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ABSTRACT
Human genes exhibit different effects on fitness in cancer and normal cells. Here, 

we present an evolutionary approach to measure the selection pressure on human 
genes, using the well-known ratio of the nonsynonymous to synonymous substitution 
rate in both cancer genomes (CN/CS) and normal populations (pN/pS). A new mutation-
profile-based method that adopts sample-specific mutation rate profiles instead of 
conventional substitution models was developed. We found that cancer-specific 
selection pressure is quite different from the selection pressure at the species and 
population levels. Both the relaxation of purifying selection on passenger mutations 
and the positive selection of driver mutations may contribute to the increased  
CN/CS values of human genes in cancer genomes compared with the pN/pS values in 
human populations. The CN/CS values also contribute to the improved classification 
of cancer genes and a better understanding of the onco-functionalization of cancer 
genes during oncogenesis. The use of our computational pipeline to identify cancer-
specific positively and negatively selected genes may provide useful information for 
understanding the evolution of cancers and identifying possible targets for therapeutic 
intervention.

INTRODUCTION

Since the pioneering work of Cairns and Nowell 
[1, 2], the evolutionary concept of cancer progression has 
been widely accepted [3–7]. In this model, cancer cells 
evolve through random somatic mutations and epigenetic 
changes that may alter several crucial pathways, a process 
that is followed by clonal selection of the resulting cells. 
Consequently, cancer cells can survive and proliferate 
under deleterious circumstances [8, 9]. Therefore, 
knowledge of evolutionary dynamics will benefit our 
understanding of cancer initiation and progression. 

For example, there are two types of somatic mutations 
in cancer genomes: driver mutations and passenger 
mutations [10, 11]. Driver mutations are those that 
confer a selective advantage on cancer cells, as indicated 
by statistical evidence of positive selection. Passenger 
mutations do not confer a clonal growth advantage and 
are usually considered neutral in cancer. However, some 
passenger mutations in protein-coding regions that would 
have potentially deleterious effects on cancer cells may be 
under negative selection in cancer [12, 13]. 

Cancer somatic mutations, especially driver 
mutations, promote the cancer specific functionalization 
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of cancer-associated genes, i.e., onco-functionalization. 
Onco-functionalization of cancer-associated genes 
would promote cancer initiation and progression. For 
example, oncogenes may gain new functions during 
carcinogenesis, which could be considered cancer-specific 
neo-functionalization [14]. By contrast, the mutation  
of tumor suppressor genes to cause a loss or reduction of 
their function could be considered cancer-specific non-
functionalization [15]. 

Analyses of large-scale cancer somatic mutation 
data have revealed that the effects of positive selection 
are much stronger on cancer cells than on germline cells 
[16, 17]. Given that many of the positively selected 
genes in tumor development act as the driving force 
behind tumor initiation and development and are thus 
considered “driver genes”, it is understandable that almost 
all previous studies have focused on positively selected 
genes in cancer genomes [3, 18–21]. Nevertheless, we 
have realized that an alternative approach, i.e., identifying 
cancer-constrained genes that are highly conserved in 
tumor cell populations (under purifying selection), is also 
valuable. For example, TP73, a homolog of TP53, is rarely 
mutated but frequently overexpressed in tumor cells. TP73 
has been reported to activate the expression of glucose-6-
phosphate dehydrogenase and support the proliferation of 
human cancer cells [22]. As essential genes are crucial for 
carcinogenesis, progression and metastasis, this idea may 
be advantageous in addressing issues related to drug 
resistance in cancer therapies, especially in cancers with 
high intratumor heterogeneity. 

Many previous studies have used the ratio of 
nonsynonymous to synonymous substitution rates 
to identify genes that might be under strong positive 
selection both in organismal evolution and carcinogenesis 
[11, 16, 17, 23–26]. However, most of these studies 
applied conventional methods, which are usually based on 
simple nucleotide mutation/substitution models, e.g., the 
simplest equal-rate model assuming that every mutation 
or substitution pattern has the same probability [27]. 
Unfortunately, this may not be a realistic biological model 
because many recent cancer genomics studies have shown 
that mutation profiles vary greatly between different 
cancer samples [17, 28]. In addition, context-dependent 
mutation bias (i.e., base-substitution profiles that are 
influenced by the flanking 5′ and 3′ bases of each mutated 
base) should also be considered [28, 29]. 

In this study, we describe a mutation-profile-based 
method to estimate the selective constraint for each gene 
in pan-cancer samples and human populations. In brief, 
the new method discards an unrealistic assumption 
inherent in the equal-rate model that every mutation or 
substitution pattern has the same probability [27]. This 
assumption can lead to nontrivial biased estimations 
when it is significantly violated. By contrast, our method 
implements an empirical nucleotide mutation model 
that simultaneously considers account several factors, 

including single-base mutation patterns, local-specific 
effects of surrounding DNA regions, and tissue/cancer 
types. Using simple somatic mutations from 9,155 tumor-
normal paired whole-exome/genome sequences (ICGC 
Release 20), as well as rare germline substitutions from 
6,500 exome sequences from the National Heart, Lung, 
and Blood Institute (NHLBI) Grant Opportunity (GO) 
Exome Sequencing Project (ESP), as references, we used 
this mutation-profile-based method to identify selective 
constraints on human genes, especially cancer-associated 
genes, in cancer cells. Our results may provide useful 
information for the precise classification of known cancer-
associated genes and for an improved understanding of the 
evolution of cancers.

RESULTS

The mutation rate profiles in cancer genomes 
and human populations differ 

Estimating evolutionary selective pressure on 
human genes is a practical method for inferring the 
functional importance of genes in a specific population. 
By comparing selective pressures, we may be able to 
identify different functional and fitness effects of human 
genes in cancer and normal cells. The conventional 
method for measuring selective pressure is to calculate 
the ratio of nonsynonymous to synonymous substitution 
rates using the equal-rate method [27], which assumes 
equal substitution rates among different nucleotides. In 
this study, we used the cancer somatic mutations from 
9,155 tumor-normal pairs from ICGC (Release 20) as 
well as rare variants (minor allele frequency < 0.01%) 
from 6,500 exome sequences from ESP as a reference. 
We used these data to compare the empirical mutation 
rate profiles of cancer somatic mutations and germline 
substitutions using 96 substitution classifications [28, 29]. 
The empirical mutation rate profiles reveal the prevalence 
of each substitution pattern for point mutations and present 
not only the substitution types but also the sequence 
context (see Methods). The exonic mutation profiles of 
cancer somatic mutations and germline substitutions 
are both enriched in C-to-T transitions (Figure 1). The 
mutation rates for each trinucleotide context differ from 
each other, and the ratio of transition to transversion for 
each trinucleotide context is much greater than 1:2 for 
both cancer somatic mutations (ratio = 2.70 ± 0.47) and 
germline rare variants (ratio = 3.28 ± 0.53) (Supplementary 
Figure 1). These different mutation profiles may lead to 
different biological progressions in carcinogenesis, as 
depicted in several publications [19, 28]. For example, 
the mutation profiles of melanoma are highly enriched 
in C-to-T transitions, indicating a direct mutagenic role 
of ultraviolet (UV) light in melanoma pathogenesis [30]. 
Thus, it is inappropriate to use conventional methods such 
as the equal-rate model to measure selective pressure 
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because this approach ignores the mutation bias of 
different nucleotide substitution types. 

Measuring selective pressure on human genes 
in cancer and germline cells using the mutation-
profile-based method

We therefore formulated an evolutionary approach 
that was designed specifically to estimate the selective 
pressure imposed on human genes in cancer cells and then 
identify genes that had undergone positive and purifying 
selection in cancer cells compared with in normal cells 
(see Figure 2 for an illustration). In cancer genomics, 
distinguishing synonymous from nonsynonymous 
somatic mutations is straightforward. We developed the 
mutation-profile-based method to estimate the CN/CS ratio 
of each human gene based on the mutation profiles of 
cancer somatic mutations and the pN/pS ratio for germline 
substitutions. In contrast to the equal-rate method [27], 
our method considers differences in substitution rates and 
uses the overall mutation rate profile as the weight matrix 
(Figure 1). 

We calculated the expected number of 
nonsynonymous and synonymous sites based on the 
exonic mutation rate profiles. We then counted the number 

of nonsynonymous and synonymous substitutions in the 
protein-coding region of each human gene for all cancer 
somatic mutations or germline substitutions. A χ2 test 
was performed to identify the genes whose CN/CS values 
were either significantly greater than one or less than 
one, which indicates positive or negative (purifying) 
selection, respectively. Of the 16,953 genes with at least 
one germline substitution and cancer somatic mutation, the 
overall CN/CS value for cancer somatic mutations (mean 
± s.e. = 1.199 ± 0.008) was much greater than the overall  
pN/pS of germline substitutions (mean ± s.e. = 0.738 
± 0.005) (Wilcoxon test, p < 2.2×10–16) (Table 1A, 
Supplementary Table 1). In the cancer genomes, 365 genes 
had CN/CS values significantly greater than one, and 923 
genes had CN/CS values significantly less than one (χ2 test, 
p < 0.01, FDR < 0.1). By contrast, germline substitutions 
included only 24 genes with pN/pS values significantly 
greater than one, whereas 4,897 genes had pN/pS values 
significantly less than one (χ2 test, p < 0.01, FDR < 0.1). 
Of these 365 cancer positively selected genes, only one 
gene (RSRC1) also exhibited positive selection whereas 
117 genes exhibited negative selection in germline 
substitutions. Additionally, 500 cancer negatively selected 
genes did not exhibit significant negative selection in 
germline substitutions. These genes may therefore be 

Figure 1: Mutation profiles of cancer somatic mutations and germline substitutions, including the exonic mutation 
profile of 9,155 cancer samples and the exonic mutation profile of ESP6500.
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under different selective pressure in cancer and germline 
genomes.

Previous studies have attributed elevated CN/CS 
values to the relaxation of purifying selection [16] or 
increased positive selection of globally expressed genes 
[17]. Our results show that the number of genes under 
positive selection increased, whereas the number of genes 
under negative selection decreased, in cancer genomes 
compared with germline genomes. This result indicates 
that both the relaxation of purifying selection on passenger 
mutations and the positive selection of driver mutations 
may contribute to the increased CN/CS values of human 
genes in cancer genomes. 

Selection pressures on cancer-associated genes

The Cancer Gene Census (CGC) [31, 32] contains 
more than 500 cancer-associated genes that have been 
reported in the literature to exhibit mutations and that 
are causally implicated in cancer development. Of those 
genes, 553 were included in the 16,953 genes that we 
tested. These known cancer genes have significantly 
greater CN/CS values (Wilcoxon test, p = 2.9 × 10–10) 
for cancer somatic mutations but significantly lower  
pN/pS values for germline substitutions (Wilcoxon test,  

p < 2.2 × 10–16) than other genes (Table 1A). For selection 
over longer evolutionary time scales, we extracted the 
dN/dS values between human-mouse orthologs from the 
Ensembl database (Release 75) [33]. The known cancer 
genes have significantly lower human-mouse dN/dS values 
than other human genes (Wilcoxon test, p < 2.2 × 10–16). 
These results support the work of Thomas et al. [34], who 
showed that known cancer genes may be more constrained 
and more important than other genes at the species and 
population levels, especially for oncogenes. By contrast, 
known cancer genes are more likely to gain onco-
functional somatic mutations in cancer than other genes. 

Among the 365 cancer positively selected 
genes, 45 (12.3%) genes are known cancer genes, 
indicating that cancer genes are significantly enriched 
in cancer positively selected genes (Fisher’s Exact Test,  
p = 6.7 × 10–15). When we choose a more stringent cut-
off of p < 10–5, 17 of the 29 (58.6%) positively selected 
genes are known cancer genes, according to the CGC, 
and the work of Lawrence et al. [20] and Kandoth  
et al. [35], such as the well-known cancer drivers TP53, 
KRAS, PIK3CA, and BRAF. (Supplementary Table 2). 
In addition, the 29 strong positively selected genes are 
significantly enriched in biological processes related to 
cancer, according to the functional analysis using DAVID 

Figure 2: The pipeline used to identify positively and negatively selected cancer genes with the mutation-profile-based 
method.
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v6.7 [36] (Supplementary Table 3). Some cancer genes 
also show negative selection in cancer genomes, such 
as the oncogene MLLT3 (CN/CS = 0.11, p = 3.14 × 10–44, 
FDR = 5.52 × 10–41). The MLL-MLLT3 gene fusion is the 
main mutation type of MLLT3 that drives tumorigenesis 
in acute leukemia [37]. Interestingly, MLLT3 has recurrent 
synonymous mutations at amino acid positions 166 to 168 
(S166S, 8/9155; S167S, 33/9155; S168S, 23/9155). 

Using the CN/CS values, we classified known cancer 
genes according to the selection pressure on these genes 
in cancer cells, as well as their onco-functionalization in 
oncogenesis (Table 2). The most important two classes 
are oncogenes and tumor suppressor genes that are under 
strong positive selection, such as TP53, the most famous 
tumor suppressor gene [38], which shows strong positive 
selection pressure (CN/CS=32.57, p = 1.06 × 10–159,  
FDR = 6.55 × 10–156). The non-synonymous mutations of 
TP53 with onco-nonfunctionalization are distributed in 
a wide range of cancers. The oncogene KRAS [39] also 
showed a strong positive selection pressure (CN/CS = 45.88, 
p = 4.25 × 10–87, FDR = 1.74 × 10–83). Recurrent non-
synonymous mutation with onco-neofunctionalization of 
KRAS are highly enriched in codons 12 and 13; mutations 
in these codons represent 79.4% and 8.0% of all non-
synonymous mutations of KRAS. 

We also observed 12 cancer positively selected 
genes (p < 10–5) that have not been reported as cancer-
associated genes. These genes are recurrently mutated 
in several tumor types and are potential cancer driver 
genes. According to the mouse insertional mutagenesis 
experiments [40], three of these genes (DMD, MYO9A, 
and COL5A2) have been identified as cancer-causing 
genes [41–44]. 

When we chose a more stringent cut-off of  
p < 10–5 for cancer negatively selected genes, we found 
112 genes that showed an enrichment in the Notch 
signaling pathway (Supplementary Table 3). Forty-
seven of the 112 negatively selected genes showed more 
stringent selective constraint in cancer cells than in normal 
cells (pN/pS > CN/CS, p > 0.05 for pN/pS). It would be quite 
valuable to uncover the roles of these evolutionarily 
conserved genes in cancer cells. Out of the 47 genes, 14 
genes showed a significantly increased expression level in 
cancers than in normal tissues (fold change > 2, p < 10–4) 
(Supplementary Table 4). For example, SPRR3, a member 
of the small proline-rich protein family, is under purifying 
selection in cancer cells (CN/CS = 0.27, p = 5.73 × 10–11, 
FDR = 1.91 × 10–8) and neutral selection in germline cells 
(pN/pS = 0.88, p = 0.75, FDR = 0.37). It has been reported 
that SPRR3 is overexpressed in several tumor types, and 
is associated with tumor cell proliferation and invasion. 
Therefore, SPRR3 could be a potential biomarker and 
novel therapeutic target [45–47].

We also examined essential genes during human 
development and cancer development. We extracted 2,452 
human orthologs of mouse essential genes from DEG10 

(the Database of Essential Genes) [48]. These genes, 
which are human orthologs of known essential genes in 
mice [49], are critical for cell survival and are therefore 
more conserved than other genes at the species and 
population levels. Here, we found that human orthologs 
of mouse essential genes have significantly lower  
dN/dS values (measured between human-mouse orthologs) 
and lower pN/pS values for germline substitutions but similar 
CN/CS values for cancer somatic mutations compared 
with the values for non-essential genes (Table 1A). 
Human orthologs of mouse essential genes are also 
enriched among cancer positively selected genes. 
Eighteen of the twenty-nine (62.1%) positively selected 
genes (p < 10–5) are human orthologs of mouse essential 
genes (Supplementary Table 2). We also used the human 
orthologs of mouse essential genes from OGEE (the 
database of Online GEne Essentiality) [50] to confirm 
these results (Supplementary Table 2). 

Cancer essential genes were identified by 
performing genome-scale pooled RNAi screens. RNAi 
screens with the 45k shRNA pool in 12 cancer cell lines, 
including small-cell lung cancer, non-small-cell lung 
cancer, glioblastoma, chronic myelogenous leukemia, and 
lymphocytic leukemia, revealed 268 common essential 
genes [51]. Compared to other human genes, these cancer 
essential genes have significantly lower dN/dS values and 
lower pN/pS values for germline substitutions and greater 
CN/CS values for cancer somatic mutations (Table 1A), 
suggesting a functional shift of these genes in human 
populations and cancer cells.

We further tested the correlations of the dN/dS,  
pN/pS and CN/CS values of human genes for human-mouse 
orthologs, germline substitutions and cancer somatic 
mutations to compare selective pressures among species, 
populations and cancer cells (Table 1B). For different gene 
sets, the dN/dS values show a weak positive correlation 
with the pN/pS values, but no significant correlation with 
CN/CS values. The pN/pS values and CN/CS values also do 
not have significant correlation for different gene sets. 
These results indicate that the cancer-specific selection 
pressure is quite different from the selection pressure at 
the species and population levels.

Selection pressure among different cancer types

As cancer is highly heterogeneous, we further 
analyzed the selection pressure of human genes in different 
cancer types. The 9,155 tumor samples from the ICGC 
database could be classified as 20 cancer types according 
to the primary site. The overall CN/CS values for the cancer 
somatic mutations in the different cancer types ranged from 
1.078 ± 0.022 to 1.827 ± 0.013 (mean ± s.e., Table 3). The 
detected positively and negatively selected genes (χ2 test,  
p < 0.01) varied in the different cancer types (Supplementary 
Table 5). Due to the limited number of tumor samples and 
somatic mutations for each cancer type, particularly in the 
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cancer types with low mutation rates, our method might not 
be sensitive enough to detect the selection pressure for each 
gene. For example, only one positively selected gene was 
detected in bone cancer (IDH1) and nervous system cancer 
(ALK), respectively. There were also three genes (TP53, 
PIK3CA and KRAS) that showed positive selection in more 
than five cancer types. In particular, TP53 showed positive 
selection in 15 cancer types. On the other hand, more genes 
(164/188, 87.2%) were under positive selection in only one 
cancer type. We also found that six genes (TBP, EP400, 
DSPP, MUC21, MLLT3, and MUC2) were under negative 
selection in more than five cancer types. These genes also 

showed negative selection at the species and population 
levels. Furthermore, 85.8% (2,417/2,817) of genes showed 
negative selection in only one cancer type. These results 
indicate the divergence of selection pressure in different 
cancer types.

Comparison of the equal-rate model and empirical 
mutation profile model

Considering that different nucleotide substitution 
models might provide varying estimates, we used the 
equal-rate method [27] as the simplest model to calculate 

Table 1: The ω ratios (dN/dS, pN/pS, CN/CS values) (A) and the correlations of the ω ratios (B) for the 
different gene sets for the human-mouse orthologs and for germline and cancer somatic mutations 
(A)

dN/dS pN/pS CN/CS

All genes 0.154 ± 0.006 0.738 ± 0.005 1.199 ± 0.008
Known cancer genes 0.106 ± 0.005 0.537 ± 0.014 1.550 ± 0.116
 Oncogenes 0.088 ± 0.009 0.473 ± 0.029 1.940 ± 0.508
 Tumor suppressor genes 0.121 ± 0.017 0.545 ± 0.037 1.994 ± 0.497
Human essential genes 0.092 ± 0.002 0.559 ± 0.007 1.217 ± 0.032
Cancer essential genes 0.090 ± 0.008 0.587 ± 0.030 1.465 ± 0.190
Positively selected genes 0.137 ± 0.007 0.757 ± 0.029 3.264 ± 0.198
Negatively selected genes 0.129 ± 0.004 0.600 ± 0.012 0.471 ± 0.005

(B)

dN/dS vs pN/pS dN/dS vs CN/CS pN/pS vs CN/CS

r p-value r p-value r p-value
All genes 0.03 6.6 × 10–5 0.00 0.80 0.09 < 2.2 × 10–16

Known cancer genes 0.38 < 2.2 × 10–16 –0.01 0.87 –0.04 0.36

  Oncogenes 0.12 0.23 –0.01 0.94 –0.05 0.65

  Tumor suppressor genes 0.34 3.5 × 10–3 0.02 0.86 –0.07 0.56

Human essential genes 0.32 < 2.2 × 10–16 0.01 0.58 0.04 0.06
Cancer essential genes 0.20 1.4 × 10–3 –0.02 0.73 –0.04 0.50
Positively selected genes 0.34 1.0 × 10–10 –0.02 0.67 0.13 0.01
Negatively selected genes 0.35 < 2.2 × 10–16 –0.04 0.22 –0.07 0.03

The positively and negatively selected genes indicates the genes that are under positive and negative selection in cancer cells, 
respectively (χ2 test, p < 0.01, FDR < 0.1).

Table 2: Classification of cancer genes according to cancer-specific selection pressures
#Positive selection #Negative selection #Neutral

Known cancer genes 45 29 479
 Oncogenes 11 7 79
 Tumor suppressor genes 10 6 54
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the expected numbers of nonsynonymous and synonymous 
sites. The overall CN/CS value for cancer somatic mutations 
(mean ± s.e. = 0.892 ± 0.006) is greater than the pN/pS value 
for germline substitutions (mean ± s.e. = 0.633 ± 0.004) 
for the 16,953 genes (Supplementary Table 1) but lower 
than that calculated using the mutation-profile-based 
method (Wilcoxon test, p < 2.2 × 10–16) (Figure 3A). 
Consequently, the number of genes with CN/CS values  
> 1 (χ2 test, p < 0.01, FDR < 0.1) is much lower than those 
calculated using the exonic mutation profiles (37 versus 
365), whereas the number of genes with CN/CS values < 1 
(χ2 test, p < 0.01, FDR < 0.1) is much greater (2851 versus 
923) (Figure 3B and 3C). 

We also used the intergenic mutation rate profile 
from 2,900 tumor-normal whole genome sequences, which 
are included in the 9,155 cancer samples of ICGC database, 
to calculate the CN/CS value for cancer somatic mutations. 
The overall CN/CS value (mean ± s.e. = 1.503  ±  0.010) 
is greater than that calculated from the exonic mutation 
rate profile (mean  ±  s.e.=1.199  ±  0.008) (Wilcoxon test,  
p < 2.2 × 10–16), resulting in more positively selected genes 
(1526 versus 365) and fewer negatively selected genes 
(298 versus 923) (Figure 3B and 3C). 

The equal-rate method ignores the mutation rate bias 
between different substitution types, especially the ratio of 
transition to transversion, leading to underestimation of the 

CN/CS ratio. Therefore, the equal-rate method is strict for 
positive selection detection but relaxed for the detection of 
negative selection [52]. In contrast, the mutation-profile-
based method considers the mutation bias, which can be 
depicted as the internal variance between mutation rates 
of different substitution types. Thus, the mutation-profile-
based method can correct the underestimation of the  
CN/CS ratio estimated by the equal-rate method. 
Furthermore, the mutation-profile-based method would 
also increase the false-positive results for detecting 
positively selected genes but be more conservative in 
detecting negatively selected genes. The mutation bias 
may simulate the detection of genes under strong selection 
pressure but may suppress the detection of genes under 
weak selection pressure. 

DISCUSSION

A key goal of cancer research is to identify 
cancer-associated genes, such as oncogenes and tumor 
suppressor genes, that might promote tumor occurrence 
and progression when mutated [28]. Instead of searching 
for cancer-causing genes with multiple driver mutations, 
an alternative approach is to identify cancer essential 
genes in tumor cell populations because they are crucial 
for carcinogenesis, progression and metastasis. Cancer 

Table 3: The selection pressure in different cancer types
Cancer type #Samples CN/CS #Positive selection #Negative selection
Bladder cancer 233 1.389  ±  0.010 5 99
Blood cancer 686 1.145 ± 0.014 4 86
Bone cancer 164 1.078 ± 0.022 1 0
Brain cancer 797 1.392 ± 0.021 10 57
Breast cancer 1072 1.589 ± 0.012 15 105
Cervix cancer 194 1.402 ± 0.011 3 67
Colorectal cancer 443 1.563 ± 0.014 41 472
Esophagus cancer 347 1.350 ± 0.012 4 67
Gall bladder cancer 239 1.251 ± 0.010 2 57
Head and neck cancer 521 1.315 ± 0.012 10 256
Kidney cancer 668 1.381 ± 0.010 2 70
Liver cancer 966 1.551 ± 0.011 10 125
Lung cancer 224 1.410 ± 0.011 11 141
Nervous system cancer 108 1.585 ± 0.134 1 0
Ovary cancer 181 1.244 ± 0.010 1 13
Pancreas cancer 685 1.333 ± 0.014 5 81
Prostate cancer 499 1.232 ± 0.011 3 41
Skin cancer 584 1.148 ± 0.011 45 1303
Stomach cancer 298 1.560 ± 0.013 20 163
Uterus cancer 246 1.827 ± 0.013 56 135
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essential genes are important for the growth and survival 
of cancer cells [51] and are expected to be highly 
conserved in cancer cells. In this study, we aimed to detect 
both cancer-specific positively and negatively selected 
genes using a molecular evolution approach. 

Based on analyses of large-scale cancer somatic 
mutation data derived from The Cancer Genome Atlas 
(TCGA) or International Cancer Genome Consortium 
(ICGC), previous studies identified important differences 
between the evolutionary dynamics of cancer somatic 
cells and whole organisms [6, 16, 18]. However, these 
studies applied canonical nucleotide substitution models 
to identify the molecular signatures of natural selection 
in cancer cells or human populations and neglected the 
apparently different mutation profiles of these cell types. 
Here, we developed a new mutation-profile-based method 

to calculate the CN/CS values of human genes for cancer 
somatic mutations. In our results, a large number of 
known cancer genes did not show significant positive 
selection according to our analysis. One possible reason 
for this finding suggests that positive selection for driver 
mutations is obscured by the relaxed purifying selection 
of passenger mutations. Additionally, among the strong 
positively selected genes, more than half are known 
cancer genes. Another possible reason might be that the 
main mutation type of more than 300 cancer-associated 
genes is translocation or copy number variation, rather 
than point mutation. Furthermore, some of the positively 
selected genes might also be related to cancer, such as 
DMD, MYO9A, and COL5A2, which have been identified 
as cancer-causing genes based on mouse insertional 
mutagenesis experiments [40].

Figure 3: The overall omega ratio (A) and overlap of cancer positively selected (B) and negatively selected (C) genes based on different 
models.
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Two prerequisites are crucial to properly apply the 
mutation-profile-based method. First, a large number of 
samples with similar mutation profiles are necessary to 
increase the power of selection pressure detection. Second, 
a subset of nucleotide substitutions should be chosen to 
represent the background neutral mutation profiles of the 
samples. In this study, because of the limited number of 
cancer samples, especially the number of whole-genome 
sequenced tumor-normal tissue pairs, we pooled all 
samples to analyze pan-cancer-level selection pressures. 
However, cancer somatic mutation profiles are well known 
to be heterogeneous among different cancer types, even 
for samples with the same tissue origin [19, 20, 28, 35]. 
As the number of sequenced cancer genomes increases, 
we will be able to classify cancer samples by their specific 
mutation profiles and infer evolutionarily selective 
pressures more precisely using the mutation-profile-based 
method. 

Background neutral mutation profiles can 
be calculated based on intergenic regions from the 
corresponding samples. In this study, we assumed that 
most of the exonic somatic mutations in the cancer 
samples do not have significant effects on the fitness of 
cancer cells. Under this assumption, we can apply the 
mutation profiles of coding regions to approximate the 
background. The exonic mutation profiles used in our 
mutation-profile-based method considered the weight 
of the 96 substitution classifications within the cancer 
exomes, which may reflect the mutation bias of different 
substitution types within the protein-coding regions. This 
method would correct the underestimation of the CN/CS 
value that occurs with the equal-rate method [52]. The 
mutation-profile-based method is more sensitive for the 
detection of positive selection but more conservative for 
the detection of negative selection compared with the 
equal-rate method. As more tumor-normal whole genome 
sequence data become available, it would be better to 
choose suitable mutation profiles for the mutation-profile-
based method. With the expansion of these data in the 
future, we may apply more precise methods to identify 
neutral background mutation properties.

MATERIALS AND METHODS

Datasets

Cancer somatic mutation data from 9,155 cancer 
samples corresponding to 20 primary sites were extracted 
from the ICGC Data Portal (http://dcc.icgc.org, Release 
20), which includes 36,985,985 somatic mutations and 
small insertions/deletions. Data on rare human protein-
coding variants (minor allele frequency < 0.01%) from 
6,500 human exomes (ESP6500) were extracted from 
the NHLBI GO Exome Sequencing Project (http://evs.
gs.washington.edu/EVS, Exome Variant Server NGESPE, 
Seattle, WA). A total of 572 known cancer genes were 

extracted from the Cancer Gene Census (http://cancer.
sanger.ac.uk/cancergenome/projects/census/, COSMIC 
v72) [31, 32].

Human gene sequences and annotations were 
extracted from the Ensembl database (GRCh37, Release 
75) [33]. For each gene, only the longest transcript was 
selected for the subsequent analyses. The dN/dS values 
between human-mouse orthologs were extracted from the 
Ensembl database. The HGNC (HUGO Gene Nomenclature 
Committee) database [53] (http://www.genenames.org/) 
and the Genecards database [54] (http://www.genecards.
org) were used to map the gene IDs from different datasets. 
DAVID v6.7 was utilized for the functional annotation 
analysis [36]. ANNOVAR was utilized to perform 
biological and functional annotations of the cancer somatic 
mutations and germline substitutions [55]. The Oncomine 
database [56] (https://www.oncomine.org) was used to 
compare the gene expression level of negatively selected 
genes between cancer and normal tissues. The human 
orthologs of mouse essential genes were extracted from the 
DEG 10 [48] and the OGEE v2 [50] databases. 

Statistical measure for gene-specific selection 
pressure in cancer evolution (CN/CS) 

In cancer genomics, distinguishing synonymous 
from nonsynonymous somatic mutations is straightforward. 
Thus, given a set of independent cancer samples, the ratio 
of nonsynonymous counts (N) to synonymous counts (S) 
of a gene, denoted by N/S, is simply given by the sum over 
all samples, under the assumption of no double mutations 
at the same nucleotide site (e.g., for the observed mutation 
A > C, the mutation path A > G > C is almost impossible 
in cancers). To further explore the underlying mechanisms, 
the N/S ratio must be normalized by LN/LS, that is, 

CN/CS=(N/LN)/(S/LS)=qN/qS (1)
where LN is the number of expected nonsynonymous 

sites and LS is the number of expected synonymous sites. 
Note that CN/CS is specific for cancer somatic mutations, 
to avoid notation confusions with dN/dS in molecular 
evolution and pN/pS in population genetics. To avoid a 
calculation error for the small sample size, 0.5 was added 
to each parameter for the calculation of CN/CS if N or S 
was equal to zero.

The calculation of LN and LS from the nucleotide 
sequence is not a trivial task. For instance, in the codon 
TTT (coding for amino acid Phe), the first two positions are 
counted as nonsynonymous sites because no synonymous 
changes can occur at these positions. At the third position, 
the transition change (T > C) is synonymous, whereas 
the remaining two transversion changes (T > A and  
T > G) are nonsynonymous. Apparently, the weight of 
the third position of codon TTT as synonymous (wS) or 
nonsynonymous (wN) depends on the pattern of somatic 
mutations. At one extreme, if the transition mutation 
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is dominant, this position should nearly be counted 
as a synonymous site (wS = 1); at the other extreme 
(transversion dominant), this position would be counted as 
a nonsynonymous site (wS = 0).  

Equal-rate model 

The weight of a nucleotide as synonymous (wS) 
is simple when the rate of base change is the same. Let 
IS be the number of possible synonymous changes at a 
site. This is counted as wS=IS/3 synonymous and (1- IS/3) 
nonsynonymous. For instance, in the codon TTT (Phe), 
the first two positions are counted as nonsynonymous 
sites because no synonymous changes can occur at these 
positions (wS = 0). The third position of codon TTT is then 
counted as one third of a synonymous site (wS = 1/3) and 
two-thirds of a nonsynonymous site (wN = 2/3) because 
only one of the three possible changes is synonymous. 
It is then straightforward to calculate the numbers of 
synonymous and nonsynonymous sites. 

Empirical mutation profile model

Substantial evidence has demonstrated that the rate 
of somatic mutations in cancer depends on not only the 
nucleotide site (e.g., synonymous or nonsynonymous sites) 
and the mutation type (e.g., transition or transversion) but 
also on the sequence context of each mutated site, i.e., 
the effects of near-by nucleotides on somatic mutations 
are nontrivial. Recent studies [28, 29, 57] proposed an 
empirical mutation profile of any position with base P, 
considering two immediate neighbor nucleotides (x, y) of 
a trinucleotide string denoted by xPy. Since base P has 
six base-change patterns (under Watson-Crick pairing) and 
both x and y have four types of bases, there are a total of  
4 × 6 × 4 = 96 substitution classifications, with the 
empirical profile denoted by M(xPy > xPi*y), where 
Pi* (i = 1, 2, 3) for the other three bases instead of P. 
To determine the probability of the mutation type (xPy 
> xPi*y), we divided the number of mutations in that 
trinucleotide context (xPy > xPi*y) by the number of 
occurrences of the trinucleotide (xPy). Our computational 
pipeline is illustrated by the following example. 

In the encoding sequence with two codons … TTT-
ATG…., we consider the third position of codon TTT 
(Phe). Under the trinucleotide TTA for the mutation profile 
(not the codon), the corresponding three substitution 
configurations are given by M(TTA > TCA), M(TTA > 
TAA) and M(TTA > TGA), respectively, and the number 
of occurrences of TTA is M(TTA). Next, we consider 
codon TTT. Because TTT and TTC are synonymous 
codons but TTA and TTG are not, the probabilities that 
this site will be synonymous and nonsynonymous are 
simply given by the following:

wS= M(TTA > TCA)/M(TTA)
wN= (M(TTA > TGA) + M(TTA > TAA))/M(TTA) (2)   

We counted all somatic mutations in the protein-
coding regions of the 9,155 tumor-normal paired cancer 
samples, as well as all the rare protein-coding variants of 
the ESP6500 dataset. The mutation profiles were depicted 
as the mutation rate of each mutation type according to the 
96 substitution classifications. 

The ratio of transition to transversion for each 
trinucleotide context was calculated based on the mutation 
rate of transitions and transversions. For example, the ratio 
of transition to transversion for ACA = M(ACA > ATA)/
(M(ACA > AAA) + M(ACA > AGA)).

Detection of positive and negative selections

The χ2 test was used to compare the number of 
nonsynonymous and synonymous substitutions to the 
number of nonsynonymous and synonymous sites for each 
gene to test the statistical significance of the difference 
between the CN/CS values and one. Genes with CN/CS 
values significantly greater than one were classified as 
under positive selection in tumors, whereas genes with 
CN/CS values significantly less than one were classified 
as under negative, or purifying, selection. The false-
discovery rate was estimated using the qvalue package 
from Bioconductor [58]. The software tool R was used for 
statistical analysis (http://www.r-project.org/).
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