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ABSTRACT
Although systematic studies have identified a host of long non-coding RNAs (lncRNAs) 

which are involved in breast cancer, the knowledge about the methyla-tion-mediated 
dysregulation of those lncRNAs remains limited. Here, we integrated multi-omics data to 
analyze the methylated alteration of lncRNAs in breast invasive carcinoma (BRCA). We 
found that lncRNAs showed diverse methylation patterns on promoter regions in BRCA. 
LncRNAs were divided into two categories and four subcategories based on their promoter 
methylation patterns and expression levels be-tween tumor and normal samples. Through 
cis-regulatory analysis and gene ontology network, abnormally methylated lncRNAs 
were identified to be associated with can-cer regulation, proliferation or expression of 
transcription factors. Competing endog-enous RNA network and functional enrichment 
analysis of abnormally methylated lncRNAs showed that lncRNAs with different methylation 
patterns were involved in several hallmarks and KEGG pathways of cancers significantly. 
Finally, survival analysis based on mRNA modules in networks revealed that lncRNAs 
silenced by high methylation were associated with prognosis significantly in BRCA. This 
study enhances the understanding of aberrantly methylated patterns of lncRNAs and pro-
vides a novel insight for identifying cancer biomarkers and potential therapeutic tar-gets 
in breast cancer.

INTRODUCTION

Breast cancer is a genetically malignant tumor caused 
by a variety of elements involving the accumulation of 
genetic changes [1–3]. During the past decades, many genetic 
pathogenic factors have been recognized. With the study 
developed, besides PCGs large numbers of non-coding RNAs 
(ncRNAs) which were transcribed by genome sequences 
but not coding proteins were identified [4, 5]. MicroRNAs 
(miRNAs) and long non-coding RNAs (lncRNAs) are 
crucial directions in the researches of ncRNAs. The miRNAs 
inhibit the translation or regulation of target genes that 
carry miRNA binding sites in their 3ʹ untranslated regions 
(UTRs) [6]. Many investigations illustrated the importance 
of miRNAs in diseases [7]. MiRNAs are also implicated 

in breast cancer and many other cancers [8]. For example, 
the miR-200 family (miR-200a, miR-200b, miR-200c, 
miR-141 and miR-429) and miR-205 regulated epithelial 
to mesenchymal transition by targeting ZEB1 and SIP1 [9]. 
These two genes were involved in epithelial to mesenchymal 
transition and tumor metastasis. Yang et al. [10] proved that 
the overexpression of miR-346 reduced the expression of 
SRCIN1 and promoted cell proliferation, colony formation, 
and sensitivity to Docetaxel (Doc) in breast cancer. For 
lncRNAs, Jadaliha et al. [11] used MALAT1 knockdown/
overexpression experiments to confirm the functional 
significance of MALAT1 as a metastasis driver and a 
prognostic factor in ER negative, lymph node negative breast 
cancer. Zhang et al. [12] substantiated that HOTAIR was a 
biomarker for breast cancer. Although ncRNAs have been 
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described with relatively definite molecular mechanisms in 
cancers, the regulatory mechanisms of ncRNAs in tumors 
were unclear especially DNA methylation of lncRNAs.

As one of the most important epigenetic 
modifications, DNA methylation involves the addition 
of a methyl group to the C5 position of cytosine residues 
which is catalyzed by DNA methyltransferases. For PCGs 
the hypermethylation in promoter inhibits the combination 
of transcription factors and silences cancer suppressor 
genes, whereas the hypomethylation in promoter activates 
oncogenes [2, 13]. For instance, Tang et al. [14] have found 
that hypomethylation of RPTOR, MGRN1 and RAPSN led 
to high odds ratios (ORs) in peripheral blood DNA of breast 
cancer compared with normal tissues and the function of 
hypomethylation was validated in three independent large 
sample sets through MassARRAY EpiTyper assays. Yi et al. 
[15] have verified that overexpression of NSUN2 by DNA 
hypomethylation facilitated cell proliferation, migration, 
and invasion in the progress and development of breast 
cancer. In addition, Luo et al. analyzed the relationship 
between PTEN hypermethylation and breast cancer. PTEN 
promoter hypermethylation was increased significantly 
in ductal carcinoma in situ (DCIS) and invasive ductal 
carcinoma (IDC) and associated with the risk of 
DCIS and IDC [16]. Yu et al. [17] found the promoter 
hypermethylation led to the silence of RASSF2A which was 
regarded as a tumor suppressor gene. Therefore aberrant 
DNA methylation in promoter is a prominent feature for 
the identification of new targets in the pathophysiology of 
tumors and therapeutic intervention. 

Based on the research foundation of PCGs, we 
assumed that DNA methylation of lncRNA promoters might 
be an epigenetic regulator of lncRNAs expression. Several 
lncRNAs have demonstrated the hypothesis. For instance, 
the hypomethylation of AFAP1-AS1 in Barrett’s esophagus 
and esophageal adenocarcinoma caused the overexpression of 
AFAP1-AS and affected the proliferation and colony-forming 
ability [18]. Aberrant DNA hypermethylation downregulated 
the expression of SOX21-AS1 and low expression of SOX21-
AS1 might be an adverse prognostic biomarker in oral cancer 
[19]. However, these researches only analyzed the DNA 
methylation of few specific lncRNAs but did not identify 
the DNA methylation pattern of lncRNAs systematically. 
Liao et al. [20] analyzed the DNA methylation models of 
lncRNA promoter in colorectal cancer. They found the 
hypermethylation of lncRNA promoter offered a new clue for 
the biological researchers to further understand the function 
of lncRNAs in colorectal cancer. Zhi et al. [21] created a 
novel re-annotation strategy to display the DNA methylation 
patterns of lncRNAs in pan-cancers. But the two studies did 
not assess how DNA methylation regulated the expression of 
lncRNAs accurately. They only used few methods to verify 
the function of lncRNAs.

With the improvement of high-throughput 
sequencing technology, multitudinous data such as 
RNA-seq and HumanMethylation450 BeadChip (450K) 

have been applied for the analysis of cancers [22, 23]. 
High throughput multi-omics data has facilitated the 
development of large-scale identification and systemic 
analysis of novel cancer biomarkers. In this study, a new 
strategy was raised to observe the DNA methylation 
patterns of lncRNAs systematically based on genome-wide 
lncRNA expression, gene expression and DNA methylation 
profiles in BRCA from The Cancer Genome Atlas (TCGA) 
project. Firstly, we re-annotated the promoters of lncRNAs 
and obtained 137 high methylated lncRNAs (HMLncs) 
and 101 low methylated lncRNAs (LMLncs). Then cis-
regulatory function enrichment analysis and gene ontology 
(GO) term network were carried out to predict the function 
of lncRNAs. HMLncs and LMLncs mainly influenced 
regulation (HMLncs: 126, LMLncs: 118). Moreover, 
LMLncs also influenced proliferation. Next, using the 
investigation of the competing endogenous RNA (ceRNA) 
networks, we discovered that lncRNAs classified by DNA 
methylation were enriched in different types of cancer 
hallmarks, and validated the impact of DNA methylation 
for lncRNAs. Finally, through the survival analysis, we 
identified high-down module associated with prognosis 
in BRCA. The study presents the methylated regulation 
mechanism of lncRNAs in BRCA and provided potential 
cancer biomarkers for diagnosis and treatment.

RESULTS

DNA methylation pattern in lncRNA promoters

To assess patterns of lncRNA, the DNA methylation, 
lncRNA expression, mRNA expression and clinical data of 
breast invasive carcinoma (BRCA) were used in this study. 
The quantity of samples for each profile was in Table 1.

After the profiles preprocessed, differentially methylated 
lncRNAs (DMLs), differentially expressed lncRNAs (DELs) 
and differentially expressed genes (DEGs) were recognized 
respectively between tumor and normal samples (Figure 1A). 
To estimate the importance of DNA methylation for lncRNAs, 
lncRNAs were divided into two categories based on the mean 
methylation level in promoter and expression of lncRNAs. 
Both the categories were differentially expressed lncRNAs. 
The first category of lncRNAs were the high methylated 
lncRNAs (HMLncs) that DNA methylation level in promoter 
was up-regulated compared with normal samples. The other 
category of lncRNAs were the low methylated lncRNAs 
(LMLncs) that DNA methylation level in promoter was down-
regulated compared with normal samples.

Next we used GREAT, HMDD and ceRNA networks 
to identify the influence of lncRNAs in BRCA. Four sub-
networks were extracted from the background ceRNA 
network. Then two modules were got from high-down and 
low-down network. To evaluate the association of the two 
modules with patient prognosis we used clinical data from 
TCGA and three sample sets from GEO to do survival analysis 
to verify the reliability of our modules (Figure 1B and 1C).
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Table 1: The number of samples in each type of data
Data Type Tumor Normal

DNA methylation 529 97
lncRNA expression 529 105
mRNA expression 529 113
Clinical data from TCGA 502 -
Clinical data from GSE2034 286 -
Clinical data from GSE2990 187 -
Clinical data from GSE7390 198 -

Figure 1: The workflow of our study. (A) Data source and molecular filter. Expression and methylation data were downloaded 
from The Cancer Genome Atlas database. Then differential genes and lncRNAs were extracted by SAM method. (B) The construction of 
lncRNA-mRNA ceRNA network. The intersection of DMLs and DELs were re-classified into HMLncs and LMLncs based on the pattern 
of methylation. The competitive endogenous mRNAs of these lncRNAs were obtained to construct the ceRNA network. Blue and red 
circles are the miRNAs interacted with mRNA A and lncRNA B, respectively. (C) The analysis of lncRNAs in different networks. Four 
sub-networks were extracted from the background network. Sub-networks were analyzed by various methods such as function enrichment 
analysis, hallmark analysis and survival analysis to validate the effect of DNA methylation to lncRNAs. (DML: Differentially Methylated 
LncRNA, DEL: Differentially Expressed LncRNA, DEG: Differentially Expressed Gene, HMLnc: high methylated LncRNA, LMLnc: low 
methylated LncRNA, PCG: Protein Coding Gene).
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We regarded the region 2kb upstream from TSS 
as the promoter of lncRNA. In this study, 18,772 probes 
were located in most lncRNA promoters (87.53%, 3,459). 
The average value of DNA methylation probes within one 
lncRNA promoter was computed as the DNA methylation 
level of the lncRNA. The DNA methylation levels in 
promoters had a different distribution between tumor 
and normal samples (Kolmogorov-Smirnov (K-S) test, 
P = 7.15e-05). By comparing the DNA methylation and 
gene expression between tumor and normal samples, we 
identified 743 DMLs and 3206 DELs. This result indicated 
that lncRNAs exhibited differentially methylated and 
expressed patterns between tumor and normal samples.

Then 238 lncRNAs (137 HMLncs and 101 LMLncs) 
that showed both differential methylation and differential 
expression were picked for the further analysis of 
lncRNAs. Aberrant DNA methyltransferases might cause 
the chromosome abnormality and tumor development, 
and cancer cells usually showed higher methylation 
than normal cells in promoters of PCGs [24]. We found 
DNA methylation level in lncRNA promoter showed the 
similar pattern with that in PCG promoter and was high 
methylation in tumor samples. Then DNA methylation 
levels in tumor and normal samples were used to assess 
the statistical difference with the SAM method based 
on all 238 lncRNAs, 137 HMLncs and 101 LMLncs, 
respectively. The three lncRNA sets were all differential 
(P < =0.01) (Figure 2A, 2B and 2C). The overall DNA 
methylation level in promoter tended to rise and exceeded 
0.5 (Figure 2A). Moreover bidirectional hierarchical 
clustering analysis using DNA methylation level indicated 
that the 238 lncRNAs divided the tumor and normal 
samples obviously. HMLncs and LMLncs both could be 
clustered into several groups. The result suggested that 
238 DMLs in tumors had similar methylation patterns, 
and HMLncs and LMLncs also displayed the consistency 
of DNA methylation levels in tumors respectively 
(Figure 2D, 2E and 2F).

The function interpretation of cis-regulatory 
regions for lncRNA

Previous studies proved that differentially 
methylated lncRNAs might be involved in DNA repair, 
cell apoptosis, cell cycle and many other cancer-related 
functions [20]. 

In order to estimate whether lncRNAs classified 
by DNA methylation influenced tumor progress through 
cis-regulatory mechanism, a nearest strategy was applied 
to analyze the function of lncRNAs through the tool 
GREAT. The tool GREAT integrated annotations from 20 
ontologies including gene ontology, Human Phenotype, 
Disease Ontology, MSigDB Cancer Neighborhood, 
PANTHER Pathway and so on. Indeed, the lncRNAs 
were significantly enriched in many ontologies (p < =0.05) 
(Figure 3). For example, HMLncs were mainly enriched in 

ameboidal cell migration (GO:0001667), organ development 
(GO:0048513), positive regulation of cellular process 
(GO:0048522) and system development (GO:0048731) for 
gene ontology. LMLncs were mainly enriched in positive 
regulation of alpha-beta T cell activation (GO:0046635), 
negative regulation of multicellular organismal metabolic 
process  (GO:0044252), cell activation (GO:0001775) and 
regulation of multicellular organismal process (GO:0051239) 
for gene ontology. Cell-cell signaling, cell process, 
metabolism and angiogenesis were deeply correlated with 
the progression of cancers [25, 26]. Moreover, GO terms 
(top 30 rank of p-value) in HMLncs exhibited much stronger 
relevance than those in LMLncs according to p-value 
and gene number (Figure 3A and 3B). Besides, we also 
summarized the functions of disease ontology, MSigDB 
pathway and PANTHER pathway. HMLncs were enriched 
in malignant neoplasm of breast and focal adhesion, and 
LMLncs were enriched in mammary cancer, STAT3 pathway 
and Wnt signaling pathway [27–30] (Supplementary Table 1).

To illustrate the relationship among GO terms 
enriched by lncRNAs, the GO terms were inputted into 
GO term network. The HMLncs network had three large 
connected components (nodes > 20). The largest one 
included 66 GO terms and 63 of them were related to 
regulation (Figure 3C). The LMLncs network had two 
large connected components (nodes > 20). They included 
38 and 22 GO terms, respectively. And all of the GO 
terms in two large connected components were related 
to regulation. Besides, 13 GO terms (59.09% of second 
large connected component) were related to proliferation 
(Figure 3D). The results suggested that lncRNAs mainly 
interfered in the regulation and proliferation of BRCA, 
and these biological processes with similar functions often 
kept the strong connectedness with each other.

To evaluate which PCGs were cis-regulated by 
lncRNAs frequently, we counted the number of PCGs 
in the result of GREAT enrichment analysis (biological 
process) for HMLncs and LMLncs. The genes were ranked 
by the frequency of enrichments in biological process. Of 
the top 10 genes in HMLncs, nine were demonstrated to be 
associated with BRCA: FOXJ1 [31], HDAC2 [32], WNT1 
[33], SOX18 [34], NOTCH4 [35], SP3 [36], HOXA11 [37], 
HOXC11 [38] and FOXD3 [39]. In addition, there were 
six genes coding transcription factors in the top 10 genes 
(FOXJ1, SOX18, SP3, HOXA11, HOXC11 and FOXD3) 
(Figure 3E). FOXJ1 and FOXD3 were the members of 
forkhead box (FOX) and genes in FOX family played key 
roles in many cancer-related biological processes, such as 
metastasis, development, organization differentiation, cell 
proliferation, cell apoptosis, cell migration, invasion, and 
longevity [40]. HOXA11, and HOXC11 were the members 
of homeobox family and the two genes were validated to 
be correlated with the survival of BRCA [37, 38].

In conclusion, these HMLncs tended to cis-regulate 
genes which coded transcription factors and lead to the 
dysregulation of transcription in BRCA.
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For LMLncs, Interleukins were a group of 
cytokines which regulated the immune systems and many 
autoimmune diseases or immune deficiency were lack 
of them [41]. Interleukin-6 (IL6,GO term count=103), 
interleukin-18 (IL18,GO term count=73) and Interleukin-6 
receptor (IL6R,GO term count=46) in top 10 genes of 
LMLncs (Figure 3F) have important roles in inflammation 
and many biological processes such as enhancing the 
power of tumor cell apoptosis, inhibiting tumorigenesis 
and inhibiting tumor angiogenesis [42, 43].

The identification of cancer-related hallmarks in 
ceRNA network

To analyze how DNA methylation regulated the 
expression of lncRNAs, we further separated HMLncs 
and LMLncs into four groups: high-up group (high 

methylation and up-regulated lncRNA expression), 
high-down group (high methylation and down-regulated 
lncRNA expression), low-up group (low methylation 
and up-regulated lncRNA expression) and low-down 
group (low methylation and down-regulated lncRNA 
expression).

Many studies have illustrated that lncRNAs 
often combined with the target miRNAs to regulate 
the expression of mRNAs [44, 45]. To measure the 
potential tumorigenic role of lncRNAs through miR-
mediated interaction in BRCA, we used DEGs and 
DELs to construct a background network and regarded 
the four groups mentioned above as seeds to mine four 
sub lncRNA-mRNA ceRNA networks: high-up network, 
high-down network, low-up network and low-down 
network (Table 2 and Figure 4). The lncRNAs interacted 
with many PCGs and had high degrees in these ceRNA 

Figure 2: The DNA methylation patterns of tumors and normal samples. (A) The methylation level of all differential lncRNAs 
(HMLncs + LMLncs). (B) The methylation level of HMLncs. (C) The methylation level of LMLncs. (D) The bidirectional hierarchical 
cluster of all differential lncRNAs (HMLncs + LMLncs). (E) The bidirectional hierarchical cluster of HMLncs. (F) The bidirectional 
hierarchical cluster of LMLncs.
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Figure 3: The cis-regulatory function of HMLncs and LMLncs. (A and B) The top-30 ranking GO terms of HMLncs and 
LMLncs based on p-values, respectively. The orange bars represented the GO terms associated with breast cancer. (C and D) The GO term 
networks. The nodes represented the GO terms enriched significantly. (E and F) The frequency of occurrence of genes in GO terms of 
HMLncs and LMLncs. Each row represented a gene. And each column was a GO term. The genes were selected if they were regulated by 
most lncRNAs (top 50 genes). The bar plot at the left side was the count of GO terms of each gene. 
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Table 2: The interaction information of four groups
lncRNAs miRNAs mRNAs interaction pairs

high-up 13 101 469 558
high-down 9 51 728 1,231
low-up 7 58 277 295
low-down 6 83 687 1,129

Figure 4: The lncRNA-mRNA ceRNA networks. (A and B) The relationship between lncRNAs and miRNAs. The lncRNA names 
were written in the outer circle. The bar plots in the middle circle represented the methylation level and expression level of lncRNAs, 
respectively. The inner lines represented the interactions between lncRNAs and miRNAs. The orange color represented the up-regulated 
lncRNA expression. The blue color represented the down-regulated lncRNA expression. (C, D, E and F) The lncRNA-mRNA ceRNA sub-
networks. The node size of lncRNAs was correlated with degree. 
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networks. Besides, although the number of seed lncRNAs 
in high-down and low-down network were not as many 
as in the other two networks, the lncRNAs had the larger 
average degrees (high-up: 297, high-down: 504, low-up: 
300, low-down: 835) (Table 2). This result suggested that 
down-regulated lncRNAs mediated more genes and were 
more valuable than up-regulated lncRNAs in BRCA.

In order to evaluate the function of four groups of 
lncRNAs, the PCGs in four networks were inputted into 
DAVID (https://david.ncifcrf.gov/) to make the function 
enrichment analysis (Supplementary Table 2). 

Although the biological processes of tumors 
were especially complex, the intricacy of tumors could 
be simplified and represented by some cancer-related 
hallmarks which influenced tumor development and 
metabolism [46]. These hallmarks offered a new direction 
for understanding the mechanism of cancers. 

Function enrichment analysis revealed that 
genes in four networks were enriched in the hallmarks 
of cancers significantly (Figure 5A) [47]. The genes 
were mainly enriched in six kinds of hallmarks (21 
biological processes): “Self Sufficiency in Growth 
Signals”, “Insensitivity to Antigrowth Signals”, “Evading 
Apoptosis”, “Sustained Angiogenesis”, “Tissue Invasion 
and Metastasis” and “Genome Instability and Mutation”. 
In these hallmarks, “Self Sufficiency in Growth Signals” 
and “Insensitivity to Antigrowth Signals” covered the 
most genes and were the most affected hallmarks in 
BRCA. Another interesting observation was that these 
two kinds of hallmarks shared four biological processes 
(“signal transduction”, “cell proliferation”, “intracellular 
signal transduction” and “regulation of cell cycle”). 
Besides, there were six biological processes involved in 
the proliferation functions and this demonstrated their key 
roles in the development of BRCA.

An overall discovery of the function profiles of 
ceRNA networks also showed some common functions 
in different networks. For example, three networks 
(high-up, high-down, low-down) shared four biological 
processes (“positive regulation of endothelial cell 
proliferation”, “positive regulation of mesenchymal cell 
proliferation”, “angiogenesis” and “positive regulation 
of cell migration”) and these biological processes were 
the common characteristics of tumors. Most cancer cells 
owned the capacity of constant proliferation. Normal 
tissues always mastered the production and release of 
growth-promoting signals, but cancer cells disturbed the 
signals and led to the abnormity of tissues [48]. Cancer 
cells needed nutrients to sustain its growth and evacuate 
metabolic wastes, so they depended on the process of 
angiogenesis [49].

Moreover we found that the high-down and low-
down network regulated 14 (66.67%) and 12 (57.14%) 
biological processes and almost covered all kinds of 
hallmarks. This implied the importance and high coverage 
of the down-regulated lncRNAs in the development 

of BRCA. In addition, the low-up network regulated 
“Genome Instability and Mutation” specifically, but other 
three networks were not related to this hallmark.

The four networks were also enriched in many 
cancer-related KEGG pathways (Figure 5B–5E). 
Some common KEGG pathways located in three 
of the four networks were identified: “Pathways in 
cancer”, “Transcriptional misregulation in cancer”, 
“Proteoglycans in cancer” and “Small cell lung cancer”. 
“Pathways in cancer” was the most significant pathway 
(FDR from 2.01e-06 to 8.32e-03) and was consisted of 
many other cancer-related pathways including “Wnt 
signaling pathway”, “mapk signaling pathway” and 
“vega signaling pathway” [50]. Proteoglycans in the 
tumor microenvironment bound to numerous matrix 
molecules, growth factors and inflammatory mediators 
thus influencing the development of cancer [51]. “Small 
cell lung cancer” also had high frequency in different 
networks. Our previous study has demonstrated that 
BRCA and lung cancer kept the strong methylation 
correlation [13]. We found high-down and low-down 
network were enriched in more KEGG pathways than the 
other two networks, and the results of FDR were more 
significantly as well (Figure 5D and 5E). Most of these 
pathways were associated with cancers such as “PI3K-
Akt signaling pathway”, “Axon guidance” and “TNF 
signaling pathway” [52–54]. Furthermore, high-down 
and low-up network controlled the pathway “microRNAs  
in cancer”. The networks were filtered based on the 
ceRNA relationship and this result verified the reliability 
of our ceRNA networks.

In total, 93 genes in high-up network were enriched 
in hallmarks and KEGG pathways. The lncRNA LEMD1-
AS1 interacted with 122 genes and 28 genes were enriched 
in hallmarks and KEGG pathways, and overlapped 
30.11% of 93 genes. 289 genes in high-down network 
were enriched in hallmarks and KEGG pathways. The 
lncRNA MAGI2-AS3 interacted with 335 genes and 135 
genes were enriched in hallmarks and KEGG pathways, 
and overlapped 46.71% of 289 genes. 39 genes in low-up 
network were enriched in hallmarks and KEGG pathways. 
The lncRNA LINC00707 interacted with 154 genes and 28 
genes were enriched in hallmarks and KEGG pathways, 
and overlapped 71.8% of 39 genes. 246 genes in low-
down network were enriched in hallmarks and KEGG 
pathways. The lncRNA RP11-73M18 interacted with 
399 genes and 161 genes were enriched in hallmarks and 
KEGG pathways, and overlapped 40.35% of 246 genes. 
The lncRNAs with high degrees tended to interact with 
cancer-related genes, furthermore lncRNAs in high-down 
and low-up network had more significant coverage of 
cancer genes compared with other networks.

As the core link between mRNAs and lncRNAs, 
miRNAs played key role in development of BRCA. 
Therefore, miRNA enrichment analysis was used to 
confirm the function of ceRNA networks. Then the 
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hypergeometric test (Materials and Methods) was used to 
estimate the function of miRNAs which were interacted 
with four lncRNA groups, respectively. The miRNAs in 
high-down group was involved in “Breast Neoplasms” 
significantly (p = 0.0366), but the other three groups 
were not (Supplementary Table 3). Previous studies 
have demonstrated that the high methylation in promoter 
inhibited downstream expression of lncRNA, and the 
silence of lncRNAs often played an important role in the 

progress of cancers [19]. In high-down group, 28 miRNAs 
were annotated in the breast neoplasms. Then the 28 
miRNAs was mapped into the miRNA family information. 
Nine miRNAs (hsa-mir-302a, hsa-mir-302b, hsa-mir-302c, 
hsa-mir-302d, hsa-mir-373, hsa-mir-520a, hsa-mir-520b, 
hsa-mir-520c and hsa-mir-520d) were belonged to “miR-
302-3p/372-3p/373” and “miR-520” families, respectively. 
All miRNAs have been demonstrated to be associated with 
BRCA through literatures by HMDD. 

Figure 5: The function enrichment of mRNAs. Each column represented a hallmark. (A) The distribution of hallmarks. The top 
panel was the proportion of genes: (genes enriched in hallmarks in ceRNA network). In the middle panel, the node size was the number of 
genes enriched in hallmarks. The bottom bar represented the classification of hallmarks. (B, C, D and E) The significant KEGG pathways.
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The identification of clinically relevant modules 
in ceRNA networks

Wu et al. [55] discovered that it might be possible to 
improve the survival quality of cancer patients by finding 
and repairing survival-related gene signatures other than a 
single gene, and hub genes also played important roles in 
networks. Therefore, we extracted hub PCGs of the four 
networks as module to do the survival analysis. However, 
only high-down and low-down network had the hub PCGs 
(high-down: seven hub PCGs (NFAT5, QKI, SCHIP1, 
PRRG1, FOXN3, SACS and NFIB), low-down: six hub 
PCGs (FOXP2, QKI, ARHGEF10, PTPN14, SPRY2 and 
DPYSL2)). Next, a multivariate survival analysis based on 
the two classes of hub PCG modules was performed to 
estimate the power of predicting survival status in BRCA.

The high-down module was associated with the 
survival time in BRCA and distinguished patients into 
high-risk and low-risk group significantly (Log-rank test, 
p = 0.01474), but the low-down module could not (Log-
rank test, p = 0.06716) (Figure 6A and 6B). However, it 
was unclear whether the high-down module had stable 
power of classifying the patient subtypes in BRCA 
significantly.

To validate the predictive power of high-
down module, we did survival analysis in another 
three independent data sets. As a result, the high-
down module kept stable separating capacity for 
patient survival (GSE2034: p = 2.76e-03, GSE2990:  
p =3.26e-02, GSE7390: p = 3.85e-02), but the low-down 
module was only significant in GSE2034 (p = 2.19e-02)  
(Figure 6C–6H). Our observation might be rewarding to 
separate high-risk from low-risk patients and provide a 
new clinical application for the prognostic and surgical 
management of BRCA.

DISCUSSION

LncRNAs have been demonstrated to be associated 
with the development and progress of breast cancer. For 
instance, Xue et al. [56] has found that the overexpression 
of HOTAIR increased the breast cancer cell proliferation, 
and its depletion could contribute to the treatment of breast 
cancer. DNA methylation in promoter always suppresses 
the combination of transcription factors with DNA chain 
and decreases the transcription of downstream, so the 
expression of genes is reduced [2]. It has been recognized 
that changes in DNA methylation may in part be disruption 
of the regulatory control of specific promoter usage in 
cancers. Therefore the dysregulation of lncRNAs in breast 
cancer may be regulated by DNA methylation in promoter.

In this study, we characterized the changes in 
DNA methylation of lncRNA promoters in BRCA. We 
integrated the DNA methylation, lncRNA expression 
and mRNA expression profiles from TCGA and 
TANRIC to investigate the methylation of lncRNAs. 

Our research showed that a large number of lncRNAs 
were epigenetically deregulated in promoters. We 
divided the lncRNAs into different groups based on the 
high methylation and low methylation, and explored 
their biological and clinical relationship with BRCA. 
The result indicated that HMLncs and LMLncs cis-
regulated cancer-related biological processes (Figure 3). 
HMLncs were enriched in 126 biological processes 
associated with regulation function and LMLncs were 
enriched in 118 biological processes associated with 
regulation function. Besides LMLncs were enriched in 
18 biological processes associated with proliferation. In 
GO term networks, regulation functions and proliferation 
functions had the largest connected component and 
strong combination with each other. Moreover previous 
studies have shown that lncRNAs regulated PCG activity 
through the cis-regulation in two modes. The first mode 
was that the lncRNA products regulated the activity of 
chromosome through recruiting epigenetic modifiers. 
The second mode was that the transcription of lncRNAs 
through PCG promoters or a cis-regulatory element (RE) 
could influence the expression of PCGs [57–60]. The 
result showed that epigenetically dysregulated lncRNAs 
were always located near the genes correlated with the 
regulation and proliferation function. Moreover we found 
many high methylated lncRNAs cis-regulated PCGs which 
coded transcription factors such as FOXJ1, SOX18, SP3, 
HOXA11, HOXC11 and FOXD3. In molecular biology, 
transcription factor could regulate the rate transcription 
of genetic information from DNA to mRNA by biding 
to a specific DNA sequence. The dysregulation of 
transcription factor will lead to the abnormal expression 
of genes near that sequence[61]. This observation suggests 
that high methylated lncRNAs modulate BRCA through 
influencing the expression of transcription factors, which 
provides a foundation for the further analysis of lncRNA 
dysregulation in BRCA.

Although we have confirmed the role of lncRNAs 
through cis-regulation, lncRNAs have other ways regulating 
cancers. Competing endogenesis relationship is another 
mode that lncRNAs influence the expression of mRNAs 
by binding to the target miRNAs of mRNAs. To predict 
the function of lncRNAs, we constructed ceRNA networks 
through four groups which were classified based on the 
patterns of DNA methylation and lncRNA expression. The 
structure of ceRNA networks showed that although high-
down and low-down network consisted of less lncRNAs, 
they attracted more mRNAs (high-down: 728, low-down: 
687) than the other two networks (Figure 4) (Table 2). 
Because of the positive correlation between mRNA and 
lncRNA, the expression of mRNAs was always inhibited. 
This result suggests that the majority of differentially 
expressed mRNA was down-regulated in BRCA. 

Tumorigenesis is a complex and dynamic biological 
process that is controlled by multiple elements of 
genetic and epigenetic variations. In this study, we 
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Figure 6: The survival analysis of high-down and low-down modules. “+” represented lost to follow-up patients. The legend 
in the top right corner represented the total number and lost to follow-up number of patients. The green and red digitals on the bottom 
represented number of living patients at that time. (A and B) The survival analysis in TCGA data set. (C–H) The survival analysis in GEO 
data sets.



Oncotarget51145www.impactjournals.com/oncotarget

found that competing endogenesis relationship regulated 
key components of cancer-associated hallmarks and 
KEGG pathways [46]. Four biological processes 
(“positive regulation of endothelial cell proliferation”, 
“positive regulation of mesenchymal cell proliferation”, 
“angiogenesis” and “positive regulation of cell migration”) 
in hallmarks and three KEGG pathways (“Pathways 
in cancer”, “Transcriptional misregulation in cancer”, 
“Proteoglycans in cancer” and “Small cell lung cancer”) 
were identified in three lncRNA networks as the common 
characteristics of tumors, and previous studies have 
demonstrated the relationship between these functions and 
cancers [13, 47, 50, 51]. These results suggest the mRNAs 
regulated by lncRNAs could modulate the progress and 
development of BRCA. Moreover the high-down and 
low-down network also controlled more hallmarks and 
KEGG pathways (approximately 10 hallmarks and KEGG 
pathways) than high-up and low-up network and had the 
larger coverage of genes enriched in hallmarks and KEGG 
pathways (Figure 5). Moreover most of these hallmarks 
and KEGG pathways were associated with BRCA such 
as “PI3K-Akt signaling pathway”, “Transcriptional 
misregulation in cancer”, “Proteoglycans in cancer” 
and so on. These finding further validated the importance 
of down-regulated lncRNAs in BRCA. “MicroRNAs in 
cancer” was also enriched significantly. MiRNAs were 
regarded as the important element connecting the function 
between mRNA and lncRNA and the dysregulation of 
miRNAs might lead to abnormal expression of mRNAs 
and lncRNAs in diseases [62]. Next the miRNAs 
interacted with lncRNAs were used to assess the function 
of lncRNAs. Only high-down network was enriched 
in “Breast Neoplasms” significantly. We thought the 
lncRNAs down-regulated by high methylation may be 
more important, and also demonstrate the role of miRNA 
regulators in BRCA.

Finally, in order to estimate the relationship 
between clinical prognosis and mRNA modules, the 
survival analysis was used to evaluate the function of 
different lncRNA networks. The hub PCG module in 
high-down network divided patients into high-risk group 
and low-risk group significantly (P < = 0.01), but low-
down PCG module could not. Next we applied three 
sample sets of BRCA from GEO database to verify the 
reliability of our finding. The result showed that high-
down module divided the patients significantly in three 
sets (GSE2034: p = 2.76e-03, GSE2990: p = 3.26e-02, 
GSE7390: p = 3.85e-02), but low-down module was only 
working in one set (GSE2034: p = 2.19e-02) (Figure 6). 
From the survival analysis, the lncRNAs silenced by 
high methylation in promoter have been demonstrated to 
be potential roles in the prognosis of BRCA, and might 
be further evaluated for use as cancer biomarkers and 
potential therapeutic targets. At last, because of lack of hub 
PCGs in low-up module and high-up module we couldn’t 
demonstrate the function of them for survival status.

In summary, our integration analysis of multiple 
omics data sets is demonstrated to identify epigenetically 
abnormal lncRNAs and assess the importance of high 
methylation for function of lncRNAs in BRCA.

The present study only analyzes the epigenetically 
dysregulated lncRNAs based on DNA methylation in 
BRCA, but recent studies have demonstrated that the N6-
methyladenosine (m6A) as the RNA post-transcriptional 
modifications also influences the function of RNAs. 
Because of the lack of data for m6A in breast cancer, 
we didn’t analyze the relationship between m6A and 
lncRNA [63]. In the future we hope that growing omics 
data in different cancers will be analyzed and biological 
experiments will be performed to demonstrate our study.

MATERIALS AND METHODS

Data source

Patient clinical data, methylation data and RNA-seq 
data were downloaded from TCGA (http://cancergenome.
nih.gov/). Molecular data from the following platforms 
were used in our study. DNA methylation data was 
Infinium 450k arrays (Level 3) and RNA-seq data 
(Level 3) was RNASeqV2. The lncRNA data were 
obtained from TANRIC database (http://ibl.mdanderson.
org/tanric/design/basic/index.html) [64]. We selected 529 
tumor samples of which DNA methylation data, RNA-seq 
data and lncRNA data were all available.

The annotation file (gencode.v19.long_noncoding_
RNAs) for lncRNAs was derived from GENCODE 
(http://www.gencodegenes.org/). The interaction pairs 
of mRNA-miRNA (386 miRNAs, 13,802 mRNAs and 
423,975 interaction pairs) and lncRNA-miRNA (277 
miRNAs, 1,127 lncRNAs and 10,212 interaction pairs) 
were downloaded from the starBase V2.0 database (http://
starbase.sysu.edu.cn/) [65].

The information of transcription factors was 
downloaded from the Animal Transcription Factor Database 
(AnimalTFDB, http://www.bioguo.org/AnimalTFDB/
index.php) [66]. The miRNA family information was from 
TargetScan (http://www.targetscan.org/vert71/).

Three validation sets of survival analysis were 
downloaded from Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) [67]. In total, 286 
samples in GSE2034 [68], 187 samples in GSE2990 
[69] and 198 samples in GSE7390 [70] were analyzed to 
confirm our results in this study.

Data filtering and normalization

In order to estimate the quality of data, we counted 
the number of missing values in DNA methylation data, 
RNA-seq data and lncRNA data. The sites with missing 
values in more than 30% samples were removed. Then 
the average value of the site was calculated to impute the 
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other missing values. In total, 393,983 DNA methylation 
probes, 3,952 lncRNAs and 16,826 mRNAs were retained.

DNA methylation of lncRNA

To estimate the methylation level of a given probe, 
the beta-value was used as the ratio Methy/(Methy + 
Unmethy), where “Methy” represented the intensity of 
methylation of the probe and “Unmethy” represented the 
intensity of unmethylation of the probe [71]. The beta-
value “0” stood for unmethylation, and “1” stood for 
methylation.

We mapped 393,983 450K probes to lncRNA 
annotation file and extracted the lncRNA promoter 
information. Since the regulatory mechanism of lncRNA 
was similar to the PCG in promoter, the region 2kb 
upstream from the transcription start site (TSS) of lncRNA 
was regarded as the promoter and the DNA methylation 
probes in promoter were obtained for further analysis 
[21, 57]. Then the average value of DNA methylation 
probes in promoter of one lncRNA was calculated as the 
DNA methylation level of the lncRNA. The intersection of 
lncRNAs between the lncRNA methylation profile and the 
lncRNA expression profile were selected for our further 
analysis.

Identification of differentially methylated and 
differentially expressed genes

Significance analysis of microarrays (SAM) was 
applied to identify the differential genes between tumor 
and normal samples for DNA methylation, RNA-seq and 
lncRNA data, respectively. SAM was developed based on 
t-test and adjusted the p-value to assess the statistically 
significant changes for genes [72]. The differentially 
methylated lncRNAs were identified with q-value < = 0.05 
and difference value of DNA methylation level > = 0.1 
between tumor and normal samples. The differentially 
expressed genes were identified with q-value <= 0.05 and 
fold-change > = 2 or < = 0.5 between tumor and normal 
samples. The differentially expressed lncRNAs were 
identified with q-value < = 0.05 [13].

The prediction of the cis-regulation of lncRNAs

In order to compute the effect of the HMLncs and 
LMLncs, we used the Genomic Regions Enrichment of 
Annotations Tool (GREAT: http://bejerano.stanford.edu/
great/public/html/index.php) to assess the function of 
target lncRNAs [73]. The web application used the bed 
format file of the target lncRNAs to predict the function 
of HMLncs and LMLncs and tested the false positives 
of results through the hypergeometric test. The result 
of annotation consisted of about 20 kinds of ontologies 
including gene ontology, Human Phenotype, Disease 
Ontology, MSigDB Cancer Neighborhood, PANTHER 
Pathway and so on. We extracted the bed format file 

of lncRNAs from lncRNA annotation file to make the 
enrichment analysis.

The construction of the GO term network

The GO term network was picked out from gene2go 
(18 March 2015 updated), which was downloaded from 
NCBI [74]. Only considering ‘is_a’ relationships, the final 
network included 218 terms and 267 edges for HMLncs, 
186 terms and 172 edges for LMLncs. The Go term network 
was visualized through the software Cytoscape [75].

The prediction of miRNAs targeting lncRNAs

The relationship between miRNAs and diseases 
was downloaded from the Human MicroRNA Disease 
Database (HMDD: http://cmbi.bjmu.edu.cn/hmdd), which 
collected the experimentally supported human miRNA-
disease associations. 

The hypergeometric test was used to filter the 
significant functions of the miRNAs with p-values less 
than 0.05:
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Where N was the total number of human genome 
miRNAs in HMDD, M was the size of miRNAs annotated 
in one disease, n was the size of miRNAs interacted with 
HMLncs or LMLncs and m was the intersection of n and M.

The construction of ceRNA network

The interaction pairs of lncRNA-miRNA and 
mRNA-miRNA were 10,212 and 423,975, respectively. 
We got 4,563,164 ceRNA pairs between mRNAs and 
lncRNAs which shared with the same miRNA.

The lncRNA-mRNA ceRNA network was 
constructed as follows: First, expression correlation 
between DEGs and DELs was calculated using Pearson 
correlation coefficient (PCC) between matched mRNA 
and lncRNA expression profiles: 
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Where n was defined as the number of samples in 
BRCA, xik was the expression level of gene i in sample k, 
xjk was the expression level of gene j in sample k.

Because of the competing endogenous interaction 
between lncRNAs and mRNAs, the lncRNA-mRNA 
pairs with PCC > 0 and p-value < = 0.01 were chosen for 
further analysis. Second, an lncRNA-mRNA pair which 
interacted with more than one same miRNA and whose 
hypergeometric test based on lncRNA-miRNA pair and 
mRNA-miRNA pair was significant (p-value < = 0.01) 
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was considered as a candidate interaction pair (Figure 1). 
Finally the lncRNA-mRNA pairs satisfying the two 
conditions were used to construct the lncRNA-mRNA 
ceRNA network. The ceRNA network was visualized 
through the software Cytoscape [75].

Functional enrichment analysis

Function enrichment analysis was performed 
through the DAVID Bioinformatics Resources (https://
david.ncifcrf.gov/) [76]. The DAVID enrichment result 
only checked KEGG pathways and GO biological 
process (BP) terms and chose the human genome as 
the background. The terms with FDR < = 0.05 were 
considered as the statistically significant result.

The identification of clinically related mRNAs 
correlated with lncRNAs

To measure the clinical effect of mRNA modules 
in ceRNA networks, we used the prognostic index (PI), 
also named as risk score, to classify the risk groups. The 
module was consisted of hub mRNAs (degree > = 5) in 
ceRNA networks. PI was known as the liner Cox model, 
PI=β1x1+β2x2+…+βpxp, where p was the number of prognostic 
mRNAs in the module of ceRNA networks, βp was regarded 
as the risk coefficient which was calculated in the multivariate 
Cox regression analysis and xp was regarded as the expression 
level of mRNAp. The R package “survival” was used to 
calculate the risk score of each sample and generated the 
risk groups. Then the patients were divided into high-risk 
group and low-risk group by the median value of risk score. 
Kaplan-Meier method and log-rank test was used to assess the 
survival difference between two patient groups [13].
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