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microRNA-455 targets cullin 3 to activate Nrf2 signaling and 
protect human osteoblasts from hydrogen peroxide
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ABSTRACT

Over-production of hydrogen peroxide (H2O2) will lead to human osteoblast 
dysfunction and apoptosis, causing progression of osteoporosis and osteonecrosis. NF-
E2-related factor 2 (Nrf2) is a well-characterized anti-oxidant signaling. Cullin 3 (Cul3) 
ubiquitin E3 ligase dictates Nrf2 degradation. We demonstrate that microRNA-455 
(“miR-455”) is a putative Cul3-targeting microRNA. Forced-expression of miR-455 
in both hFOB1. 19 osteoblast cell line and primary human osteoblasts induced Cul3 
degradation and Nrf2 protein stabilization, which led to subsequent transcription of 
ARE (anti-oxidant response element)-dependent genes (NQO1, HO1 and GCLC). Cul3 
silencing, by expressing miR-455 or targeted-shRNA, protected human osteoblasts 
from H2O2. Reversely, miR-455 anti-sense caused Cul3 accumulation and Nrf2 
degradation, which exacerbated H2O2 damages in hFOB1. 19 cells. Moreover, forced 
over-expression of Cul3 in hFOB1. 19 cells silenced Nrf2 and sensitized H2O2. Together, 
we propose that miR-455 activated Nrf2 signaling and protected human osteoblasts 
from oxidative stress possibly via targeting Cul3.

INTRODUCTION

Over-production of reactive oxygen species (ROS) 
shall cause oxidative damages to human osteoblasts. It is 
the key contributor of osteoporosis or even osteonecrosis 
[1–4]. Hydrogen peroxide (H2O2) is one primary ROS 
[5, 6]. H2O2 elevation causes profound oxidative stress, 
osteoblast dysfunction and apoptosis [7–10]. In vitro 
studies have been adding H2O2 to the cultured human 
osteoblasts to establish a cellular model of osteoporosis/
osteonecrosis [7–10]. This model would help to 
understand the pathological mechanisms of ROS-induced 
osteoblast injuries, and to develop possible intervention 
strategies [11–16].

Nrf2 (NF-E2-related factor 2)-ARE (anti-oxidant 
response element) pathway is principally mediated by the 

ubiquitin proteasome system [17–22]. In the resting state, 
Nrf2 forms a complex with its repressor protein Keap1 
(Kelch-like erythroid cell-derived protein with CNC 
homology [ECH]-associated protein 1) and ubiquitin 
E3 ligase cullin 3 (Cul3). This leads to Nrf2 protein 
degradation via ubiquitin-mediated proteolysis [17–22]. 
Conversely, Nrf2 activation will result in impairment of 
the Nrf2 ubiquitination and degradation [23–25]. That will 
allow Nrf2 stabilization, accumulation and translocation 
to the nucleus, where it transcriptionally activates targeted 
anti-oxidant genes [17–22].

MicroRNAs (miRs) bind to 3’-untranslated region 
(UTR) of targeted-mRNAs, thereby causing mRNA 
degradation and/or the translation inhibition [26, 27]. miRs 
could be a novel and promising strategy to activate Keap1-
Nrf2 signaling [28, 29]. It has been shown that miR-7 

www.impactjournals.com/oncotarget/              Oncotarget, 2017, Vol. 8, (No. 35), pp: 59225-59234

                                                           Research Paper



Oncotarget59226www.impactjournals.com/oncotarget

targeted Keap1, leading to Nrf2 protein stabilization and 
subsequent heme oxygenase-1 (HO1) expression [30]. 
Similarly, miR-141 activated Nrf2 signaling via silencing 
Keap1 [31]. Meanwhile, miR-141-activated Nrf2 signaling 
also protected human retinal pigment epithelium cells and 
retinal ganglion cells from UV radiation [29]. Further, 
miR-200a expression resulted in Keap1 degradation, 
leading to Nrf2 nuclear translocation and expression of 
anti-oxidant gene NADPH quinone oxidoreductase 1 
(NQO1) [32].

Here, we identified microRNA-455 (miR-455) as a 
putative Cul3-targeting miRNA. More importantly, forced-
expression of miR-455 activated Nrf2 signaling possibly 
via silencing Cul3, which protected human osteoblasts 
from H2O2.

RESULTS

miR-455 expression silences Cul3, causing Nrf2 
protein stabilization in human osteoblastic cells

First, the miRNA database TargetScan was 
consulted, and potential Cul3-targeting miRNA was 
searched. We discovered that miR-455 (“-3p.1”) 
putatively targets the 3-UTR of Cul3 mRNA at position 
28-34 (Figure 1A). Thereafter, a miR-455-expressing 
vector (pSuper-GFP-puro) was constructed (See Method), 
which was introduced to hFOB1. 19 human osteoblastic 

cells. Via puromycin selection, two stable hFOB1. 19 
cell lines with the construct, namely miR-455 Vec (1)/
(2), were established. As shown in Figure 1B, miR-
455 (-3p) expression level was significantly increased 
in the stable cells. Remarkably, miR-455 expression 
dramatically decreased Cul3 mRNA expression in 
hFOB1. 19 cells (Figure 1C). Moreover, Cul3 protein 
was also downregulated in miR-455-expressing cells 
(Figure 1D). Consequently, Nrf2 protein (Figure 1D), 
but not Nrf2 mRNA (Figure 1E), was upregulated, 
indicating Nrf2 protein stabilization. Notably, 
Keap1 protein (Figure 1D) and mRNA (Figure 1F)  
were unchanged after miR-455 expression. The 
microRNA-control (“miRC”) (Figure 1B), as expected, 
had no significant effect on expression of Nrf2, Keap1 
nor Cul3 (Figure 1C-1F). These results suggest that 
expression of miR-455 targets and downregulates Cul3, 
causing Nrf2 protein stabilization.

If miR-455 expression targets Cul3 to induce Nrf2 
accumulation, Cul3 knockdown should also stabilize Nrf2. 
Thus, the lentiviral Cul3-shRNA was utilized. Expression 
of Cul3-shRNA (“shCul3”) almost completely depleted 
Cul3 mRNA (Figure 1C) and protein (Figure 1D) in 
hFOB1. 19 cells. Similarly, Nrf2 protein was significantly 
increased (Figure 1D). Yet, Nrf2 mRNA (Figure 1E) and 
Keap1 mRNA (Figure 1F) expressions were not changed 
by the Cul3-shRNA. Thus, Cul3 silence causes Nrf2 
stabilization in hFOB1. 19 cells.

Figure 1: miR-455 expression silences Cul3, causing Nrf2 protein stabilization in human osteoblastic cells. miR-455 (3p) 
targets the 3-UTR of Cul3 mRNA at position 28-34 (A). Stable hFOB1. 19 osteoblastic cells (puromycin-selected), expressing miRNA-455 
Vector [two lines, “Vec (1)/(2)”], microRNA-control (“miRC”) or the Cul3-shRNA (“shCul3”), as well as the parental control hFOB1. 19 
cells (“PAR”) were subjected to qRT-PCR assay (B, C, E and F) and Western blotting assay (D) of listed miRNA and genes. Expression 
of listed proteins was quantified, and was normalized to loading control Tubulin (D). Data were shown as mean (n=5) ± standard deviation 
(SD). *p<0.05 vs. “PAR” cells. Experiments in this figure were repeated four times, and similar results were obtained.
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Cul3 knockdown by expressing miR-455 or 
targeted-shRNA protects hFOB1. 19 cells from 
H2O2

The results above demonstrated that Cul3 depletion, 
by expressing miR-455 or targeted-shRNA, caused 
Nrf2 protein stabilization in hFOB1. 19 cells. Nrf2, 
once stabilized, shall translocate to nuclei and dictate 
transcription of anti-oxidant genes [18, 33]. Several ARE-
dependent genes were then tested, including NADPH 
quinone oxidoreductase 1 (NQO1), heme oxygenase-1 
(HO1) and glutamate cysteine ligase catalytic subunit 
(GCLC) [34, 35]. Results from quantitative real-time 
PCR (“qRT-PCR”) assay showed that, as compared to 
parental (“PAR”) hFOB1. 19 cells, mRNA expressions of 
NQO1, HO1 and GCLC were significantly increased in 
cells with miR-455 or Cul3-shRNA (Figure 2A). These 
results indicated Nrf2 signaling activation. Moreover, 
H2O2-induced ROS production was largely attenuated by 
either miR-455 expression or Cul3-shRNA in hFOB1. 19 
cells (Figure 2B). Consequently, H2O2-induced hFOB1. 19 
cell viability loss (MTT OD reduction, Figure 2C), cell 
death (Trypan blue increase, Figure 2D) and apoptosis 
(Histone DNA ELISA OD increase, Figure 2E) were 
also dramatically attenuated after expressing miR-455 or 
Cul3-shRNA. The microRNA-control (“miRC”) had no 
significant effect on ARE gene expression (Figure 2A) 

nor ROS production (Figure 2B). These results indicate 
that Cul3 knockdown by expressing miR-455 or targeted-
shRNA protects hFOB1. 19 cells from H2O2.

miR-455 anti-sense induces Cul3 upregulation 
and Nrf2 degradation

To further confirm that miR-455 selectively targets 
Cul3, the miR-455 anti-sense (“Anti-miR-455”) was 
introduced to hFOB1. 19 cells. As shown in Figure 3A, 
Anti-miR-455 indeed depleted miR-455 in hFOB1. 19 
cells. Consequently, Cul3 mRNA (Figure 3B) and protein 
(Figure 3C) expressions were upregulated. Nrf2 protein, 
on the other hand, was degradated (Figure 3C). Nrf2 
mRNA, along with Keap1 mRNA, were yet unchanged 
(Figure 3D). Therefore, Anti-miR-455 depleted miR-
455, causing Cul3 upregulation and Nrf2 degradation in 
hFOB1. 19 cells. These results further confirm that miR-
455 selectively targets Cul3 in hFOB1. 19 cells.

Exogenous over-expression of Cul3 causes Nrf2 
degradation

Based on the above results, we speculate that Cul3 
over-expression should cause Nrf2 protein degradation. 
To test this hypothesis, the Cul3 expression vector was 
constructed, and was introduced to hFOB1. 19 cells. 

Figure 2: Cul3 knockdown by expressing miR-455 or targeted-shRNA protects hFOB1. 19 cells from H2O2. Stable hFOB1. 
19 cells (puromycin-selected), expressing miRNA-455 Vector [two lines, “Vec (1)/(2)”], microRNA-control (“miRC”) or the Cul3-shRNA 
(“shCul3”), as well as the parental control hFOB1. 19 cells (“PAR”) were treated with/out H2O2 (250 μM, for applied time), relative NQO1, 
HO1 and GCLC mRNA expressions were tested by qRT-PCR assay (A). Cellular ROS intensity was tested by DCFH-DA fluorescent dye 
assay (B). Cell viability, cell death and apoptosis were tested by MTT assay (C), Trypan blue staining assay (D) and histone DNA ELISA 
assay (E), respectively. Data were shown as mean (n=5) ± standard deviation (SD). *p<0.05 vs. “PAR” cells. Experiments in this figure 
were repeated three times, and similar results were obtained.
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Via puromycin selection, two hFOB1. 19 cell lines 
with the Cul3 construct were established, namely “Cul3 
Vec(1)/(2)”. As shown in Figure 4A, Cul3 mRNA level 

was significantly increased in the two stable lines. 
Western blotting assay results in Figure 4B confirmed 
the expression of exogenous Cul3 (Flag-tagged) and 

Figure 3: miR-455 anti-sense induces Cul3 upregulation and Nrf2 degradation. hFOB1. 19 cells were transfected with miR-
455 anti-sense (“Anti-miR-455”, for 5 rounds) or miR anti-sense control (“Anti-miRC”), cells were then subjected to qRT-PCR assay (A, 
B, and D) and Western blotting assay (C) of listed miRNA and genes. Expression of listed proteins was quantified, and was normalized to 
loading control Tubulin (C). Data were shown as mean (n=5) ± standard deviation (SD). *p<0.05 vs. “Anti-miRC” cells. Experiments in 
this figure were repeated four times, and similar results were obtained.

Figure 4: Exogenous over-expression of Cul3 causes Nrf2 degradation. Stable hFOB1. 19 cells, expressing Cul3-expressing Vector 
[two lines, “Vec (1)/(2)”] or empty vector (“Empty Vec”, pSuper-puro-Flag-GFP) were subjected to qRT-PCR assay (A, C and D) and Western 
blotting assay (B) of listed genes. Expression of listed proteins was quantified, and was normalized to loading control Tubulin (B). Stable 
hFOB1. 19 cells, expressing Cul3-expressing Vector [“Vec (1)”], or miR-455 anti-sense (“Anti-miR-455”) as well as the parental control cells 
(“PAR”) were treated with/out H2O2 (250 μM) for 24 hours. Cell death and apoptosis were tested by Trypan blue staining assay (E) and histone 
DNA ELISA assay (F), respectively. Data were shown as mean (n=5) ± standard deviation (SD). *p<0.05 vs. “Empty Vec” cells (A). *p<0.05 
vs. “PAR” cells (E and F). Experiments in this figure were repeated five times, and similar results were obtained.
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endogenous Cul3 in the two lines. Notably, exogenous 
over-expression of Cul3 indeed led to Nrf2 protein 
degradation in hFOB1. 19 cells. Nrf2 mRNA (Figure 
4C) and Keap1 expression (Figure 4B and 4D) were 
unchanged with Cul3 over-expression.

Cul3 upregulation and Nrf2 degradation were 
observed in hFOB1. 19 cells expressing Anti-miR-455 
(Figure 3) and Cul3-expressing construct (Figure 4A-4D), 
we then tested H2O2 sensitivity in these cells. As compared 
to the parental control cells (“PAR”), H2O2 (250 μM)-
induced cell death (Figure 4E) and apoptosis (Figure 4F) 
were dramatically exacerbated in cells expressing Anti-
miR-455 or Cul3 vector. These results suggested that Cul3 
upregulation induced Nrf2 degradation and facilitated 
H2O2-induced killing of hFOB1. 19 cells.

miR-455-induced Cul3 silence protects primary 
human osteoblasts from H2O2

The results above indicated that Cul3 silence could 
protect hFOB1. 19 cells from H2O2. Next, we tested this 
hypothesis in primary human cells. Primary-cultured 
human osteoblasts were constructed with miR-455-
expressing vector [“Vec (1)”] or the Cul3-shRNA. Via 

puromycin selection, stable cells were established. miR-
455 (-3p) level was only increased in cells expressing 
miR-455 vector, but not Cul3-shRNA (Figure 5A). 
Notably, Cul3 downregulation (Figure 5B and 5C) and 
Nrf2 protein stabilization (Figure 5C) were observed in 
cells expressing miR-455 or Cul3-shRNA. Consequently, 
upregulation of ARE-dependent genes, NQO1 and HO1, 
was achieved in above mentioned primary cultured 
human osteoblasts (Figure 5D). More importantly, H2O2 
(250 μM)-induced cell death (Figure 5E) and apoptosis 
(Figure 5F) were largely inhibited in the primary cells 
expressing miR-455 or Cul3-shRNA. Thus, we imply 
that Cul3 silence, by expressing miR-455 or targeted-
shRNA, protects primary human osteoblasts from H2O2.

DISCUSSION

Nrf2 stabilization and activation induces ARE-
dependent transcription of multiple antioxidant defense 
genes [34, 35], including NQO1, HO1, GCLC [21, 
36–38]. Nrf2-ARE signaling has become an attractive 
target for prevention of human osteoblast injuries. Li 
et al., previously demonstrated that SC79, a novel Akt 
activator, protected osteoblasts from dexamethasone 

Figure 5: miR-455-induced Cul3 silence protects primary human osteoblasts from H2O2. Puromycin-selected stable primary 
human osteoblasts, expressing miRNA-455 Vector [“Vec (1)”] or the Cul3-shRNA (“shCul3”), as well as the parental control cells (“PAR”) 
were subjected to qRT-PCR assay (A, B and D) and Western blotting assay (C) of listed microRNA or genes. Expression of listed proteins 
was quantified, and was normalized to loading control Tubulin (C). Cells were also treated with/out H2O2 (250 μM, for 24 hours). Cell death 
and apoptosis were tested by Trypan blue staining assay (E) and histone DNA ELISA assay (F), respectively. Data were shown as mean 
(n=5) ± standard deviation (SD). *p<0.05 vs. “PAR” cells. Experiments in this figure were repeated twice, and similar results were obtained.
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though activating Akt downstream Nrf2 signaling [39]. 
Meanwhile, icariside II-induced osteoblast cytoprotection 
requires Nrf2 activation [40]. Further, cytoprotection of 
chlorogenic acid against H2O2-induced oxidative stress 
in osteoblasts also relies on activation of Nrf2-HO-1 
signaling [41]. Nrf2 signaling activation is primarily based 
on Nrf2 dissociation from its inactive repressor protein 
Keap1, and the subsequent translocation of Nrf2 to the cell 
nuclei [21, 36–38]. Many natural and synthetic chemicals 
have been shown to interfere Nrf2-Keap1 association, 
causing Nrf2 protein stabilization and activation [28, 29, 
31, 42]. Other studies have been able to provoke Nrf2 
activation via inhibition, silence, mutation or depletion of 
Keap1 [28, 29, 31, 42].

Cul3 is a member of the cullin-based ubiquitin ligase 
family, which is required for Nrf2 degradation [43]. Cul3 
forms a complex with Hrt1 and BTB-domain containing 
proteins, which functions as an E3 ligase to bring Keap1 
to ubiquitination and degradation [43]. On the other hand, 
Cul3 inhibition, silence or mutation will cause inhibition 
of Nrf2 degradation, and Nrf2 protein stabilization [44]. 
Recent studies have proposed that miRNA could be a 
novel and promising strategy to provoke Nrf2 signaling 
activation (mostly by targeting Keap1) [28, 29]. Very few 
have focused on miRNA-mediated targeting of Cul3.

Our results here demonstrated that miR-455 is 
a Cul3-targeting miR in human osteoblasts. Forced-
expression of miR-455 in human osteoblasts led to Cul3 
degradation, Nrf2 protein stabilization and subsequent 
transcription of ARE-dependent genes (NQO1, HO1 
and GCLC). Remarkably, Cul3 silencing by miR-455 
expression or targeted-shRNA protected human osteoblasts 
from H2O2. On the other hand, miR-455 depletion by miR-
455 anti-sense led to Cul3 upregulation and Nrf2 protein 
degradation, which then exacerbated H2O2 damages in 
human osteoblasts. These results together indicate that 
miR-455 expression could be a novel strategy to provoke 
Nrf2-ARE signaling activation in human osteoblasts. 
It will also be interesting to test the in vivo function of 
miR-455 against oxidative-damaged human osteoblasts. 
Expressions of miR-455 and Cul3 in human osteoporosis 
and osteonecrosis tissues should also be tested in future 
studies.

CONCLUSIONS

Together, our results suggest that miR-455 activates 
Nrf2 signaling via silencing Cul3, and protects human 
osteoblasts from oxidative stress.

MATERIALS AND METHODS

Reagents

Puromycin was purchased from Sigma Aldrich (St. 
Louis, MO). All the antibodies were purchased from Cell 

Signaling Tech (Beverly, MA). Cell culture reagents were 
obtained from Gibco (Nantong, China).

Culture of osteoblastic cell line

The hFOB1.19 human osteoblastic cell line [45, 46] 
was obtained from the Cell Bank of Shanghai Institute 
of Biological Science (Shanghai, China). Cells were 
maintained in α-modified essential medium (α-MEM) 
supplemented with 10% FBS, under 37°C in the presence 
of 5% CO2. Cells were fully differentiated as described 
[47].

Primary culture of human osteoblasts

The trabecular bone fragments from healthy donors 
were minced into small pieces, which were digested by 
incubation with 5 mg/mL collagenase D (Sigma) for 
90 min at 37 °C with agitation. The resulting trabecular 
bone fragments were further digested with 0.5 mg/mL 
collagenase D overnight at 37 °C. Cells were then filtered 
through a 70-μm nylon mesh, and were placed onto the 
culture flasks with the described medium [48]. Medium 
was changed three times a week until reaching confluence, 
and were fully differentiated as described [47]. Primary 
human osteoblasts were used for further experiments 
stating at passage 3. The protocols of using human tissues 
and cells were approved by Ethics Board of Nantong 
University. Written-informed consent was obtained from 
each donor.

Cell viability assay

Human osteoblasts (5000 cells per each well) were 
initially seeded onto 96-well plates. Following the applied 
treatment, the MTT dye (20 μL/per well, 5 mg/mL, Sigma) 
was added to the supernatant for two hours. Afterwards, 
the optic density (OD) absorbance of MTT at 450 nm was 
measured by a microplate reader to reflect cell viability.

Cell death assay

Trypan blue staining assay was performed to test 
cell death after applied treatment. Cells excluding the dye 
were considered alive. Trypan blue positive cells were 
considered dead, and the ratio was recorded using an 
automatic cell counter.

Apoptosis quantification by ELISA assay

Thenucleosomal histone-bound DNA fragmentation 
is the characteristic marker of cell apoptosis, which was 
examined by the commercial available ELISA kit (Roche, 
Shanghai, China), using the anti-histone antibody and 
a secondary anti-DNA antibody. The ELISA OD at 450 
nm was tested as the quantitative measurement of cell 
apoptosis.
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Forced-expression of miR-455

The miR-455 precursor was purchased from 
RiboBio (Guangzhou, China), which was inserted to the 
pSuper-GFP-puro vector (Ambion, Shanghai, China) 
to establish the miR-455-expression vector. Human 
osteoblasts were transfected with the miR-455 construct 
or the scramble non-sense microRNA control (“miRC”, 
Genepharm, Shanghai, China) using the Lipofectamine 
2000 reagent (Invitrogen). Stable cells were selected by 
puromycin (2.5 μg/mL, Sigma) for another 96 hours. 
Over 95% of stable cells were GFP positive. miR-455 
(3p) expression was always verified by the qRT-PCR 
assay.

miR-455 anti-sense expression

The hFOB1. 19 osteoblasticcells were transfected 
with 20 nM of miR-455 anti-sense (“Anti-miR-455”, 
Ambion, Shanghai, China) by Lipofectamine 2000 
(Invitrogen). After two days, cells were split and were 
transfected with Anti-miR-455 again. This process was 
repeated for five rounds for a total of 10 days. Expression 
of miR-455 in the stable cells was examined by qRT-PCR 
assay. The Ambion miRNA anti-sense negative control 
(“Anti-miRC”) was transfected to hFOB1. 19 cells as the 
control cells.

Western blotting assay

Equivalent amount of total cellular proteins (30 μg 
per lane) were extracted by a RIPA buffer (Biyuntian, 
Wuxi, China), and were separated by the 10% SDS gel, 
prior to transfer onto polyvinylidene difluoride (PVDF) 
membranes (Millipore, Shanghai, China). The blots 
were then blocked in 5 % (m/v) milk dissolved in Tris-
buffered saline with 0.05 % (w/v) Tween-20 (TBS-T), and 
were probed with the designated primary and secondary 
antibodies. The protein signals were visualized under an 
enhanced chemiluminescence (ECL) system (Amersham 
Bioscience, Shanghai, China). β-Tubulin (“Tubulin”) was 
always tested as the loading control. The images were 
analyzed with Image J software.

Cul3-shRNA

The lentiviral Cul3-shRNA particles (with GFP-
tag) were purchased from Santa Cruz Biotech (sc-
35130-V, Nanjing, China). The lentiviral particles (20 
μL/mL, per each well) were added to cultured human 
osteoblasts for 48 hours. Stable cells were again selected 
by puromycin (2.5 μg/mL, Sigma) for 96 hours. Over 
98% of stable cells were GFP positive. Cul3 knockdown 
in the stable cells was verified by Western blotting assay 
and qRT-PCR assay. For the control cells, the lentiviral 
scramble control shRNA particles (Santa Cruz Biotech) 
were added.

Exogenous Cul3 over-expression

The full-length human Cul3 cDNA was synthesized 
by Genepharm (Shanghai, China), which was inserted to 
the pSuper-puro-GFP-Flag vector (Addgene, Shanghai, 
China). Lipofectamine 2000 was applied to transfect the 
Cul3 construct to human osteoblasts. Puromycin (2.5 
μg/mL, Sigma) was added to select stable cells for 96 
hours. Over 98% of cells were GFP positive. Expression 
of endogenous and exogenous (Flag-tagged) Cul3 in the 
stable cells was verified by Western blotting assay and 
qRT-PCR assay. The empty pSuper-puro-GFP-Flag vector 
was transfected to the control cells.

Quantitative RT-PCR

Trizol reagents (Invitrogen) were utilized to extract 
total cellular RNA, and the High Capacity cDNA Reverse 
Transcription Kit was applied to synthesize cDNA from 
0.5 μg mRNA per treatment. Quantitative real-time PCR 
(“qRT-PCR”) assay was performed by the Power SYBR 
Green RT-PCR Reagents Kit using the ABI-7500 system 
[49]. We utilized 2ΔΔCt method to yield relative mRNA 
fold expression (as compare to GAPDH mRNA). mRNA 
primers for HO-1 and GCLC were described previously 
[50]. mRNA primers for Nrf2, Keap1, Cul3, NQO1 
and GAPDH were described early [51]. miR-455 (-3p) 
expression was tested via the TaqMan microRNA assay 
[52] (Applied Biosystems, Shanghai, China), from 5 ng 
of total RNA [53].

ROS assay

As described previously [16, 40, 54–56], we utilized 
the dichloro-dihydro-fluorescein diacetate (DCFH-
DA) fluorescent dye (Invitrogen) assay to determine 
the intracellular ROS intensity. Briefly, after the applied 
treatment, DCFH-DA dye (5.0 μg/mL) was added to cells, 
followed by three-founds wash in warm PBS. Afterwards, 
the DCFH-DA fluorescence OD, reflecting the relative 
ROS intensity, was examined by a Fluorescence/Multi-
Detection Microplate Reader (Synergy 2, BioTek).

Statistics

Data were expressed as the mean ± SD [45, 57]. 
Comparisons between groups were performed via one-
way ANOVA and then Student-Newman-Keuls test (SPSS 
18.0). The p values < 0.05 were considered statistically 
significant.
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