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 ABSTRACT
Toxicity evaluation is an extremely important process during drug development. 

It is usually initiated by experiments on animals, which is time-consuming and costly. 
To speed up such a process, a quantitative structure-activity relationship (QSAR) 
study was performed to develop a computational model for correlating the structures 
of 581 aromatic compounds with their aquatic toxicity to tetrahymena pyriformis. A 
set of 68 molecular descriptors derived solely from the structures of the aromatic 
compounds were calculated based on Gaussian 03, HyperChem 7.5, and TSAR V3.3. A 
comprehensive feature selection method, minimum Redundancy Maximum Relevance 
(mRMR)-genetic algorithm (GA)-support vector regression (SVR) method, was applied 
to select the best descriptor subset in QSAR analysis. The SVR method was employed 
to model the toxicity potency from a training set of 500 compounds. Five-fold cross-
validation method was used to optimize the parameters of SVR model. The new SVR 
model was tested on an independent dataset of 81 compounds. Both high internal 
consistent and external predictive rates were obtained, indicating the SVR model is 
very promising to become an effective tool for fast detecting the toxicity.

INTRODUCTION

Aromatic compounds are used in many industries 
and consumer products. Many of them are naturally 
occurring. Hence, they have become widely distributed 
in nature. Owing to their prevalence in the environment 
and their likelihood to often elicit unknown toxic effects, 
it is important to determine their potential hazard. 
Experimental determination of the toxicity is time 
consuming and expensive, and can be carried out only for 
compounds already synthesized. There is a strong need 
to develop computational tools that can used to predict 
toxicity. The information thus obtained would be very 
useful in prioritizing the targets concerned.

As is well known, many different QSAR 
(Quantitative Structure-Activity Relationship) models 
have been developed for drug development (see, e.g., 
[1–7]. The goal of this study was to develop a new QSAR 
model that can be used to predict the aquatic toxicity of 
aromatic compounds to tetrahymena pyriformis.

RESULTS

Descriptor selection by mRMR-GA-SVR

To examine the quality of a predictor, we need a 
metrics to quantitatively measure its accuracy. In the 
current study, a quantity called RMSE was introduced for 
such a purpose, as defined by
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where ei and pi denote, respectively, the measured and 
predicted values for the i-th sample; n the total number 
of the samples in the training dataset. Obviously, the 
smaller the value of RMSE the better the set of selected 
descriptors.

Listed in Table 1 are the optimal RMSE values 
obtained by mRMR-GA-SVR under different types of 
kernel function. As shown in the table, the RMSE value is 
smaller when using six-descriptor subset under polynomial 
kernel function. The selected descriptors for QSAR model 
are energy of the lowest unoccupied molecular orbital 
(LUMO), the difference between HOMO and LUMO 
(ΔE), molecular weight (MW), logarithm of the octanol-
water partition coefficient (logP), the number of halogen 
atoms (NHal), and the number of H-bond donors (NHdon).

SVR model and its parameter selection

In this study, the polynomial kernel function was 
adopted. The aforementioned SVR model contains two 
uncertain parameters. One is C for the regularization 
parameter, and the other is ε for the insensitive loss 
function. Their values were determined by optimizing 
RMSE (cf. Eq.1) via the 5-fold cross-validation on the 
training dataset as shown in Figure 1 and Figure 2; i.e.,

C = =2 3 0 11. ; .ε  (2)

Thus, it follows

C x xi i⋅ = ⋅( ) +  +− ∑log IGC( ) .50
1 2

1 0 248β  (3)

where β α αi i i= −( )*  is Lagrange coefficient to the 
corresponding support vector. Listed in Table 2 are the 
values of RMSE and R2 for log(IGC50

-1) of aromatic 
compounds obtained by using trained SVR and PLS 
(partial least squares regression) models. The definition 
of R2 is given by
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where ei  and pi  are the measured and predicted values 
for the i-th sample, e  is the average value of all samples, 
and n is the total number of samples investigated.

Validation of the SVR model

The model validation was conducted by comparing 
the predicted and observed logIGC50

-1 of an independent 

dataset that were not included in the dataset used to train 
the model. The predictive power of SVR model was 
evaluated by a quality function Q2 as defined by
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where l is the total number of the tested samples, and 
all the other symbols have the same meanings as in 
Eq.4. Shown in Figure 3 is a plot of the experimental vs. 
predicted logIGC50

-1 values by using the SVR model for 
the training dataset and independent dataset.

DISCUSSION

Comparison to the PLS and ANNs

In a benchmark test, the SVR was compared with 
PLS and ANN (artificial neural network) methods, as 
shown in Table 2. As shown from the table, the SVR 
model outperformed both the PLS model and ANN 
model, indicating that the SVR model would have better 
generalization ability.

Effects of the descriptors to the model

The current model was built based on six 
selected descriptors. To investigate into the effects of 
the descriptors on the SVR model, let us consider the 
following outcomes. The quality function Q2 was reduced 
from 0.84 to 0.55 (Table 3) when excluding the MW 
(molecular weight) descriptor, indicating that molecular 
weight or volume might have some effects on the toxicity 
of aromatic compounds.

Sensitivity analysis

The sensitivity analysis (SA) method was employed 
to analyze the relationship between attributes and activity. 
The SA of logP, HOMO and Mass are given in Figures 
4-9, respectively. It can be seen from Figures 5-7 that the 
value of logIGC50-1 is increasing with the increment of 
logP, MW and ΔE. Interestingly, just the opposite trend 
was observed from Figure 4, where the greater the LUMO 
is, the lower the logIGC50-1 would be, implying that 
electrons transfer in the process of toxicity interaction is 
from organic compounds to biological molecules.

Interpretation of descriptors

The descriptor logP is well known in predictive 
toxicology. It can describe membrane penetration 
and interaction with the molecular site of action. The 
descriptors ΔE and LUMO belong to quantum chemical 
descriptors. The descriptor ΔE accounts for general 
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Figure 1: RMSE vs.ε  in 5-fold CV using polynomial kernel function (C=2.3).

Figure 2: RMSE vs. C in 5-fold CV using polynomial kernel function (ε =0.11).

Table 1: RMSE obtained by mRMR-GA-SVR method

RMSE Kernel function Descriptors

0.41 Linear kernel ΔE, logP, 2χ, 3χc, 
4χpc, 

3χv, 1κa, Φ, B, NHal

0.38 Polynomial kernel LUMO, ΔE, MW, logP, NHal, NHdon

0.38 Gauss (RBF) kernel LUMO, ΔE, MW, logP, 1χv, 3χc, 
4χpc, 

4χpc
v, 1κa, NHdon
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Table 2: RMSE, R2, and Q2 for logIGC50
-1 obtained by training set and external test set using different models

Method
Training set Test set

n RMSE R2 l RMSE Q2

SVR 500 0.38 0.84 81 0.44 0.77

PLS 500 0.42 0.78 81 0.50 0.68

ANN 500 0.40 0.82 81 0.46 0.76

Figure 3: Plot of the experimental vs. predicted logIGC50
-1 values by the SVR model.

Table 3: RMSE and Q2, logIGC50
-1 of the training set and external test set of aromatic compounds using different 

descriptor subsets

Descriptor
Training set Test set

RMSE R2 RMSE Q2

LUMO, ΔE, MW, logP, NHal, 
NHdon

0.38 0.84 0.44 0.77

ΔE, MW, logP, NHal, NHdon 0.43 0.82 0.46 0.73

LUMO, MW, logP, NHal, NHdon 0.43 0.82 0.46 0.73

LUMO, ΔE, logP, NHal, NHdon 0.53 0.69 0.66 0.53

LUMO, ΔE, MW, NHal, NHdon 0.55 0.69 0.64 0.56

LUMO, ΔE, MW, logP, NHdon 0.44 0.82 0.47 0.74

LUMO, ΔE, MW, logP, NHal 0.45 0.82 0.46 0.73
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Figure 4: logIGC50-1 vs LUMO by SA.

Figure 5: logIGC50-1 vs ΔE by SA.

Figure 6: logIGC50-1 vs MW by SA.
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Figure 7: logIGC50-1 vs logP by SA.

Figure 8: logIGC50-1 vs NHal by SA.

Figure 9: logIGC50-1 vs NHdon by SA.
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stability of a molecule. The descriptor LUMO is related 
to the relative electrophilicity. In the present study the ab 
initio Hartree-Fock level calculation provides a strong 
evidence of toxicity prediction ability of the global and 
local electrophilicity together with molecular stability. 
The descriptor NHdon plays a significant role in solubility 
behavior. As the hydrogen bond formation increases, water 
solubility increases (or n-octanol solubility decreases). 
MW is a general descriptor of size. Halogenated aromatic 
compounds are related to both the leaving and the 
electron-withdrawing properties of the group. The toxicity 
potency is imparted by the leaving ability of the halogen. 
The addition of the halogen atom increases toxicity in 
excess of what can be accounted for by hydrophobicity.

MATERIALS AND METHODS

To establish a really useful statistical predictor, 
according to the Chou’s 5-step rule [8] and realized in a 
series of recent publications [9–19], we should considered 
the following five procedures: (1) how to construct or 
select a valid benchmark dataset to train and test the 
model; (2) how to represent the samples with an effective 
mathematical expression that can truly reflect their 
essential correlation with the target concerned; (3) how 
to introduce or develop a powerful algorithm to run the 
prediction; (4) how to properly conduct cross-validation 
tests to objectively evaluate the anticipated accuracy; (5) 

how to provide a publically accessible web-server. In the 
rest of this paper, we are to address these point-by-point.

Benchmark dataset

In literature, the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
constructed for the purpose of training a proposed model, 
while the latter for the purpose of testing it. As pointed out 
by a comprehensive review [20], however, there is no need 
to separate a benchmark dataset into a training dataset and 
a testing dataset for validating a prediction method if it is 
tested by the jackknife [21] or subsampling (K-fold) cross-
validation because the outcome thus obtained is actually 
from a combination of many different independent dataset 
tests.

The benchmark dataset used in this study consists 
of 581 aromatic compounds with structurally highly 
heterogeneity and their corresponding toxicity data to 
the ciliate tetrahymena pyriformis in term of log(IGC50

-1) 
(mmol/l), which means the logarithmic value of the 50% 
inhibitory growth concentration (IGC50) of the ciliates. 
The toxicity values were taken from the literature [22–
29]. A full list of the toxicity values as well as molecular 
descriptors, or sample formulation [8], used in the 
SVR model is given in Supporting Information 1. The 
compounds with the toxicity values ranged from -1.26 to 
2.74 log units included a large variety of classes: phenols, 

Table 4: Molecular descriptors and the obtaining methods

Software Descriptors

Gaussian 03 HOMO energy, LUMO energy, the HOMO-LUMO gap (ΔE), the total molecular energy (ETot), 
the minimum (QNmax) and the maximum (QPmax) atomic partial charge, dipole moment (μ), 
polarizability (α)

HyperChem release 7.5 Heat of formation (HF), molecular surface area (MSA), molecular volume (MVol), logarithm 
of the octanol-water partition coefficient (logP), hydration energy (HE), molecular refractivity 
(MR)

TSAR V3.3 Molecular weight (MW); Kier and Hall simple and valence-corrected molecular connectivity 
indices (χ); Kappa shape indices (κ); shape flexibility (Φ); Wiener, Randic and Balaban 
topological indices; E-state indice (S); the number of H-bond donors (NHdon) and acceptors 
(NHacc); atom counts (oxygen, nitrogen, fluorine, chlorine, bromine, iodine, halogen atoms, 
heteroatoms); group counts (hydroxyl, amino, aldehyde, nitro, cyano, acid anhydride, methyl)

Table 5: Parameters of the GA-SVR feature selection

Parameter Value Parameter Value

Population Size 50 Regression method SVR

Maximum generations 100 Cross-validation 5-fold

Probability of crossover 0.75 Fitness function RMSE

Probability of mutation 0.01 Regularization parameter (C) 10
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anilines, amides, carbonyls, nitro-compounds, cyanides, 
carboxylic acids, halogenated compounds (F, Cl, Br, I), 
esters, ethers, pyridines, quinines, and so forth.

The aforementioned 581 chemicals were divided 
into two sets: one with 500 chemicals used for training the 
model, and one with 81 chemicals for testing the model. In 
other words, the benchmark dataset was divided into two 
subsets: the training dataset and the independent dataset.

The Chemdraw Ultra Version 7.0 (CambridgeSoft 
Corporation, 2002) software was used for drawing the 
molecular structures. The molecular structures were 
optimized by use of the Gaussian 03 [30] (B3LYP/6-
311G**) or HyperChem Version 7.5 (HyperCube Inc., 
2002) (MM+). Molecular descriptors were obtained by 
Gaussian 03, HyperChem Version 7.5, and TSAR Version 
3.3 (Oxford Molecular Limited, 2000) software’s. The 
mRMR feature pre-selection was performed by using a 
Red Hat Linux 32-bit-machine version package (http://
home.penglab.com/proj/mRMR/). A (procedure for 
feature selection and a software package containing 
SVR and PLS methods were programmed in our lab. 
The validation of the software has been tested in some 
applications [31–33].

Molecular descriptors or sample formulation

In developing a powerful statistical predictor, it is 
very important to represent the statistical samples with an 
effective formulation that can truly reflect their essential 
correlation with the target concerned, as done in [34, 35] 
for proteome systems and in [36–38] for genome systems. 
Here we are dealing with a compound system, and the 
corresponding samples should be formulated in a different 
approach as given below.

The 68 descriptors were calculated with different 
software and they can be classified into six groups: 
quantum chemical, electrostatic, topological, geometrical, 
constitutional, and physicochemical descriptors. A full 
list of descriptors calculated is provided in Table 4. The 
methods to calculate descriptors are given below.

The 8 quantum chemical descriptors were obtained 
using Gaussian 03 (shown in Table 4). All the geometries 
of the aromatic molecules (except I) are minimized at the 
Hartree-Fock level of theory with the 6-311 G** basis set 
followed by frequency calculations using the Gaussian 03 
package.

The 6 electrostatic descriptors were calculated 
using the semi-empirical quantum-chemical method PM3 
in HyperChem 7.5 software package (listed in Table 4). 
Geometry optimizations based on molecular mechanics 
(using the MM+ force field) and semi-empirical quantum 
mechanical calculations using PM3 were used to find 
the coordinates of molecular structures that represent a 
potential energy minimum. For geometry optimization 
using both molecular mechanics and semi-empirical 
quantum mechanical calculations, at the final stage of 

refinement, the Polak-Ribiere routine with RMS gradient 
of 0.001 kcal Å mol-1 as the termination condition was 
used.

Other descriptors were calculated with TSAR 
Version 3.3 as noted in Table 4.

mRMR

The mRMR (minimum redundancy maximum 
relevance) method [39] selects features that have the 
highest relevance with the target class and are also 
minimally redundant, i.e., selects features that are 
maximally dissimilar to each other. The idea of mRMR 
has been widely used to analyze various biological 
sequences (see, e.g., [10, 40–44]). For more information 
about mRMR, see [39, 40], where a detailed procedure 
has been elaborated. Hence there is no need to repeat here.

Descriptor selection for mRMR-GA-SVR

The performance of QSAR model closely depends 
on how to select the features of molecular structures (Table 
5). In this study, a comprehensive feature selection method 
called mRMR-GA-SVR was introduced as described 
below.

In the first stage, the mRMR approach was applied 
for feature selection as done in [45]. There are three 
distinct advantages by doing so: (1) it can select the 
features that have better representativity for the targets 
concerned; (2) it can avoid the high dimension disaster 
problem [46]; and (3) it can narrow down the search space 
for the subsequent study.

In the second stage, a GA-based SVR or GA-SVR 
approach was applied to refines the mRMR-selected-
features. The GA algorithm can be found in [47, 48]. The 
codes for GA-SVR program had been written in our lab 
using the Visual Basic language.

SVR algorithm

The Support Vector Machines (SVM) is a machine-
learning algorithm, which has been widely used in many 
areas of bioinformatics (see, e.g., [10, 37, 49–54]). The 
key idea of SVM is to construct a separating hyper-plane 
so as to maximize the margin between the positive dataset 
and negative dataset. For a brief formulation of SVM and 
how it works, see the papers [55, 56]; for more details 
about SVM, see a monograph [57]. In SVR, the basic idea 
is to map the data X into a higher-dimensional feature 
space F via a nonlinear mapping Φ and then to do linear 
regression in this space. For more details about SVR, see 
Supporting Information 2.

Web server

As pointed out in [58], user-friendly and publicly 
accessible web-servers represent the future direction 
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for developing practically more useful predictors or any 
computational tools. Actually, user-friendly web-servers 
as given in a series of recent publications [9, 10, 59–68] 
will significantly enhance the impacts of theoretical work 
because they can attract the broad experimental scientists 
[69]. Once the funding is available for purchasing the 
needed facilities, we will establish a web-server for the 
new QSAR model reported in this paper.

CONCLUSIONS

The SVR approach was used to develop a new 
QSAR model for predicting logIGC50

-1 for a wide-
ranging and heterogeneous set of aromatic compounds. 
The mRMR-GA-SVR method was applied for descriptor 
selection. The results have indicated that the mRMR-GA-
SVR method is a very effective for QSAR analysis. The 
prediction ability of SVR was tested by an independent 
dataset of 81 aromatic compounds. The R2 for the training 
set for SVR is 0.84. And the Q2 for the independent test 
set is 0.77. It is anticipated that SVR will become a useful 
high throughput tool for detecting the potential toxicity 
to Tetrahymena pyriformis for a diverse set of aromatic 
compounds.
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