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ABSTRACT

Both microRNAs (miRNAs) and chromatin regulation play important roles in 
cellular processes and they function at different regulatory levels of transcription. 
Although efforts have been devoted to the investigation of miRNA and chromatin 
regulation, there’s still no comprehensive work to illustrate their relationships due 
tothe lack of whole-genome wide datasets in different human cellular contexts. Based 
on the recently published large-scale epigenetic data, we examined the association 
between miRNA and epigenetic machinery. Our work confirmed a general relationship 
between miRNA biogenesis and chromatin features around pre-miRNA genomic 
regions. Obvious enrichments of DNA methylation and several histone modifications 
were observed within the pre-miRNA genomic region, which werecorrelated with 
miRNA expression levels. Furthermore, chromatin features at genepromoter 
regionsweretightly associated with miRNA regulation. Interestingly, we found that 
genes with their promoter regions located in the active chromatin state regions tend 
to have a higher probability to be targeted by miRNAs. This worksuggests that miRNAs 
and chromatin features are often highly coordinated, which provides a guide to deeply 
understand the complexity of gene regulation.

INTRODUCTION

Mounting evidence have shown that miRNAs, an 
abundant class of small non-coding RNAs, are key post-
transcriptional regulators of gene expressionin a wide 
variety of organisms ranging from plants to worms and 
mammals [1–4]. Recent studies have revealed various 

molecular mechanisms by which miRNAs down-
regulate their target mRNAs [5, 6]. Around 30%- 80% 
of the human genes are predicted to be regulated by 
miRNAs [7–11]. Each miRNA can target multiple genes 
and, in turn, more than one miRNAs can bind a single 
mRNA target. It has been realized that the mechanism 
of miRNA regulation is quite complicated and needs to 
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be scrutinized by the network-based systems biology 
approaches [12].

Recent studies have revealed that chromatin is one 
of the most complex molecular ensembles in the cell [13]. 
The eukaryotic DNA is tightly wrapped around histone 
octamers to form nucleosomes. Chromatin consists of 
arrays of nucleosomes with many dynamic features such as 
DNA methylation, post-translational histone modifications, 
as well as the binding ofchromatin-remodeling complexes 
and modification binding proteins, etc. [14–16]. It has 
been documented that chromatin features are involved in 
both activation and repression of transcription [17]. For 
example, H3K4me1 and H3K4me3 are tightly associated 
with transcriptional activation, while H3K27me3 and 
H3K9me3 are correlated with transcriptional repression 
[18–21]. The influence of chromatin on gene regulation 
is supported by the finding that histone post-translational 
modifications lead to the recruitment of protein complexes 
that regulate transcription [17, 20, 22].

Given the importance of miRNA and chromatin-
regulation in the post-transcription regulation process, it is 
not surprising that miRNA and chromatin regulation are 
coordinated. Amongthe several regulatory mechanisms, one 
is based on epigenetic modifications. Recently, it has been 
proved that miRNA genes are subject to hyper-methylation 
and hypo-methylation in a tumor- and tissue- specific manner 
[23]. On the other hand, epigenetic features of specific genes 
are also correlated with miRNA regulation. For example, miR-
148 has been shown to target DNMT3B gene [24], reflecting 
a regulatory feedback loop between epigenetic regulation and 
miRNAs. In this way, miRNA-epigenetic machinery forms an 
intricate network regulating gene expression.

Thanks to the wealth datasets from the 
ENCODE project [25], which opens the door for us to 
comprehensively explore the relationship between miRNAs 
and chromatin features in different human cellular contexts. 
In this study, we employed chromatin accessibility, DNA 
methylation and different types of histone modification data 
generated by the ENCODE project in six human cell lines 
to analyze their relationship to miRNAs. Our work revealed 
severalnew insights: (1) certainchromatin features around 
pre-miRNA regions weretightly associated with miRNA 
expression in different cell lines; (2) the promoters of 
miRNAs target genes were preferentially located in ‘open’ 
chromatin domains; (3)miRNA target gene promoters were 
negatively correlated with DNA hypomethylation; (4) 
active histone modification marks of gene promoter regions 
showed different patterns between miRNA targets and non-
targets. These results provided a more comprehensive view 
ofthe relationship between miRNA and chromatin features. 
Abetter understanding of the relationshipbetweenmiRNA 
and chromatin regulation will help us to understand the 
complexity of transcriptional regulation.

RESULTS

Chromatin features can significantly influence 
miRNA transcription

Chromatin features have been thought to regulate 
the transcription of miRNA genes in a manner similar to 
that of protein-coding genes [26]. To comprehensively 
study the relationship between chromatin regulation and 
miRNA expression in multiple human cellular contexts, we 
characterized12 genome-wide chromatin tracks, including 
10tracks of histone modification marks, one track of DNA 
methylationand one track of chromatin accessibility in 
six human cell lines (see Material and Methods). These 
data derived from extensive experimentswere performed 
by different ENCODE production groups, enabling 
integration across various types of chromatin features in 
different cellular contexts.

At first, we measured chromatin features enrichment 
around human pre-miRNA genomic sequences. Average 
levels of histone modifications were calculated across 
the 4,000 bp window surrounding the center of each pre-
miRNA sequence. We found obviously higher signals 
of different chromatin featuresin expressed miRNAs 
around the pre-miRNA sequencesthan expression-
silenced miRNAsand random sequencesfrom intergenic 
regions (Figure 1), suggesting that chromatin features are 
highly enriched within microRNA precursor sequences.
Next, we plotted the distributions of chromatin features 
around pre-miRNA sequences. Obvious enrichments of 
several chromatin features were observed in expressed 
miRNAs (Figure 2), particularly in highly expressed 
miRNAs in comparison to lowly expressed miRNAs 
and silenced miRNAs in human embryonic stem cells. 
The same conclusions were reached in all six human 
cell linecontexts. Notably, these activation associated 
histone marks significantly occupiedhighly expressed 
miRNAs.Furthermore, consistent with previous work 
[23], it was apparent that DNA methylations around pre-
miRNA regions werecorrelated with miRNA expression 
levels (Figure 2). These results further validated the tight 
relationship between chromatin regulation and miRNA 
biogenesis.

To further investigate the correlation of chromatin 
features and miRNA expression, we combined these 
chromatin features around pre-miRNAs genomic 
sequences and used them as input features. Based on 
the expressed and silenced miRNA groups, we applied 
the SVM classifier model for predicting miRNA 
expression. The performance of the model was assessed 
by cross-validation (see Materials and methods). The 
result indicated that our model achieved a comparable 
information when predicting miRNA expression (measured 
by the area under the receiver operator characteristic 
curve, AUC) in different cell lines (Figure 3A,  
AUCH1-hESC=0.64, AUCGM12878=0.65, AUCHepG2=0.69, 
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AUCK562=0.65, AUCHeLa-S3=0.74, AUCA549=0.71, 
respectively). When considering the highly expressed 
and silenced miRNA group, we obtained a higher 
level of classification accuracy with the AUC values 
ranging from 0.83 to 0.91 (Figure 3B, AUCH1-hESC=0.87, 
AUCGM12878=0.83, AUCHepG2=0.91, AUCK562=0.85, 
AUCHeLa-S3=0.89, AUCA549=0.86, respectively). Our results 
comprehensively indicated that it’s not a causal effect of 
chromatin features on miRNA expression, and chromatin 
features are involved in miRNA transcription.

Correlation between miRNA regulation and 
chromatin features of gene promoter regions

Next, we examined the association 
betweenchromatin and miRNA regulation. Because 
the expressions of miRNAs are highly variable across 
different human cell lines, only expressed miRNAs in 
each cell line were considered. Previous works reported 
that gene expression was related to histone modification in 
their promoter regions [17, 27]. Therefore, the relationship 
between miRNA regulation and chromatin features 
(chromatin accessibility, DNA methylation and histone 
modification) of the gene promoter regions(defined as 
4,000 bp window relative to the transcription start site) 
were investigated.

miRNAs preferentially target genes with open 
chromatin domain in their promoters

In order to investigate the relationship between miRNA 
regulation and chromatin accessibility, recent published 
DNase I hypersensitive sites (DHS) data generated by 
DNase-Seq method were compiledin these six human cell 
lines. Weexamined the average DNase signals within the 
promoter regions to the miRNA targets and non-targets, 
respectively. The result showed that DHS peaks were 
preferentially located in the promoter regions of miRNA 
targets than non-targets (Table 1).SinceDNase I sensitivity 
provides a quantitative marker of regions of open chromatin, 
we grouped all genes based on theDNase I hypersensitive 
signals in their promoter regions and calculating the miRNA 
target rate in each group. As shown in Figure 4, DNase I 
hypersensitive signals weresignificantly correlated with the 
miRNA target rate in all six human cell lines (RH1-hESC=0.68, 
RGM12878=0.69, RHepG2=0.73, RK562=0.63, RHeLa-S3=0.74, 
RA549=0.7, respectively). These results indicated that genes 
with their promoter regions exposed to the open chromatin 
state are more proneto be targeted by miRNAs.
miRNAs preferentially target genes with low DNA 
methylation level in their promoters

Next, we attempted to explore the relationship between 
promoter methylation and miRNA regulation by taking 

Figure 1: Enrichments of chromatin features around pre-miRNA sequences. We compared the observed prevalence of 
chromatin features in pre-miRNA sequences against random sequences control. Statistical significances were assessed by Wilcoxrank-sum 
test, and error bars were estimated by using 95% confidence intervals. ‘*’ represents P-value< 0.05 and ‘**’ represents P-value< 0.01.
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Figure 2: Profiles of chromatin features along pre-miRNA genomic sequences in human embryonic stem cell. The y axis 
represents the average values of chromatin feature coverage, and the x axis represents the distance relative to the center of pre-miRNA.

Figure 3: Prediction of miRNA expression using SVM classifier. ROC curve is generated based on (A) the expressed and silenced 
miRNAs, and (B) highly expressed and silenced miRNAs. The gray line represents the ROC curve from randomly guessing.
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advantage of the recently published human methylome data in 
six human cell lines. In this study, we found that the promoter 
DNA methylation levels of miRNA targets weresignificantly 
lower than those of miRNA non-targets in six cell lines, 
indicating their functional complementation (Table 1). The 
ratio of the observed to the expected CpG content (CpGo/e) 
has been used as a proxy for the DNA methylation status 

in the human genome. Accordingly, genes were classified 
into hyper-methylated group and hypo-methylated group 
according to the extent of CpGo/e, so that hyper-methylated 
group hadlower-than-expected CpGo/e and hypo-methylated 
group hadhigh CpGo/e. We found that DNA methylation levels 
in hyper-methylated promoters hadno significant differences 
between miRNA targets and non-target.

Figure 4: Correlation between DNase I hypersensitive sites and miRNAs in gene regulation in six human cell line.

Table 1: The average chromatin feature signals of promoter regions between miRNA targets and non-targets 
(targets/non-targets) 

A549 GM12878 H1-hESC Hela-S3 HepG2 K562

DHS 0.13/0.10 (2.0E-43) 0.14/0.12 (6.1E-21) 0.35/0.25 (6.0E-112) 0.17/0.14 (1.2E-31) 0.23/0.19 (4.7E-42) 0.17/0.14 (2.9E-32)

DNA 
methylation 0.26/0.34 (1.1E-71) 0.21/0.28 (3.8E-71) 0.22/0.36 (2.7E-143) 0.35/0.40 (8.9E-19) 0.22/0.27 (3.7E-40) 0.19/0.21 (3.0E-06)

H3K4me1 2.28/1.92 (3.2E-49) 2.74/2.58 (8.8E-12) 3.26/2.62 (4.3E-86) 3.10/2.67 (1.0E-20) 3.62/3.41 (1.8E-09) 3.66/3.35 (5.2E-07)

H3K4me2 10.97/7.75 (2.0E-107) 10.36/8.33 (1.4E-47) 15.15/10.31 (2.2E-153) 8.57/6.61 (5.6E-41) 16.05/12.38 (2.7E-50) 17.78/14.25 (2.9E-26)

H3K4me3 21.50/14.58 (1.3E-96) 9.72/7.65 (2.4E-49) 14.46/10.06 (1.6E-108) 16.41/12.05 (1.2E-51) 26.61/19.20 (9.9E-63) 13.73/10.98 (7.5E-25)

H3K9ac 19.66/13.52 (6.3E-79) 12.74/9.90 (5.4E-34) 7.05/5.11 (1.9E-78) 16.51/12.03 (1.2E-40) 16.77/12.07 (1.1E-39) 14.23/10.99 (9.3E-20)

H3K27ac 11.47/7.73 (1.4E-62) 10.65/8.22 (2.0E-32) 3.79/2.90 (3.8E-45) 15.10/10.84 (8.3E-35) 14.32/10.25 (2.5E-28) 13.70/10.47 (1.2E-18)

H3K79me2 6.10/3.96 (2.0E-74) 9.39/6.85 (7.3E-39) 4.65/2.91 (3.2E-91) 5.30/3.81 (3.2E-43) 6.01/4.19 (1.4E-41) 10.85/7.76 (3.4E-25)

H4K20me1 1.86/1.50 (4.0E-69) 1.58/1.40 (2.7E-33) 1.91/1.49 (1.1E-133) 1.37/1.23 (1.0E-11) 1.93/1.40 (8.1E-91) 2.06/1.74 (6.5E-38)

H3K9me3 0.79/0.83 (0.83) 1.12/1.11 (0.66) 0.78/0.86 (4.2E-09) 0.86/0.89 (0.09) 0.46/0.48 (0.96) 1.06/1.09 (0.3)

H3K27me3 1.45/1.44 (086) 1.54/1.29 (8.0E-07) 5.94/3.68 (1.0E-19) 0.88/1.00 (1.4E-10) 3.08/3.54 (4.2E-26) 1.41/1.45 (0.075)

H3K36me3 1.40/1.29 (1.4E-16) 1.01/0.99 (0.34) 1.03/1.04 (0.78) 0.94/0.92 (0.49) 1.06/1.03 (6.7E-05) 1.52/1.46 (0.0063)

The values in the parenthesis are the P-values calculated by the Wilcoxon signed-rank test.
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miRNA targets are significantly correlated with active 
histone modification marks

To better understand the relationship between 
histone modifications and miRNA regulation, we 
examined the enrichment profiles of 10 histone 
modification marks generated by ChIP-seq method around 
gene promoter regions between miRNA targets and non-
targets.Except for H3K9me3, H3K27me3 and H3K36me3, 
We found that histone marks were significantly more 
enriched in the promoter regions of miRNA targets than 
miRNA non-targetsacross different cellular context (Table 
1). H3K36me3 is associated with transcribed regions, 
while H3K9me3 and H3K27me3 are both considered 
marks for transcriptional repression. Since histone marks 
exhibit combinatorial patterns in the human genome [28], 
we used a hierarchical clustering method to analyze the 
activation and repression histone modification patterns 

of gene transcription. In each cell line, genes were 
segregated into active cluster (cluster A) and repressed 
cluster (cluster R), respectively. It was obvious that genes 
in cluster A correspondedto activating histone marks (such 
as H3K4me3 and H3K27ac) and hadhigher expression 
levels, whereas cluster R having more repressed marks 
(such as H3K9me3 and H3K27me3) tendedto be lowly 
expressed.Our result indicated that genes nested in cluster 
A are preferentially targeted by miRNA (Figure 5), which 
suggested the associations between miRNA regulation and 
histone modifications corresponding to gene activation.

DISCUSSION

Transcription is a complicated dynamic process, 
involving a combination of various regulators. In this study, 
we undertook a comprehensive analysis of the relationship 

Figure 5: Two clusters of genes regulated by histone modifications in six human cell lines (A-F), and the expression levels 
of the genes in cluster A and cluster R (right panel). Color density indicates the strength of histone modification signals in each cell 
lines. (G) miRNAs preferentially target genes in cluster A.
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between miRNA and chromatin features across multiple 
human cell line, and we found that chromatin features 
wereassociated with both miRNA biogenesis and post-
transcriptional regulation.Chromatin states and miRNAs 
are principle classes of gene regulators in transcription. The 
epigenetic landscape can determine the chromatin structural 
states that ultimately control the transcriptional outcome 
of the cell accommodate developmental or environmental 
requirements. Our work indicated an interconnection 
between miRNAs and chromatin machinery, which could 
provide a useful starting point to explore the molecular 
basis of morphological complexity.

Although the pathological and physiological 
importance of miRNAs has been appreciated, little is 
known regardingtheir regulation. Up to date, mounting 
evidence have indicated that a substantial number of 
miRNA genes are subjected to epigenetic alterations [29, 
30]. An extensive analysis of miRNAs has shown that most 
of them are associated with CpG islands, suggesting that 
they are subjected to the regulation of DNA methylation 
[31]. Furthermore, several lines of evidence have proved 
that aberrant methylation status can be responsible for 
the deregulated expression of miRNAs in cancers [32]. 
Our results indicated that nearly all chromatin features are 
highly enriched in pre-miRNA regions, and some specific 
histone modifications and DNA methylations are associated 
with miRNA expression. Similar to protein-coding 
genes, we found that chromatin features are predictive of 
miRNA expression, suggesting some similarities between 
mRNA maturation and miRNA biogenesis. However, the 
performance of our miRNA expression prediction model is 
less accurate than protein-coding gene expression prediction, 
this can be partially attributed to the factthat miRNA 
biogenesis is also under the control of other regulatory 
mechanisms, such as transcription factor [33], etc.

The influences of miRNAs on target gene expression 
can be roughly classified into two different types: ‘tuning’ and 
‘buffering’ [34]. In expression tuning, miRNAs relate to the 
expression level of their targets, whereas expression buffering 
relates to the reduced expression variance.The regulation 
of miRNA is a complicated process, and the association 
betweenmiRNAs and chromatin regulation leads to a more 
complicated scenario during transcription process. Recent 
works have documented that gene regulatory networks are 
always composed of some small sets of recurring interaction 
patterns called ‘motifs’ [35, 36]. In cases studies so far, 
these network motifs are likely to preserve their phenotypes, 
wired into the regulatory networks of the cell.In this work, 
we provided evidence of associations between miRNAs and 
chromatin regulation. Both chromatin features and miRNAs 
can exert a widespread impact on gene expression, and the 
miRNAs expression and their post-transcriptional regulation 
are influenced by chromatin regulation. They present a 
prevalence of integrated transcriptional regulatory circuit. 
Posttranscriptional control of expression variation is carried 
out by miRNAs, such that the miRNA and target genes are 

wired into an incoherent feed forward loop. Within such 
incoherent feed forward loop architecture, miRNAs can 
buffer expression variation of their target genes against the 
fluctuation of chromatin features.The incoherent feed forward 
loop is characterized as one of the most common network 
motifs in transcription networks, which is largely dominated 
in both bacteria [37] and fungi [38].According to this setup, 
we might expect that chromatin features and miRNAs 
mediated mechanism can maintain homeostasis and increase 
network robustness.

Taken together, our work provided a comprehensive 
investigation on the miRNA-epigenetic relationship. 
The results suggest that these two principles of gene 
regulations are not entirely separable, and a complicated 
mechanism might tie it all together. We speculated that 
the emerging pictures of transcription regulation are much 
more complicated than previously thought.This study 
comprehensively provided the first attempt to understand 
the complexity of gene regulation control.

MATERIALS AND METHODS

Epigenetic data sources

We compiled 12 epigenetic features in six human 
cell lines, consisting of embryonic stem cells (H1-hESC), 
B-lymphoblastoid cells (GM12878), hepatocellular 
carcinoma cells (HepG2), erythrocyticleukaemia cells 
(K562), epithelial carcinoma cells (HeLa-S3) and alveolar 
basal epithelial cells (A549). All data used in this work 
were downloaded from the University of California, Santa 
Cruz (UCSC) hg19 genome browser (http://genome.ucsc.
edu/encode/).Histone modifications within the histone 
tails were compiled, and these data were identified by 
ChIP-seq method generated by the ENCODE project. This 
dataset were generated using the same platform, containing 
10 histone modifications in each cell line (H3K4me1, 
H3K4me2, H3K4me3, H3K27me3, H3K36me3, H3K9me3, 
H3K79me2, H3K20ac, H3K27me1 and H3K9ac).DNase I 
hypersensitivity is an alternative measurement of chromatin 
accessibility, and DNase-Seq provided a powerful technique 
for identifying genome-wide DNase I hypersensitive sites 
[39]. In order to determine whether mRNAs targeted 
by miRNA are preferentially located in open chromatin 
domains, we compiled DNase I hypersensitive site data 
generated by DNase-Seq method from different cell lines. 
DNA methylation data were also downloaded from UCSC 
genome browser, and these data were all generated using 
450K methylation BeadChip.

Annotation of pre-miRNAs, miRNAs and their 
target genes

We downloaded the annotation of 1,594 human small 
hairpin precursor (pre-miRNA) from miRBase (http://www.
mirbase.org/) [40], and explored the distribution of these 
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chromatin features across4,000 bp windows surrounding 
the centers of pre-miRNAs genomic sequences. Mature 
miRNAs (2,233) were also retrieved from miRBase, and their 
expression levels were quantified using the next-generation 
sequencing method generated by the ENCODE project.

In this study, we used three current in silico miRNA 
target prediction methods to determine miRNA target 
genes, including TargetScan [41], PITA [42] and Pictar 
[43].To minimize the false positive of miRNA target 
prediction, a high-quality miRNA target data set was 
generated by intersecting data generated by at least two 
different in silico miRNA target prediction methods. 
Those without being detected by any method were defined 
as miRNA non-targets. In this work, miRNA target rate 
was defined as the ratio of the number of genes that were 
miRNA targets to the total number of genes in human.

Support vector machine model for miRNA 
expression prediction

Based on the miRNA expression data, miRNAs 
could be classified into expressed (sequencing reads can 
be detected) and silenced groups. Furthermore, expressed 
miRNAs were classified into highly and lowly expressed 
groups using K-means clustering method. Chromatin 
features across 4,000 bp windows surrounding the centers 
of pre-miRNA sequences were integrated. Support vector 
machine (SVM), implemented by LibSVM package [44], 
was then introduced for classification. We evaluated the 
performance of the models using two-fold cross-validation. 
Briefly, we randomly divided the data into two subsetswith 
equal sizes, one training set and one testing set, respectively. 
The model was trained using the training set and applied to 
the testing set to predict expression. The prediction power 
of the SVM model was estimated based on the testing set. 
The model generates a probability indicating how likely a 
miRNA is to be expressed. By setting different threshold 
values, we can depict the sensitivity (true positive rate) 
and the specificity (true negative rate) of the prediction. 
Receiver operator characteristic (ROC) curve was used to 
show the classification accuracy of our SVM model.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful 
comments to this work.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

FUNDING

This work is supported byZhejiang Provincial 
Natural Science Foundation of China (grant 
no.LY13H130002and LY 15H160028).

REFERENCES

1. Carthew RW, Sontheimer EJ. Origins and mechanisms of 
miRNAs and siRNAs. Cell. 2009; 136:642-655.

2. Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, 
Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, 
et al. MicroRNA, mRNA, and protein expression link 
development and aging in human and macaque brain. 
Genome Res. 2010; 20:1207-1218.

3. Kloosterman WP, Plasterk RH. The diverse functions of 
microRNAs in animal development and disease. Dev Cell. 
2006; 11:441-450.

4. Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, Jiang X, Zhang 
X, Xu G, Xie G, Li N, Hu Y, Chen W, et al. MicroRNA-driven 
developmental remodeling in the brain distinguishes humans 
from other primates. PLoS Biol. 2011; 9:e1001214.

5. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, 
Eachus R, Pasquinelli AE. Regulation by let-7 and lin-4 
miRNAs results in target mRNA degradation. Cell. 2005; 
122:553-563.

6. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian 
microRNAs predominantly act to decrease target mRNA 
levels. Nature. 2010; 466:835-840.

7. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. 
MicroRNA targets in Drosophila. Genome Biol. 2003; 5:R1.

8. Stark A, Brennecke J, Russell RB, Cohen SM. Identification 
of Drosophila MicroRNA targets. PLoS Biol. 2003; 1:E60.

9. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks 
DS. Human MicroRNA targets. PLoS Biol. 2004; 2:e363.

10. Rajewsky N, Socci ND. Computational identification of 
microRNA targets. Dev Biol. 2004; 267:529-535.

11. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, 
often flanked by adenosines, indicates that thousands of 
human genes are microRNA targets. Cell. 2005; 120:15-20.

12. Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou 
D, Vallar L, Kreis S. Interplay of microRNAs, transcription 
factors and target genes: linking dynamic expression changes 
to function. Nucleic Acids Res. 2013; 41:2817-2831.

13. Beck DB, Bonasio R, Kaneko S, Li G, Margueron R, 
Oda H, Sarma K, Sims RJ 3rd, Son J, Trojer P, Reinberg 
D. Chromatin in the nuclear landscape. Cold Spring Harb 
Symp Quant Biol. 2010; 75:11-22.

14. Kouzarides T. Chromatin modifications and their function. 
Cell. 2007; 128:693-705.

15. Margueron R, Reinberg D. Chromatin structure and the 
inheritance of epigenetic information. Nat Rev Genet. 2010; 
11:285-296.

16. Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent 
engagement of chromatin modifications by linked binding 
modules. Nat Rev Mol Cell Biol. 2007; 8:983-994.

17.  Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang 
Z, Wei G, Chepelev I, Zhao K. High-resolution profiling 



Oncotarget70966www.impactjournals.com/oncotarget

of histone methylations in the human genome. Cell. 2007; 
129:823-837.

18. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, 
Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas 
EJ 3rd, Gingeras TR, Schreiber SL, Lander ES. Genomic 
maps and comparative analysis of histone modifications in 
human and mouse. Cell. 2005; 120:169-181.

19. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, 
Richmond TA, Wu Y, Green RD, Ren B. A high-resolution 
map of active promoters in the human genome. Nature. 
2005; 436:876-880.

20. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros 
LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, 
Bell GW, Otte AP, Vidal M, et al. Polycomb complexes 
repress developmental regulators in murine embryonic stem 
cells. Nature. 2006; 441:349-353.

21. Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine 
SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, 
Isono K, Koseki H, Fuchikami T, Abe K, et al. Control of 
developmental regulators by Polycomb in human embryonic 
stem cells. Cell. 2006; 125:301-313.

22. Zheng G, Zhang P, Wu Z, Dong D. Understanding the 
combinatorial action of transcription factors and microRNA 
regulation from regions of open chromatin. Mol Biosyst. 
2016; 12:371-378.

23. Han L, Witmer PD, Casey E, Valle D, Sukumar S. DNA 
methylation regulates MicroRNA expression. Cancer Biol 
Ther. 2007; 6:1284-1288.

24. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R. 
miR-148 targets human DNMT3b protein coding region. 
RNA. 2008; 14:872-877.

25. Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle 
F, Epstein CB, Frietze S, Harrow J, Kaul R, Khatun J, Lajoie 
BR, Landt SG, et al. An integrated encyclopedia of DNA 
elements in the human genome. Nature. 2012; 489:57-74.

26. Cheng C, Gerstein M. Modeling the relative relationship 
of transcription factor binding and histone modifications 
to gene expression levels in mouse embryonic stem cells. 
Nucleic Acids Res. 2012; 40:553-568.

27. Karlic R, Chung HR, Lasserre J, Vlahovicek K, 
Vingron M. Histone modification levels are predictive 
for gene expression. Proc Natl Acad Sci U S A. 2010; 
107:2926-2931.

28. Ernst J, Kellis M. Discovery and characterization of 
chromatin states for systematic annotation of the human 
genome. Nat Biotechnol. 2010; 28:817-825.

29. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, 
Setien F, Casado S, Suarez-Gauthier A, Sanchez-Cespedes 
M, Git A, Spiteri I, Das PP, Caldas C, et al. Genetic 
unmasking of an epigenetically silenced microRNA in 
human cancer cells. Cancer Res. 2007; 67:1424-1429.

30. Lehmann U, Hasemeier B, Christgen M, Muller M, 
Romermann D, Langer F, Kreipe H. Epigenetic inactivation 

of microRNA gene hsa-mir-9-1 in human breast cancer. J 
Pathol. 2008; 214:17-24.

31. Weber B, Stresemann C, Brueckner B, Lyko F. Methylation 
of human microRNA genes in normal and neoplastic cells. 
Cell Cycle. 2007; 6:1001-1005.

32. Saito Y, Liang G, Egger G, Friedman JM, Chuang 
JC, Coetzee GA, Jones PA. Specific activation of 
microRNA-127 with downregulation of the proto-oncogene 
BCL6 by chromatin-modifying drugs in human cancer cells. 
Cancer Cell. 2006; 9:435-443.

33. Piriyapongsa J, Jordan IK, Conley AB, Ronan T, Smalheiser 
NR. Transcription factor binding sites are highly enriched within 
microRNA precursor sequences. Biology Direct. 2011; 6:61.

34. Wu CI, Shen Y, Tang T. Evolution under canalization and 
the dual roles of microRNAs: a hypothesis. Genome Res. 
2009; 19:734-743.

35. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, 
Alon U. Network motifs: simple building blocks of complex 
networks. Science. 2002; 298:824-827.

36. Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs 
in the transcriptional regulation network of Escherichia coli. 
Nat Genet. 2002; 31:64-68.

37. Mangan S, Alon U. Structure and function of the feed-
forward loop network motif. Proc Natl Acad Sci U S A. 
2003; 100:11980-11985.

38. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, 
Gerber GK, Hannett NM, Harbison CT, Thompson CM, 
Simon I, Zeitlinger J, Jennings EG, Murray HL, et al. 
Transcriptional regulatory networks in Saccharomyces 
cerevisiae. Science. 2002; 298:799-804.

39. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano 
MT, Haugen E, Sheffield NC, Stergachis AB, Wang 
H, Vernot B, Garg K, John S, Sandstrom R, et al. The 
accessible chromatin landscape of the human genome. 
Nature. 2012; 489:75-82.

40. Griffiths-Jones S. miRBase: microRNA sequences and 
annotation. Curr Protoc Bioinformatics. 2010; Chapter 
12:Unit 12 19 11-10.

41. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge 
CB. Prediction of mammalian microRNA targets. Cell. 
2003; 115:787-798.

42. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The 
role of site accessibility in microRNA target recognition. 
Nat Genet. 2007; 39:1278-1284.

43. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein 
EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, 
Rajewsky N. Combinatorial microRNA target predictions. 
Nat Genet. 2005; 37:495-500.

44. Chang CC, Lin CJ. LIBSVM : a library for support vector 
machines. 2001.


