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ABSTRACT

MicroRNAs (miRNAs) are a class of small, endogenous RNAs that are 21–25 
nucleotides in length. In animals and plants, miRNAs target specific genes for 
degradation or translation repression. Discovering disease-related miRNA is fundamental 
for understanding the pathogenesis of diseases. The association between miRNA and 
a disease is mainly determined via biological investigation, which is complicated by 
increased biological information due to big data from different databases. Researchers 
have utilized different computational methods to harmonize experimental approaches 
to discover miRNA that articulates restrictively in specific environmental situations. In 
this work, we present a prediction model that is based on the theory of path features 
and random walk to obtain a relevancy score of miRNA-related disease. In this model, 
highly ranked scores are potential miRNA-disease associations. Features were extracted 
from positive and negative samples of miRNA-disease association. Then, we compared 
our method with other presented models using the five-fold cross-validation method, 
which obtained an area under the receiver operating characteristic curve of 88.6%. This 
indicated that our method has a better performance compared to previous methods 
and will help future biological investigations.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small, 
endogenous RNAs that are 21–25 nucleotides long. 
MiRNAs are found in plants, animals, and some 
viruses, and function in RNA silencing and post-
transcriptional regulation of gene expression [1, 2]. 
MiRNAs are involved in many diverse biological 
processes, such as development, differentiation, 
apoptosis, and viral infection [3]. Increasing evidence 
implicates miRNAs in human disease development, 
progression, prognosis, diagnosis, and evaluation of 
treatment response [4–6]. Since the first miRNA (lin-
4) was discovered from C. elegans 20 years ago, many 
miRNAs have been annotated in various species with 
experimental and computational methods [7]. However, 
the discovery of disease-related miRNA via existing 
biological experimental methods is expensive and 
time-consuming [8]. Thus, computational prediction 
methods are significant techniques for identifying the 

most promising miRNA-disease associations prior to 
additional experimental examinations. Many databases 
have been developed to accumulate miRNA data. The 
Human MiRNA Disease Database (HMDD) [9] is an 
online database that provides complete information 
on miRNA deregulation in various human diseases. 
MiRbase [10] is a comprehensive miRNA database 
that contains the sequences of precursor miRNAs, 
mature miRNAs, miRNA hairpin structure, and miRNA 
targets. OncomiRDB is a manually curated miRNA-
cancer association database that contains more than 300 
miRNAs and 2259 miRNA-cancer associations [11]. 
dbDEMC [12] is an integrated database that is designed 
to store and display differentially expressed miRNAs in 
human cancers. MiR2disease [13] is a manually curated 
database that provides a comprehensive resource from 
miRNA deregulation in various human diseases. The 
identification of miRNAs that underlie human diseases is 
an important goal of biomedical researchers. However, 
one major issue in miRNA studies is the lack of enough 
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bioinformatics methods that predict potential miRNA-
disease associations.

Computational methods for predicting miRNA 
and related diseases have been proposed to overcome 
this major issue. Computational predictions indicate 
that miRNAs, which account for at least 1% of human 
protein-coding genes, regulate protein production for 
thousands of human genes. Most computational predictive 
methods for miRNA-disease associations are based on 
the hypothesis that miRNAs with similar functions tend 
to associate with a common disease and that diseases 
with shared similar phenotypes likely share common 
miRNA [14–16]. Therefore, different methods have 
been proposed to predict miRNA and disease association 
such as random walk-based methods. In 2008, Xu et al. 
[17] proposed miRank, a ranking algorithm based on 
random walk. They tested their method on Homo sapiens 
genomes and achieved a good accuracy. In 2012, Chen et 
al. [18] adopted a global network similarity measure and 
developed Random Walk with Restart for MiRNA-disease 
Association (RWRMDA) to infer potential miRNA-
disease interactions by implementing random walk on a 
miRNA–miRNA functional similarity network. Prediction 
of disease-related miRNA has proposed in various 
ways. A robust regularization path for v-support vector 
classification based on lower upper decomposition with 
pivoting is a method present in [19]. This method uses a 
regularization parameter v as the assistance of adjusting 
the number of support vectors and margin errors.

In 2014, Liu et al. [20] developed a random walk 
with restart method. Using this model, they first revealed 
the limitations of previous computational methods, 
and then implemented random walk with restart on 
a heterogeneous network to infer potential miRNA-
disease associations. To declare these limitations, the first 
limitation has stated as the use of single dataset, second 
limitation as an inadequacy of disease semantic similarity 
and the third limitation as an overestimation of the 
predictive accuracy. They applied their method to diseases 
with no known related miRNAs. The majority of the top 
30 candidates were confirmed by various databases.

In addition, many researchers have proposed 
different methods of predicting miRNA-related diseases. 
In 2009, Jiang et al. [21] proposed the miRNA-disease 
association prediction technique, wherein miRNA–
miRNA and human phenome–miRNA functional 
similarity networks were constructed. The score for all 
miRNAs was computed using cumulative hypergeometric 
distribution [21]. Chen et al. [22] anticipated HGIMDA 
method as a graph inference by integrating miRNAs 
similarity, diseases similarity and Gaussian interaction 
profile kernel similarity into a heterogeneous graph. To 
analyze, predict, and providing possible lncRNA-disease 
associations is another problem stated by Chen et al. [23]. 
Improved random walk with restart to predict lncRNA 
with related disease method has been proposed to improve 

the traditional limitations of random walk with restart 
method. It also based on an integration of data similarities 
such as diseases and lncRNA, and applying a random walk 
to predict novel lncRNA-disease.

In 2015, Xuan et al. [24] proposed MIDP, a 
predictive model for disease-related miRNA. In this 
method, the prediction process is modeled as random 
walk on a miRNA network that is derived from miRNA-
associated diseases. For a specific disease with some 
related miRNAs, a random walker starts at a known 
related miRNA node with equal probability. An extension 
method, MIDPE, was specifically proposed for diseases 
without any known related miRNAs. This model obtained 
a higher predicted accuracy [24]. In addition to random 
walk-based methods, many other methods have been 
developed to support biological examinations.

Xuan et al. [25] presented HDMP, a method that 
is based on weighed k and most similar neighbors, for 
miRNA-disease association prediction. The functional 
similarity of their method combined the similarity of 
information content of disease terms and phenotype 
similarity between diseases. Based on the hypothesis 
that miRNAs with similar functions tend to associate 
with a common disease and that diseases with shared 
similar phenotypes likely share common miRNA [14–
16], Chen et al. [26] developed WBSMDA to predict 
relationship among miRNAs and diseases. By combining 
data from disease-related miRNAs, similarity miRNAs, 
disease similarity and similarity of Gaussian interaction 
profile kernel, a score has been calculated to predict new 
miRNA-disease associations. The model evaluation has 
been conducted based on Leave-one-out cross validation 
method to verify its performance. However, this method 
attained a better performance, it has a limitation; such 
that it was developed based on the hypothesis in [14–16], 
which may cause unfairness to miRNAs which have a lot 
number of related diseases.

Chen et al. [27] used three network-based 
similarities (miRNA-based similarity inference, 
phenotype-based similarity inference and network-
consistency-based inference) to infer potential miRNA-
disease associations. Another model proposed based on 
matrix completion algorithm has been proposed to predict 
miRNA-disease associations based on the known diseases 
and miRNAs. Li et al. [28], proposed MCMDA model 
which based on updating the adjacency matrix feature for 
known related miRNAs and disease.

Zou et al. [29] presented Pretata, a predictive 
method to identify TATA-binding proteins. This model 
is an applied advanced machine learning methods which 
facilitate to identify TBP (TATA-binding proteins) and 
protein detection from primary sequences.

Le [30] constructed a miRNA function network 
based on common targets and applied four network-based 
methods to infer novel disease-related miRNAs. Mørk 
et al. [31] presented miRPD to infer miRNA-disease 
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associations by coupling known and predicted miRNA–
protein associations with protein–disease associations. 
Zeng et al. [32, 33] suggested two predictive methods on 
multipath to predict miRNA-disease associations based 
on heterogeneous network of diseases and miRNAs. 
To calculate the similarity between objects, HeteSim_
Multipath (HSMP) method was proposed to combine 
scores form heterogeneous similarity paths with constant. 
The second method, HeteSim_SVM (HSSVM) uses 
machine learning method to combine heterogeneous 
similarity to measure scores without a constant.

Zou et al. [34] proposed KATZ and CATAPULT, 
which are based on social network analysis, to infer 
potential miRNA-disease associations. Gu et al. [35] 
developed a method based on the v-support vector 
regression was proposed to overcome the challenge that 
presented by the method of Schölkopf et al. [36]. The 
initial adjustments proposed in this work as an additional 
term to overcome this challenge where the parameter v 
has the role of monitoring the support vectors based on 
Karush–Kuhn–Tucker (KKT) conditions to make an initial 
solution for the incremental learning. Chen et al. [37] 
introduced a research review about lncRNA and disease 
associations. In this review, Chen et al., first introduced 
functions of lncRNA, five important of lncRNA-disease 
associations, precarious disease-related lncRNA and 
finally available important lncRNA-database related to 
sequence, expression, and function. Therefore, a state-
of-the-art computational method has been proposed to 
identify disease and lncRNA.

Chen et al. [38] developed a machine-learning 
method, Regularized Least Square for MiRNA-disease 
Association (RLSMDA), to discover the potential 
relationships between diseases and miRNAs. Based on the 
hypothesis that lncRNAs with similar functions tend to be 
related with diseases that have similar functions, Chen et 
al. [39] developed FMLNCSIM, a model that computing 
a functionally similarity between lncRNA on a large scale 
by combining information content and fuzzy measure’ 
concept to the directed acyclic graphs disease. Zeng 
et al. [40] first presented three general problems in the 
prediction of miRNA-disease associations. The problems 
were styled as follows; the lack of similarity among 
miRNAs stated to be the first challenge in their research, 
and the second problem defined as inadequate miRNA-
disease associations and lastly, the third problem distinct 
as not enough availability number of negative samples for 
investigating miRNA-disease relationship. Therefore, they 
proposed a matrix completion method which is based on 
integrating multiple feature sets to conquer the challenges 
[40].

Besides, another computational model to infer 
miRNA-disease association type pairs has been developed 
by Chen et al. [41]. RBMMMDA developed based on fact 
that all the previous computational techniques may only 
predict binary associations among miRNAs and diseases. 

Therefore, this method has been develop to conquer this 
challenge and can predict four different multiple types of 
miRNA-disease relationship.

Based on the hypothesis that functionally related 
microbes share the similar interaction and non-interaction 
pattern diseases, Chen et al [42] developed a model of 
KATZ measure for Human Microbe–Disease Association 
prediction (KATZHMDA). Therefore, this model was 
constructed based on a Gaussian interaction profile kernel 
similarity from disease and related microbe. To state 
this method thus, the similarity network derived from 
microbe-disease for Gaussian interaction profile kernel 
was contained by two main steps. Step one is that, every 
interaction profile of microbe indicated as binary vector 
which converts the existence or lack of the relationship 
among disease and microbe. In step two, based on 
interaction profiles, the Gaussian interaction profile kernel 
among a pair of microbe was computed. MiRNAs involve 
in various biological processes. Fungal infection is one 
of the infections that developed through miRNAs and 
predicting fungus-causing diseases became also attractive. 
Therefore, Chen et al. [43] proposed a computational 
model NLLSS, a semi-supervised learning technique 
used to combine different kind of information to predict 
potential synergistic drug combinations.

One the hand, we cannot ignore classification in 
this research; it helps in designing classifiers in real-
world problems. By using two finite mixture models to 
capture the structural information from different classes, 
Gu et al. [44] presented a structural minimax probability 
machine (SMPM) to solve a sequence of SOCP (second 
order cone programming) problems through a binary 
search procedure. The method has further proposed a 
nonlinear SMPM model based on linear SMPM by using 
kernelization techniques. Predicting disease-related 
miRNA has been reported in different ways.

Although the proposed methods have successfully 
predicted miRNA-disease associations, these methods 
have some drawbacks. The most commonly reported 
drawback is the poor dataset quality of some methods, 
which causes poor performance. Some methods evaluate 
disease–miRNA similarity, miRNA similarity, and disease 
similarity by using disease data only, which possibly 
results cause bias that disregards miRNA features.

Therefore, we propose a computational prediction 
method for potential miRNA-disease associations. Our 
proposed model is based on path-based features and 
random walk. MiRNA functional similarity network [45], 
disease similarity network [46], and known miRNA-
disease associations [9] were integrated in our work 
which ranked every miRNA of a given disease. High 
prediction ranks were predicted to have high probabilities 
as potential candidates of a given disease. Experimental 
results demonstrated that our method effectively predicted 
potential miRNA-related disease candidates. Known 
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miRNA-disease association databases were applied to 
evaluate the performance of our proposed method.

RESULTS

Evaluation of prediction performance

We present a computational prediction method that 
is based on random walk and graph theory. We introduced 
the five-fold cross validation method to evaluate the 
strength of our method based on random walk and the 
construction of RDnet (miRNA and disease network). 
The datasets were randomly divided into n subsets, 
where n–1 subsets were used for model construction to 
predict potential candidates. The remaining subset was 
used to test the performance of our model. A receiver 
operating characteristic (ROC) curve was applied to 
evaluate the strength of our proposed method. A ROC is 
designed by varying the achieved threshold. The numeric 
representation of ROC is the area under the curve (AUC). 
The ROC is shown in Figure 1. The horizontal axis in the 
plot represents false positive rate (1–specificity) and the 
vertical axis represents true positive rate (sensitivity). The 
true positive rate (TPR) refers to the percentage of true 
associations with scores that are higher than the given 
threshold. On the other hand, the false positive rate (FPR) 

is the ratio of the successfully predicted miRNA-disease 
associations to all known miRNA-disease associations. 
FPR refers to the percentage of associations with scores 
that are lower than the given threshold. Mathematical 
formulas of TPR and FPR are given below:

  
TPR = TP

TP + FN    
(1)

  
FPR =

TN + FP
FP

   (2)

where true positive (TP) denotes the number of 
known associations with scores are higher than the given 
threshold. By contrast, false negative (FN) denotes the 
number of known associations with scores that are lower 
than the given threshold. True negative (TN) denotes the 
number of unknown associations with scores that are 
lower than the given threshold. False positive (FP) denotes 
the number of unknown associations with scores that are 
higher than the given threshold.

Comparison with other prediction methods

Models by Xuan et al. [24] (MIDP and MIDPE, 
2015), Chen and Yan [38] (RLSMDA, 2014), Chen and 
Zhang [27] (Chen’s method, 2013), Shi et al [47] (Shi’s 
method, 2013), Xuan et al. [25] (HDMP, 2013) and Chen 

Figure 1: ROC curve and AUC=0.886 value of our predictive model for miRNA-disease associations by five-fold cross 
validation.
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et al. [18] (RWRMDA, 2012) comprise the majority of 
predictive computational methods that have been presented 
in previous years. MIDP, RWRMDA, and HDMP have 
exhibited considerably superior performances, but were 
developed based on the association data from earlier versions 
of HMDD [9]. Although we cannot ignore the performances 
of these methods, our proposed method is compared with 
MIDP as the only method that was implemented based 
on association data from the latest database [9] in 2013. 
MIDP [24] had a good predictable performance, extending 
to miRNA with no known related disease. However, the 

performances of these methods have not ignored. The 
comparison of our method with these methods has shown in 
Table 1 which confirms a higher predictive accuracy of our 
method compared with MIDP [24], RWRMDA [18], HDMP 
[25], and Chen’s method [27].

In the analysis of all methods our method, MIDP 
[24], RWRMDA [18], HDMP [25], and Chen’s method 
[27] held different parameters for tuning as follow: for 
our computational prediction method, the parameter M 
was set in the range of 0.1 to 0.9. Our method achieved a 
better performance when M=0.7. The highest scores from 

Table 2: Different parameters used in the prediction of miRNA-related disease

Methods Our method MIDP RWRMDA HDMP Chen’s method

Range 
Parameter 0.1-0.9 (M) 0.1-0.9(rQ,rU) 0.1-0.9 (r) 1-50 (k) 0.1-0.9 (r)

Table 1: Prediction results of our method and other methods for 11 diseases with more than 100 related miRNAs in 
terms of accuracy (%) using five-fold cross validation

Diseases name Our method MIDP RWRMDA HDMP Chen's method

Breast Neoplasms 0.865 0.854 0.785 0.801 0.653

Colorectal Neoplasms 0.879 0.845 0.793 0.802 0.662

Glioblastoma 0.821 0.786 0.68 0.70 0.607

Heart failure 0.843 0.821 0.722 0.77 0.761

Hepatocellular Carcinoma 0.832 0.807 0.749 0.759 0.613

Lung Neoplasms 0.904 0.876 0.876 0.835 0.606

Melanoma 0.869 0.837 0.784 0.79 0.642

Ovarian Neoplasms 0.947 0.923 0.882 0.884 0.644

Pancreatic Neoplasms 0.968 0.945 0.871 0.895 0.684

Prostatic Neoplasms 0.898 0.882 0.823 0.854 0.629

Stomach Neoplasms 0.854 0.821 0.779 0.787 0.628

From the above, we compared the accuracies of our method with MIDP [24], RWRMDA [18], HDMP [25], and Chen’s 
method [27] for 11 diseases with more than 100 related miRNAs. The comparative analytical results of our method are 
presented in bold numbers.

Figure 2: Illustration of the proposed method based on random walk and graph theory derived from RDnet.
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a given disease with miRNAs were confirmed as potential 
candidate miRNA-related diseases. The parameters rQ and 
rU of MIDP [24] were selected from (0.1,0.2,…,0.9) such 
that rQ was greater than rU. The parameter r of RWRMDA 
[18] ranged from 0.1 to 0.9. The parameter k of HDMP 
[25] diverged from 1 to 50. The parameter r for Chen’s 
method [27] varied from 0.1 to 0.9. The summary of these 
parameters is shown in Table 2 below.

DISCUSSION

We present a computational prediction method for 
ranking all unknown miRNAs that are related to a given 
disease. The high accuracy of our method has shown that 
supporting biological tests can reliably predict miRNA 
and related diseases. Comparing our method with other 
prediction models proved that its predictive capabilities. 
We first constructed a miRNA-disease network(RDnet) 
derived from [9]. Then, we built our model based on 
random walk and graph theory where the walker starts 
walking form a known miRNA-related disease with equal 
probability. From known associations, the walker’s goal 
was to reach the neighbor of a targeted disease, which is 
the unknown association to calculate the similarity score 
as the relationship. The weights were set as similarity 
scores between unknown miRNA and a given disease. 
Thus, the highest scores were set as potential candidates 
of miRNA-disease associations, as proven by public 
databases. The most challenging problem is that the 
majority of miRNAs have no known related diseases. 
Moreover, many diseases also have a small amount of 
related miRNAs. This means that a high number of false 
negatives exists massively challenging this research field. 
The construction of consistent prediction models with 
better accuracies will help to overcome these challenges. 
Furthermore, using different features to discover the 

similarities between miRNA-disease associations will be 
useful in future studies.

MATERIALS AND METHODS

We combined different data set to overcome the 
results of poor performances. The datasets that were 
utilized in this study were downloaded from the following 
databases as follows.

Disease phenotype similarity data

We downloaded the disease phenotype similarity 
scores from the MimMiner which was developed by Van 
Driel et al. [46]. They computed a phenotype similarity 
score per phenotype pair via text-mining analysis of 
their phenotype descriptions in the Online Mendelian 
Inheritance in Man database [48]. The phenotypic 
similarity scores were successfully used to predict and 
prioritize disease-related protein-coding genes [49, 50].

The human miRNA-disease association data

We downloaded experimentally verified miRNA-
disease association in [9]. HMDDv2 is a database that 
contains experimentally supported data for miRNA-
disease associations. These data are manually curated from 
publications. In our experiment, we used 578 miRNAs and 
382 diseases from the 2013 released of HMDD, which had 
10,381 entries [9].

MiRNA–miRNA functional similarity data

The miRNA–miRNA functional similarity scores 
were downloaded from http://www.cuilab.cn/files/
images/cuilab/misim.zip [45]. In this dataset, a functional 
similarity score per miRNA pair is calculated based on 

Table 3: The top 10 highest scores miRNAs potential candidates related to Hepatocellular carcinoma as confirmed 
by public databases

MiRNAs Confirmation Ranks

hsa-mir-507 dbDEMC2.0 1

hsa-mir-30e dbDEMC2.0 2

hsa-mir-9-2 dbDEMC2.0;Mir2desease 3

hsa-mir-520f dbDEMC2.0 4

hsa-mir-132 dbDEMC2.0 5

hsa-mir-424 dbDEMC2.0 6

hsa-mir-431 dbDEMC2.0 7

hsa-mir-34b dbDEMC2.0 8

hsa-mir-149 dbDEMC2.0 9

hsa-mir-185 dbDEMC2.0 10
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the observation that genes with similar function are often 
associated with similar diseases [14–16].

Construction of RDnet (miRNA and disease 
network)

The key to network-based predictions of potentially 
disease-related miRNA is the calculation of similarity 
network among disease and miRNA over networks. The 
construction of miRNA and disease similarity network 
significantly affects the prediction of miRNA-related 
disease. The network was derived from [9]. The graph 
theory was used as a method for connecting different 
nodes and the walker to measure similarity nodes. 
Therefore, for all known disease-related miRNAs, if the 
miRNA mi (i=1, 2, 3… n) is related to any disease di, 
this relationship between miRNA and disease was set to 
be 1, otherwise 0. This helps us to obtain the number of 
miRNAs that is connected to disease (d). Then, we extract 
all unknown miRNAs for the prediction. We ranked all 
unknown miRNAs. The higher-ranked miRNAs were 
confirmed as potential candidates of a given disease (d).

1 if  = = 1, 2, 3...
0 otherwise
m d i ni i,


  

(3)

From the dataset, the large numbers were unknown 
miRNA that caused greater challenges for researchers 
in the prediction and discovery of new miRNA-disease 
associations. Moreover, several diseases have no related 
miRNA. Therefore, random walk and path theory were 
combined to overcome these challenges.

Random walk and graph theory

A random walk consists of a sequence of vertices, 
which are generated from a start vertex by first selecting 
an edge, then traversing the edge to a new vertex, and 
finally repeating the process. We constructed a strongly 
connected graph from RDnet network. Then the fraction 
of time the walker spends at various vertices of the graph 
converges to a stationary probability distribution. After 
constructing RDnet, we solved our problem using random 
walk to calculate the miRNA score for a given disease. 
Then, high-ranked miRNAs were stated as potential 
candidates for miRNA-related disease. Initial states of 
the walker are highly dependent on the start state of the 
walk. Therefore, the walker starts walking from a known 
disease node until it reaches to related miRNA nodes with 
equal probability for each miRNA. Nevertheless, the 
probability that the walker arrives at each miRNA node is 
equal, the walker prefers the neighboring miRNA nodes in 
the network. Then, from the disease-related miRNA node, 
the walker will continue walking to unknown miRNAs 
of a given disease. The probability that unknown miRNA 
relates with a given disease is considered by the similarity 
score between unknown miRNA with a given disease.

Two nodes are related if the weight of an edge 
between two vertices is higher than a given threshold. 
However, in random walk, the next step does not 
depend on the previous history of steps, only the current 
position/node of the moving walker. This is the case for 
random walk on a directed graph (randomly selecting 
an outgoing edge out of d… disease to leave from) and 
walks on a weighted graph (select an edge with probability 
proportional to its weight). In our method, we modeled 
the score as a weight of our graph after calculating the 
similarity score. Here, we have our network as the 
undirected graph.

Path-based random walk

We design our experiment based on random walk 
and graph theory. For a given disease d, a known miRNA, 
miRNA-related disease candidates, and their relationship 
were modeled as a weighted graph G. Given a weighted 
graph G = (V, E), where v ∈ V in G represents the vertices 
of a known miRNA-related disease, miRNA–miRNA 
similarity, disease–disease similarity, and miRNA-
disease potential candidates, e ∈ E ⊆ V × V captures 
the relationship between two vertices that are linked by 
the edge. Moreover, the weight w of an edge e measures 
the relationship between a given disease and unknown 
miRNAs after calculating the similarity score. The higher 
the w, value is, the better probability that two vertices 
are associated with a group of similar diseases. We aim 
to calculate the ranking order by measuring the similarity 
score of all unknown nodes to obtain the potential miRNA 
candidates of a given disease. From a given disease-
related miRNA nodes, the walker starts walking to their 
neighboring nodes with equal probability. The proposed 
method is illustrated below.

MiRNAs that possess similar functions are 
implicated in similar diseases and vice versa [14–16]. The 
graph was labeled as undirected; from the Figure 2, disease 
network and miRNAs network were combined to form 
a miRNA-related disease network that is derived from 
RDnet (miRNA and disease network). Blue straight lines 
from diseases to miRNAs signify that disease nodes and 
miRNA nodes are related. The walker starts walking from 
known related miRNA-disease with equal probability. The 
probability that the walker starts from diseases (d1, d2, d3…
dn) to miRNAs (m1, m2, m3…mk) is equal to every known 
disease-miRNA node. Therefore, the walker proceeds to 
the closest neighbor of a related miRNA; the closer it is 
to the node, the higher it is likely to be connected. From 
Figure 2, m5 to m1, and m5 to m3 are clearly shown as 
neighbors in the miRNA network. In addition, disease’s 
network and miRNA’s network have been constructed 
based on their functional similarity. Then, from RDnet, 
d1 is strongly related to m5, d3 is associated with m2 and 
d1 is also associated with m3. From the assumption that 
miRNAs share the same functional similarity and are 
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related to similar diseases and vice versa [14–16]. Thus, 
the walker moves from m5 and walks to its neighbor m4. 
Path-based random walk states that the walker follows the 
walking path from miRNA-related disease until it reaches 
to its neighbor. Therefore, the similarity score between a 
given diseases with any unknown miRNAs was calculated 
through known disease-associated miRNAs and disease 
network. The similarity score confirmed that d1 and m4 
are likely to be associated as shown by the brown dotted 
lines in Figure 2. Graph theory and random walk were 
used interchangeably as the walker has to reach each node 
of the graph until converging; d4 is associated with m2 and 
m2 has m1 as its directly connected vertex neighbor. This 
means that when the walker reaches to m2, the probability 
of moving to its neighbors is equal to each unknown 
miRNA node; then the walker will stay in the unknown 
node to measure the similarity score. As the walker starts 
to walk from known nodes d3–m2, the walker will continue 
to the neighbor vertex m3 to predict an association between 
vertices d3 and m3 as shown by the brown dotted line from 
nodes d3 to m3 in the Figure 2. Here, m stands for miRNA 
and d stands for disease. We thus calculated the similarity 
score from unknown miRNAs with a given query disease. 
The higher the similarity scores, the better the prediction 
that miRNA is a potential candidate of a given disease. A 
comparison of the top 10 miRNAs potential candidates 
are described in Table 3 as discussed above in section two 
(Results).

Predictive algorithm for miRNA-related disease 
similarity score of potential candidates

Inputs: RDnet, denoted as G (V, E, W); specific 
disease d.

Outputs: Top ranked d-related miRNA candidates.
1. Obtain diseases and miRNAs associations to form 

RDnet.
2. For ith element of the initial probability d(0), di(0) 

(1 ≤i ≤N, N is the number of vertices in the graph G);
3. If the ith vertex, di – mj is a known disease-related 

miRNA node (where di is any disease node and mj is any 
miRNA node);

4. di – mj =1
5. else
6. di –mj =0
7. End If
8. End For
9. Initialize the walker vector X=d(0)
10. For each vertex di (1≤i≤N, di is the number of 

disease vertices in the graph G).
11. For each vertex mj (1≤j≤N, mj is the number of 

miRNA vertices in the graph G).
12. The walker is walking from di – mj nodes until 

reaches to unknown neighboring miRNA nodes of disease-
related miRNA node.

13. Calculate the sum of the probability that the 
walker arrives at each unknown miRNA node.

14. The steady-state that the walker will stay at the 
mj unknown miRNA node is used as the relevancy score 
between unknown miRNAs and a disease node.

15. End For
16. End For
17. All the unknown miRNAs nodes are ranked by 

their scores.
18. The unknown miRNAs with higher ranks are 

confirmed as potential candidates of d-related miRNA.
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