (6 genes, corrected P-value = 2.64E-
5), 19q13.2 (8 genes, corrected P-value = 1.57E-4), and 
19p13.1 (5 genes, corrected P-value = 1.57E-4). Cytoband 
19p13.11 was associated with survival and susceptibility to 
ovarian cancer in a genome-wide study [17]. Additionally, 
the 210 genes are enriched in four gene families: Zinc 
fingers C2H2-type|PR/SET domain family (21 genes, 
corrected P-value = 2.79E-5); Pleckstrin homology 
domain containing (8 genes, corrected P-value = 1.29E-
2); Proteasome (4 genes, corrected P-value = 1.29E-2); 
and MADS-box family (2 genes, corrected P-value = 
1.60E-2). For the Zinc fingers C2H2-type|PR/SET domain 
family, one of its members, ZHX1, was regulated by a 
cluster of five enhancers in 22 samples, which covered 
12% of 184 tumor sample with detected super-enhancer 
regulation. As a transcription repressor, ZHX1 has been 
associated with the progressions of cholangiocarcinoma, 
hepatocellular carcinoma, gastric cancer, and breast cancer 
[18]. For Pleckstrin homology domain containing genes, 
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there are two AKT proteins (AKT1/2), which regulate cell 
proliferation and growth. A mutation in AKT1 has been 
implicated as cancer causation in breast, colorectal and 
ovarian cancers in humans [19].

We identified 142 over-represented pathways 
(Supplementary Table 6). The top enriched pathways 
including Epstein-Barr virus infection (corrected P-values 
= 1.61E-3), Prolactin Signaling Pathway (corrected 
P-values = 1.71E-3), G alpha 13 Pathway (corrected 
P-values = 1.71E-3), and G alpha q Pathway (corrected 
P-values = 5.22E-3). Some of the genes are shared in 
these top ranked pathways including MYC, AKT1, and 
YWHAZ. The gene YWHAZ is a member of the 14–3-3 
gene family and participates in the epithelial-mesenchymal 
transition via PI3K-Akt signaling pathway by binding to 
phosphoserine-containing proteins [20]. It was regulated 
by a cluster of five enhancers in 16 tumor samples in our 
results (Supplementary Table 5).

From a gene ontology perspective, the 210 genes 
are associated with regulation of cell cycle, RNA stability 
and transcription from RNA polymerase II promoter 
(Figure 2, Supplementary Table 5, corrected P-values = 
2.41E-2). They are also related to subcellular locations 
such as plasma membrane organization (corrected 
P-values = 2.73E-2) and protein localization to cell 
periphery (corrected P-values = 3.55E-2), which may 
help to identify multiple localizations with more functions 
[21]. In addition, these genes are rate-limiting enzymes 

in fundamental metabolism and energy production 
including generation of precursor metabolites and 
energy (corrected P-values = 2.84E-2) and nucleotide 
triphosphate metabolism (corrected P-values = 4.94E-2) 
[22]. In summary, the identified 210 genes regulated by 
super-enhancers play critical roles in basic gene regulation 
and metabolic and signaling pathways.

The connected network of 210 target genes 
regulated by super-enhancers

To further explore the potential common pathways 
associated with the 210 genes regulated by super-
enhancers, we utilized the network approach to connect 
those genes. The Pathway Commons database was used 
to extract gene-gene functional interaction pairs [23]. The 
interactome from Pathway Commons was summarized 
from the knowledge of the cellular pathway for 
metabolism and signaling transduction in a few popular 
biological pathway databases such as KEGG [24] and 
Reactome [25]. Thus, the entire network was substantially 
smaller than that of the protein-protein interactome 
based on physical interactions, which have higher 
false-positives and are not useful for further pathway 
reconstruction. Based on the reliable human pathway-
based interactome, we constructed a comprehensive 
cellular map for 210 genes regulated by super-enhancers. 
The reconstructed map contains 217 genes and 486 gene-

Figure 2: The enriched gene ontology terms for the 210 genes regulated by super-enhancers. The X and Y axes represent 
the semantic similarities of the gene ontology terms. The log 10 of the corrected P-values are plotted in different colors.
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gene interactions using evidence from known biological 
pathways (Figure 3A). One hundred and fifty-eight of the 
217 nodes were from the 210 super-enhancer regulating 
genes. The remaining 59 are the linker genes that connect 
the 210 genes to fully express their cellular function. 
Approximately three-quarters of 210 genes are linked to 
each other in a highly modular structure and this suggests/
indicates that the super-enhancers could regulate a highly-
connecting cellular modular.

Further network topological analysis indicated that 
most molecules in our map were not sparsely connected. 
In general, the network diameter is 12, which characterizes 
the shortest distance between the two most distant nodes. 
On average, each node has 4.497 neighbors although 87 
nodes possessed a single connection (Figure 3B). This 
means that 130 nodes can readily communicate with each 
via short steps. The number of connections (degrees) of 
all genes regulated by super-enhancers follows a power 
law distribution P(k)~k-b, where P(k) is the probability 
that a gene has connections with other k genes and b is 
an exponent with an estimated value of 1.25. This means 

that the super-enhancer regulatory map is different from 
all other human interaction networks in which most of 
the genes are sparsely connected with exponent b as 2.9 
[26]. This feature skewed the shortest path distribution for 
the whole network to a smaller number (3 - 5) and means 
that >53% of the short paths have three or fewer (Figure 
3C). Next, we focused on the hub nodes in this network, 
which may be common connections facilitating mediate 
information transduction in thousands of short paths. We 
found eight genes, PLCG1 (24), AKT1 (22), FGFR1 (22), 
TP53 (22), PLD1 (22), ALDH3A2 (22), SETDB1 (21), 
and BPGM (21) with over 20 connections. Four of these 
(PLCG1 [27], TP53, ALDH3A2 [28], SETDB1 [29]) are 
linking genes which are not regulated by super-enhancers 
but are related to cancers. In summary, our network 
analysis of super-enhancer regulating genes discovered 
a highly connected functional module and provides links 
to critical cancer driver genes such as PLCG1 and TP53. 
This relationship also highlights the important regulatory 
functions of super-enhancers.

Figure 3: The interactome for 210 genes regulated by super-enhancers using pathway-based protein-protein interaction 
data. (A) The 158 genes in blue are regulated by super-enhancers; the remaining 52 genes in green are linking genes to connect the 158 
genes. The size of the node represents the number of connections in the network; (B) the degree distribution for the network; and (C) the 
short path length frequency for the network.
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Figure 4: Survival and mutational analyses for the 18 genes with a significant prognostic feature in the TCGA ovarian 
cancer dataset. (A) The overall survival characteristics of the 18 genes on the genetic mutation using cBio data portal [44]. (B) The 
sample-based oncoprint for the 18 genes in TCGA ovarian cancer dataset.
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The prognostic features of 210 regulated by 
super-enhancers

To explore the potential prognostic application of 
up-regulated target genes, we mapped these genes with 
the human prognostic database PRECOG which details 
survival outcomes [30]. For each cancer dataset, a Z-score 
was calculated to indicate the change of gene expression 
and associated clinical outcomes. By comparing Z-scores 
across multiple cancer datasets, we evaluated the prognostic 
potential for those target genes associated with super-
enhancers (Supplementary Table 7). We found that 18 
of the 210 genes gave a prognostic Z-score >1.96 in the 
TCGA ovarian cancer dataset; this is equivalent to a two-
tailed P-value < 0.05. For example, CDKN1B is one of the 
18 genes, which is known for its tumor suppressive role 
to regulate cell cycle [31] and stimulate regeneration [31]. 
However, it was also identified as an oncogene to cause 
stem cell expansion [32]. By performing the survival 
analysis using the mutation data from TCGA, we found 
that the survival time of patients with mutations in these 18 
genes is significantly different from those without mutations 
(Figure 4A, P-value = 0.00571 for overall survival analysis).

Interestingly, the 18 genes with high prognostic 
value are enriched in a number of pathways. In particular, 
there are seven genes (CDKN1B, PEX5, EIF3K, MLF2, 
NFKBIB, TULP3, and FBXO17) associated with “Vitamin 
E” from drug association database (Corrected P-value = 
4.73E-02) [33]. A previous study revealed that Vitamin E 
could suppress telomerase activity in ovarian cancer cells 
[34]. More interestingly, seven different genes (ECH1, 
PEX5, MLF2, NFIX, TSPAN9, SAMD4B, and NFKBIB) 
were associated with another drug C646, which is a small 
molecule inhibitor targeting histone acetyltransferase 
p300, an enzyme that alters the cancer transcriptome 
in the lung [35], colon and pancreas [36]. In relation to 
the mutational pattern in ovarian cancer, we plotted the 
sample-based mutations for all the 18 genes in TCGA 
ovarian cancer dataset (Figure 4B). The 18 genes are 
altered in 142 (46%) of 311 sequenced tumor samples 
with copy number variation data. Most of the mutations 
are amplifications, which suggests that these genes have 
potential oncogenic functions in progression of ovarian 
cancers. In addition, some of these 18 genes are close to 
each other and four (EIF3K, SAMD4B, SARS2, FBXO17) 
are from the same cytoband 19q13.2 (Corrected P-value 
= 5.89E-05). The other two genes ECH1 and NFKBIB 
are from 19q13.1 (Corrected P-value = 3.99E-03). In 
summary, our analysis provides the insight into the 
potential prognostic significance of enhancers in ovarian 
cancer and the association with vitamin E and C646 may 
provide novel therapeutic ways to reduce tumorigenicity.

DISCUSSION

Our data integration of human enhancers and 
targets provides the first comprehensive DNA-protein 

interactome in ovarian cancer. By overlapping this 
information with CNVs, we revealed several important 
somatic mutational features of enhancers, particularly 
with respect to the copy number gain. The integration of 
expression data from the matched TCGA samples, allows 
us to propose that potential mechanisms concerning 
the changes in enhancers’ copy number may be critical 
factors in inducing gene expression. A number of super-
enhancers were identified and the prognostic analysis 
of corresponding targeting genes is the first report of a 
correlation between the neuropeptide system and clinical 
survival. The amplification of enhancers may be used for 
biomarkers in cancer and maybe a potential target for anti-
cancer drug designing.

Due to the non-coding properties of enhancers, it 
was difficult to evaluate the functional impact of point 
mutations. Some of these enhancers may express as long 
non-coding RNA, which could be evaluate their functions 
using co-expressed genes [37]. Therefore, region-based 
mutations, such as CNV, were the basis of our study. 
The data quality of CNV may affect our results and 
interpretation. Firstly, some low-frequency CNVs may 
not be identified due to the small sample size of TCGA 
data (hundred individuals) [20]. Secondly, the CGH array-
based CNV detection may not be able to characterize 
the outside regions of pre-designed probes, which may 
lose some signals in the enhancer regions. The further 
integration of large-scale CNV data and gene expression 
will provide new insights into the impacts of CNVs on 
enhancer-related regulation in cancers.

MATERIALS AND METHODS

The target genes of enhancers in human ovary 
tissue

To conduct a systematic CNV survey of ovarian 
cancer enhancers, we downloaded 7905 ovary-specific 
enhancers in a plain text format from EnhancerAtlas 
database [9]. The comprehensive database for human 
enhancers, EnhancerAtlas, contained enhancers’ 
annotation and analysis results in 105 human cell/tissue 
types. The cross-validation of enhancers was conducted 
for each cell/tissue type by integration of multiple 
experimental datasets with the relative weights (e.g. 
histone modification, enhancer RNA, transcription factor 
binding and DNase I hypersensitive sites). Therefore, we 
focused on the task to compare enhancers in a particular 
genomic region and assign enhancers and their target 
genes from the ovary-specific dataset.

To intersect enhancers with CNVs, we first 
extracted these 7905 ovary-specific enhancers with precise 
GRCH37 genomic locations. To correlate the CNV and the 
expression change, we downloaded targeting genes for all 
the 7905 enhancers. These potential targeting genes are 
predicted using a confidence score >0.7.
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The copy number variation and gene expression 
data from TCGA ovarian cancer cohort

To compile precise gain or loss of copy in 
enhancers, we downloaded the CNV data with the 
GRCH37 genomic coordinates from Catalogue of Somatic 
Mutations in Cancer database (COSMIC) (V78) [38]. 
In COSMIC, the copy number gain (CNG) was defined 
as either the average genome ploidy < = 2.7 AND total 
DNA segment copy number > = 5 or the average genome 
ploidy > 2.7 AND total DNA segment copy number > = 
9. The comparable criteria for copy number loss (CNL) 
were as (the average genome ploidy < = 2.7 AND total 
DNA segment copy number = 0) OR (average genome 
ploidy > 2.7 AND total DNA segment copy number < 
(average genome ploidy −2.7)). An in-house shell script 
was implemented to extract the overlapping regions 
between ovary-specific enhancers and CNVs from the 
TCGA ovarian cancer samples. In total, we obtained 7,357 
ovary enhancers with precise gain or loss information in 
507 TCGA ovary cancer samples. To obtain reliable the 
gain or loss information, we use cross validation of the 
number of samples with CNG or CNL in the ovarian 
cancer samples. However, the majority of enhancers have 
substantial CNGs. Consequently, we collected enhancers 
with more than twice tumor samples with CNGs as those 
tumor samples with CNLs.

To investigate the targeting gene expression 
changes caused by enhancers, all the ovarian cancer gene 
expression profiles were downloaded from the COSMIC 
database (V78). To provide the accurate expression 
change analysis, we only used those gene expression data 
in matched TCGA samples with enhancer CNGs. The 
average and sample standard deviation for each gene were 
calculated based on the RSEM quantification results from 
the RNAseq V2 platforms. The standard Z-scores were 
applied to characterize whether a gene is over or under 
expressed in tumor samples. A Z-score of at least1.96 was 
used to define increased gene expression.

The prognostic features of those up-regulated 
target genes

To explore the prognostic feature of enhancer 
targeting genes, the TCGA pan-cancer-based prognostic 
Z-scores were downloaded from PRECOG [30]. The data 
provided the prognostic relevance of the human protein 
coding genes by integrating gene expression, clinical 
survival data, and regulatory data. Across 39 cancer 
types, the Cox proportional hazards regressions were 
applied to each gene by focusing on gene-level expression 
and survival outcomes. Finally, standard Z-scores were 
used to determine whether the genes are associated with 
significant longer or shorter survival times in multiple 
cancers.

The enhancer-related regulatory network 
construction and visualization

To explore the regulatory genes of super-enhancers 
in a pathway context, we extracted protein-protein 
interaction data for the 210 target genes regulated by 
super-enhancers. To provide the accurate interaction 
in biological pathways, a non-redundant pathway-
based human interactome was built based on the known 
pathway-based interactions from HumanCyc [39], the NCI 
pathway interaction database [40], Reactome [25], and 
KEGG pathway database [24]. The final human pathway-
based interactome contains 3,629 genes and 36,034 
interacting edges, which is relatively small compared with 
the size of physical interactome without any biological 
implication. To construct a sub-network associated with 
the 210 super-enhancer targeting genes, we used the 
extraction approach described in our previous study [41]. 
This algorithm mapped all the 210 genes to the pathway-
based interactome and then generated a sub-network with 
the shortest paths between 210 genes and other human 
genes.

Unlike the functional studies on a single gene, 
protein-protein interaction networks are often too complex 
to enable the function on each node to be assessed. 
However, because a small number of simple topological 
rules relate to network function, the topological 
properties of a network could be used to characterize 
its global function. For each gene in the network, we 
calculated the number of connections for a node, also 
known as the degree, and the short path which identifies 
the shortest steps for one gene to interact with another. 
All the topological analyses were conducted using the 
NetworkAnalyzer plugin in Cytoscape 2.8 [42] and the 
further network visualization and layout was performed 
using Cytoscape 2.8 as well. We systematically examined 
those genes in the network with regard to their functional 
gene ontology and visualized them using REVIGO [43]. 
The somatic mutational pattern in TCGA ovarian cancer 
cohort was visualized by using cBio portal [44].
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