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ABSTRACT
Colorectal cancer (CRC) remains an incurable disease. There are no effective 

noninvasive techniques that have achieved colorectal cancer (CRC) diagnosis, 
prognosis, survival and recurrence in clinic. To investigate colorectal cancer 
metabolism, we perform an electronic literature search, from 1998 to January 2016, 
for studies evaluating the metabolomic profile of patients with CRC regarding the 
diagnosis, recurrence, prognosis/survival, and systematically review the twenty-
three literatures included. QUADOMICS tool was used to assess the quality of them. 
We highlighted the metabolism perturbations based on metabolites and pathway. 
Metabolites related to cellular respiration, carbohydrate, lipid, protein and nucleotide 
metabolism were significantly altered in CRC. Altered metabolites were also related 
to prognosis, survival and recurrence of CRC. This review could represent the most 
comprehensive information and summary about CRC metabolism to date. It certificates 
that metabolomics had great potential on both discovering clinical biomarkers and 
elucidating previously unknown mechanisms of CRC pathogenesis.

INTRODUCTION

Colorectal cancer (CRC) is the third most common 
type of cancer and the fourth leading cause of cancer-
related deaths worldwide [1]. In China, the crude 
mortality rate for CRC ranks fifth in cancer-related deaths 
in all cancer sites with a rate of 11.11/100,000, and the 
estimate of new diagnosed cases in 2011 was 310,244, 
accounting for 9.20% of overall new cancer cases [2, 
3].The early diagnosis of CRC is critical. If patients 
with CRC were diagnosed in the early stage, the 5-year 
survival rate could have been up to 90%. Unfortunately, 
more than 60% of CRC cases had already developed to 
an advanced stage by the time of detection, resulting in 
a survival rate around 8-9% [4, 5]. Although, the pre-
operative endoscopic and radiological imaging has been 
used for CRC diagnosis, these invasive techniques suffer 
from poor patient compliance [6]. Currently, noninvasive 

monitoring tests, e.g. fecal occult blood test (FOBT) 
and tumor markers, including carcinoembryonic antigen 
(CEA) and carbohydrate antigen 19-9 (CA19-9), have 
been commonly used in clinical settings. However, 
unsatisfactory sensitivity and specificity have limited 
the clinical application in CRC diagnosis, prognosis 
and survival significantly [7]. Therefore, it is urgent and 
important to develop noninvasive and accurate screening 
tools to facilitate early detection and precise staging of 
CRC. So far, the metabolomics biomarkers have been 
considered a promising approach to discover the potential 
biomarkers for monitoring the tumor progression, 
regression and recurrence, further ensuring that all patients 
receive the proper treatment.

Metabolomics, as the endpoint of the ‘omics’ 
cascade, focuses on investigating the global metabolites 
presented in a biological specimen. Currently, it has been 
widely used to investigate its potential in biomarker 

      Review

mailto:houyan@ems.hrbmu.edu.cn
mailto:likang@ems.hrbmu.edu.cn


Oncotarget35461www.impactjournals.com/oncotarget

discovery for diagnosis, treatment, and prevention, based 
on individual cancers. Some studies have been conducted 
to summarize these metabolites across different studies, 
based on specific aim, e.g. diagnosis or from analytic 
platform [7-10]. For example, Zhang et al. reviewed the 
potential role of small molecule metabolites in cancer 
research and highlighted some metabolomic publications 
on CRC [8]. Ni et al. focused on the recent advances and 
findings in the biomarker discovery for the early diagnosis 
and prognosis in CRC, based on different analytic 
platforms [7]. Armitage et al. focused on the approaches 
in metabolomics that have been used in cancer biomarker 
discovery and further research in this field [10]. Although, 
previous studies have been performed to summarize the 
potential biomarkers for CRC diagnosis, these studies have 
been performed on some metabolomic journals, rather 
than all journals. Moreover, these studies have not been 
conducted to further investigate the metabolite classes 
and pathway-related dysfunctions in CRC diagnosis, 
recurrence, prognosis and survival, especially comparing 
the metabolites across studies to observe whether these 
metabolites could be replicated across studies.

In our study, we highlighted the metabolism 
perturbations based on metabolites and pathways 
across CRC metabolomic publications. Furthermore, 
the metabolite concentrations in the CRC patients were 
compared with controls across different studies to observe 
whether the change trends were consistent, regardless 
of the heterogeneity of patients and controls. These 
results would support further studies on validating these 
metabolites and exploring the possible metabolic pathways 
in CRC.

RESULTS

Searching process 

The working flow diagram was displayed in 
Figure 1. When we searched three databases with the 
combination of the keywords mentioned above, ninety-
five, fifty-six, and thirty-two studies were selected for 
diagnosis from PubMed, Web of Science and Embase, 
separately. Forty-eight, forty-five, and nine studies were 
selected for prognosis or survival, separately. Six, eight, 
and four studies were selected for recurrence, separately. 
We combined databases corresponding to each aim and 
excluded duplicates. One hundred and fifty-six studies 
remained for diagnosis, eighty-nine for prognosis or 
survival, and sixteen for recurrence. Then we screened the 
literature based on title and abstract. Thirty-eight studies 
remained for diagnosis, thirteen for prognosis or survival, 
and four for recurrence. At last, we combined all articles 
and excluded duplicates. Forty-six studies were further 
acquired to access full-text. Unfortunately, seven studies 

were without full-text. Therefore, thirty-nine full text 
studies were reviewed in detail, and sixteen studies were 
excluded due to different reasons, which were presented 
in Figure 1. Twenty-three studies were finally eligible for 
systematic review, of which sixteen studies were about 
diagnosis, two studies on prognosis or survival, four 
studies on diagnosis, prognosis or survival, and one on 
diagnosis, prognosis, survival and recurrence.

Quality assessment

 The quality assessment results, in accordance with 
the QUADOMICS tool, were shown in Supplementary 
Table S1. According to the quality assessment, 10 (43%) of 
the studies were not able to avoid over-fitting due to lack 
of an independent validation set. 19 (83%) of the studies 
were prospective researches. All the studies included in 
this review were explorative. Thus, items questioning 
the availability of the clinical data and the representative 
nature of the spectrum of patients, when a metabolomic 
platform was used in practice, were not applicable for all 
the studies included. The detailed questioning items for all 
studies were shown in Supplementary Table S1.

Study characteristics

 Biological samples utilized for metabolomic 
analysis included serum/plasma in 11 studies, urine in 
4 studies, tissue in 9 studies, exhaled breath in 1 study, 
and feces in 1 study, where both plasma and tissue were 
included in 2 studies, and both feces and tissue were used 
in 1 study. The analytical platforms, used for metabolite 
detection, included liquid chromatography mass 
spectrometry (LC-MS) in 9 studies, gas chromatography 
mass spectrometry (GC–MS) in 14 studies, nuclear 
magnetic resonance (NMR) in 6 studies, Fourier transform 
ion cyclotron resonance mass spectrometry (FTICR-MS) 
in 2 studies and tandem MS in one study (Figure 2A.The 
platforms of publications, the proportion of the specimen 
in platforms, the year of publications, the sample size and 
the origin of the publications are shown in Figure 2. The 
first author’s name, publication year, specimen type, study 
group, sample size, platform, origin and the main aim of 
the articles are summarized in Table 1. Detailed regulation 
of metabolites according to related pathways is presented 
in the Table 2 and electronic supplementary materials 
(Supplementary Tables S2, S3, S4 and S5).

Biomarkers related to early diagnosis and clinical 
staging.

A systematic review of literature revealed 16 studies 
evaluating metabolomic biomarkers referred to early stage 
CRC, of which 4 studies were particularly designed for 
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Figure 1: Systematic search and selection strategy.
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Table 1: Current literature in metabolomics of colorectal cancer detection
No Ref Specimen Cases/controls Platform Origin Aim

1 Cross et al., 2014 [48] Serum
CRC (n = 254);
Match control nested in other cancer (n 
= 254)

UPLC-MS;
GC-MS Amerian Diagnosis

2 Ikeda et al., 2012
[25] Serum Esophageal (n = 12); Gastric (n = 11);

CRC (n = 16); Healthy control (n = 12) GC-MS Japanese Diagnosis

3 Leichtle et al., 2012
[26] Serum CRC (n = 59);

Healthy control (n = 58) Tandem-MS Germany Diagnosis

4 Li et al., 2013
[12] Serum CRC (n = 52);

Healthy control (n = 52)
DI-ESI(±)-
FTICR-MS Chinese Diagnosis

5 Nishiumi et al., 2012
[49] Serum CRC (n = 60);

Matched healthy control (n  =  60) GC-MS Japanese Diagnosis

6 Ma et al., 2012
[22] Serum CRC (n = 30);

Healthy control (n = 30) GC-MS Chinese Diagnosis

7 Ritchie et al., 2010
[50] Serum CRC and healthy control from three 

independent populations (n = 222)
HPLC-MS; NMR
FTICR-MS

American; 
Japanese Diagnosis

8 Tan et al., 2013
[27] Serum CRC (n = 101);

Healthy control (n =  102)
GC−TOF-MS
UPLC-QTOF-MS Chinese Diagnosis

9 Zhu et al., 2014
[14] Serum

CRC (n = 66);
Polyp control (n = 76);
Healthy control (n = 92)

LC-MS-MS Indianan Diagnosis

10 Manna et al., 2014
[28] Tissue CRC mucosa (n = 39);

Normal mucosa (n = 39) UPLC-MS American Diagnosis

11 Mirnezami et al., 2014
[16] Tissue CRC mucosa (n = 44);

Normal mucosa (n = 44) HR-MAS-NMR English Diagnosis

12 Wang et al., 2013[13] Tissue CRC mucosa (n = 127);
Normal mucosa (n = 43) 1H-NMR Chinese Diagnosis

13 Silva et al., 2011[51] Urine CRC (n = 33);
Healthy control (n = 21) GC-MS Portugal Diagnosis

14 Wang et al., 2014[52] Exhaled 
breath

CRC (n = 20);
Healthy control (n = 20) GC-MS Chinese Diagnosis

15 Liesenfeld et al., 
2015[21]

Serum;
Tissue

Visceral adipose tissue (n = 59);
Subcutaneous adipose tissue (n = 59)

GC-MS;
LC-MS Germany Diagnosis

16 Dowling et al., 2015[53] Plasma;
Tissue

CRC (n = 56);
Healthy control (n = 30)

UHPLC-MS-MS;
GC-MS American Diagnosis

17 Liesenfeld et al., 
2015[15] Urine

CRC prior to surgery (n = 97);
1-8days post-surgery (n = 12);
6 months follow-up (n = 52);
12 months follow-up (n = 38)

GC-MS;
1H-NMR American Prognosis/

Survival

18 Phua et al., 2014[23] Tissue;
Feces

CRC (n = 11);
Healthy control (n = 10) GC-TOF-MS Chinese Prognosis/

Survival

19 Chan et al., 2009[19] Tissue CRC mucosa (n = 32);
Normal mucosa(n = 31)

HR-MAS-NMR;
GC-MS

Chinese; 
Indian; 
Malay;
Other 
ethnicity

Diagnosis;
Prognosis/
Survival

20 Jiménez et al., 2013[17] Tissue CRC mucosa (n= 82);
Normal mucosa (n = 87) HR-MAS-NMR English

Diagnosis;
Prognosis/
Survival

21 Cheng et al., 2012[11] Urine CRC (n =  101);
Healthy control (n =  103)

GC-TOF-MS;
UPLC-QTOF-MS Chinese

Diagnosis;
Prognosis/
Survival

22 Yue et al., 2013[54] Urine CRC (n = 29);
Healthy control (n = 10) RRLC-QTOF-MS Chinese

Diagnosis;
Prognosis/
Survival

23 Qiu et al., 2014[18] Tissue Surgical specimens from four CRC 
patient cohorts (n = 376) GC-TOF-MS Chinese;

American

Diagnosis; 
recurrence;
Prognosis/
Survival
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early diagnosis of CRC when compared with controls, 
and metabolomic profiling of different groups could be 
significantly discriminated from different platforms. For 
example, Cheng et al. performed a large-scale study 
to compare the urinary samples of CRC cases (n=101) 
with healthy controls (n=103) using ultra performance 
liquid chromatography quadrupole time-of-flight mass 
spectrometry (UPLC-QTOF-MS) and gas chromatography 
time-of-flight mass spectrometry (GC-TOF-MS). A 
principle component analysis (PCA) plot was constructed 
with satisfactory discriminating ability using the 261 
annotated metabolites, and all of the cancer patients 
were correctly discriminated from the healthy controls, 
including 24 patients at tumor node metastasis (TNM) 
stage I [11]. Li et al. used FTICR-MS approach to evaluate 
the early diagnosis and progression with serum lipid 
metabolites in 52 CRC patients and 52 healthy controls. 
Identified biomarkers contained palmitic amide, oleamide, 
hexadecanedioic acid, octadecanoic acid, eicosatrienoic 
acid, LPC(18:2), LPC(20:4), LPC(22:6), myristic acid 
and LPC(16:0) [12]. Wang et al. compared CRC (n=127) 
and normal controls (n=43) with tissue metabolites from1H 
NMR platform [13]. Zhu et al. compared CRC cases 
(n=66) with polyp patients (n=76) and healthy controls 
(n=92), based on serum using a targeted LC-MS approach, 
and found that all stages of CRC, including stage I, were 

discriminated perfectly from controls with area under 
curves (AUCs) greater than 0.93 [14].

However, there were 3 studies discriminating 
between different stages of CRC. Liesenfeld et al. divided 
urine samples from CRC patients prior to surgery (n=97) 
into three groups: “early” meaning carcinoma in situ and 
localized; ‘‘intermediate’’ meaning locally advanced and 
locally advanced with lymph nodes affected, and ‘‘late’’ 
meaning metastasized. The conclusion is that early-stage 
patients were easier to distinguish from more advanced 
stages of the disease, whereas, intermediate stages were 
poorly differentiated from either of these groups [15]. 
Mirnezami et al. fitted OPLS-DA models with T1/2, T3 
and T4 of CRC tissue metabolites. The metabolite-driven 
means of determining local tumor stage were able to 
correctly assign samples as T1/2, T3, or T4 in 91%, 90%, 
and 75% of cases, respectively. Furthermore, the approach 
revealed specific metabolic phenotypes associated with 
each stage of local tumor development [16]. Interestingly, 
Jiménez et al. not only classified tumor tissues according 
to clinical tumor-classification (T-classification) and 
node-classification(N-classification) of CRC, but also 
classified adjacent tumor mucosa according to the two 
classifications of CRC. Both tumor tissues and non-tumor 
ones could discriminate stages of CRC according to 
T-classification and N-classification. The results indicated 

Figure 2: A. Comparison of analytical platforms in CRC metabonomics. B. Proportion of biological samples in  platform. C. comparison 
of organics in CRC metabonomics. D. Sample size in different metabonomics studies.
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that it was valuable to analyze not only tumor tissue, but 
also the tissue surrounding the cancerous area in terms 
of tumor classification, which was called “field-effects” 
[17]. The biomarkers, related to early diagnosis and stages, 
are shown in the Table 2 and electronic supplementary 
materials with special markers (Supplementary Tables S2, 
S3, S4 and S5).

Biomarkers for recurrence, prognosis, or survival

 All three studies were on diagnosis, prognosis or 
survival, while one study fulfilled all search aims. For 

example, Qiu et al. performed a large research on four 
independent cohorts to identify replicate biomarkers 
related to CRC and predict the rate of recurrence and 
survival for patients after surgery and chemotherapy. 
Finally, fifteen biomarkers were significantly and 
consistently altered with the same up and down tendency in 
all batches. A binary logistic regression analysis was then 
performed using recurrence results as the dichotomous-
dependent variable and these 15 differential metabolites, 
plus age and gender, as the covariates. The AUC value for 
recurrence was 0.895 (95% confidence level, 0.824-0.966), 
with a sensitivity of 0.750, and a specificity of 0.894. 
Similarly, the same analysis was performed on survival 

Figure 3: The enriched pathways of metabolites. A. carbohydrate metabolites. B. lipid metabolites. C. amino acid metabolites. D. 
nucleotide, ketone, tocopherol and benzoate metabolites. Bar colors indicate different of significance. Bar lengths indicate different fold 
enrichment.
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Table2 :  The information of the most important biomarkers based on applications in clinical.
Applicaiton Marker Fold change$ P-value$ VIP$ N* Perturbation& Type#

  Key changea Arabitol -1.82 - - 2 decreasing S2
Key change Galactose -36.8 <0.0005 - 2 decreasing S2
Key change Mannose - <0.05 - 2 decreasing S2
Key change pyruvate -1.15 0.0307 - 2 decreasing S2
Key change Hydroxybutyrate 1.95 0.0008 1.28 2 increasing S3
Key change Glycochenodeoxycholate 1.42 <0.005 - 2 increasing S3
Key change 1-Octanol - - - 2 decreasing S3
Key change Phosphocholine (PC) - <0.01 1.68 2 increasing S3
Key change Oleic acid 1.5 0.0009 1.58 2 increasing S3
Key change Glutamic acid - - - 2 increasing S4
Key change Histidine -1.24±0.06 <0.005 1.91 3 decreasing S4
Key change Iso-glutamine 1.7 - - 2 increasing S4
Key change Methionine -1.15±0.04 <0.0001 1.30 3 decreasing S4
Key change Tryptophan -1.52±0.10 <0.0001 1.63±0.75 2 decreasing S4
Key change Phenol -2.99±0.20 <0.0001 1.72±0.78 2 decreasing S5
Key change Carnitine 1.23 0.00007 1.25 2 increasing S5
Key change Urea -1.39±0.03 <0.0001 1.44±0.20 2 decreasing S5
Stage Glucose - <0.05 - 6 decreasing S2
Stage Succinate 1.84 <0.001 2.14 2 increasing S2,S3
Stage GPC - <0.005 - 1 increasing S3
Stage Triglycerides -1.3 <0.005 - 2 decreasing S3
Stage Fumarate (-,1.81) <0.005 1.30 2 contradictory S3
Stage Taurine (-2.10,1.3)b (<0.001, <0.0005) (4.25, -) 4 contradictory(1:3) S4

Stage Tyrosine (1.56,1.3±0.08) (<0.001,<0.001) (1.42, -) 4 contradictory(2:2) S4

Stage Phenylalanine/L-
Phenylalanine (-1.35, 1.3) (<0.0001,-) (1.98,-) 4 contradictory(2:2) S4

Stage P-cresol (-3.57 ,- ) - (1.05,- ) 2 contradictory S5
Stage Kynurenate -2.50 <0.005 2.17 1 decreasing S5
Early diagnosis Hexadecanedioic acid -1.4 - - 1 decreasing S3
Early diagnosis LPC(20:4) 1.7 - - 1 increasing S3
Early diagnosis LPC(22:6) 1.3 - - 1 increasing S3
Early diagnosis LPC(16:0) 1.4 - - 1 increasing S3
Early diagnosis Octadecanoic acid -1.5 - - 1 decreasing S3
Early diagnosis Palmitic amide -2.4 - - 1 decreasing S3
Recurrence Palmitoleate 2.25 - 1.90 1 increasing S3

Recurrence Uracil (1.59,2.9±1.25) (<0.001, <0.003) (1.15,1.56±0.53) 5 contradictory(4:1) S5

Recurrence Lactate 1.33±0.25 <0.01 2.1±0.33 5 increasing S2,S3
Recurrence Glycerol 1.48 0.0003 1.36 1 increasing S2
Recurrence Myoinositol -1.29 0.008 1.10 3 decreasing S3
Recurrence Myristate (- ,1.72) ( ,0.00006) ( ,1.56) 2 contradictory S3
Recurrence 5-Oxoproline 1.76 <0.005 1.96 1 increasing S4
Recurrence Aspartate 1.70 0.01 1.92 1 increasing S4
Recurrence cysteine 1.62 <0.005 1.64 1 increasing S4

Recurrence Alanine/ L-Alanine/β-
Alanine

(-1.29±0.16,
2.99±2.22) - (1.3±0.42,2.48) 6 contradictory(4:2) S4

Recurrence Glutamate (-1.29,-) (<0.0001, -) (1.02,-) 2 contradictory S4
Recurrence Kyrunine 4.31 <0.0001 2.55 1 increasing S5
Recurrence Hypoxanthine 1.38 0.03 1.84 2 increasing S5
Prognosis/
Survival Choline 1.2 - - 2 increasing S3

Recurrence and 
Stage 2-Aminobutyrate 1.62±0.18 - 1.8±0.45 2 increasing S3
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results and the AUC value for survival reached 0.860 
(95% confidence level, 0.771-0.949), with a sensitivity 
of 0.938 and a specificity of 0.746 [18]. Chan et al. 
performed a study which not only discriminated malignant 
mucosae from normal, but could also distinguish between 
the anatomical and clinic pathological characteristics. The 
anatomical and clinic pathological characteristics were 
closely related to prognosis [19]. A study by Jimenez 
et al. was performed using high-resolution magic angle 
spinning nuclear magnetic resonance (HR-MAS NMR) 
spectroscopy, analyzed metabolites in intact tumor 
samples (n= 83) and samples of adjacent mucosa (n= 87). 
The AUC of the OPLS model reached 0.91. Moreover, it 
used tumor and non-tumor tissue to predict cancer-specific 
survival, based on metabolite profiles from 5-year follow 
up data, respectively. The conclusion was that tumor 
tissue from patients with a 5-years survival and from 
those, who died owing to local or distant cancer relapse, 
found no predictive value, while non-tumor tissue showed 
predictive capacity (AUC=0.88) [17]. Cheng et al. reported 
the biomarkers, including kynurenate, 2-aminobutyrate, 
succinate, p-cresol, putrescine and fumarate in early 
diagnosis and stages, which were critical for prognosis 
and survival [11].The biomarkers, related to recurrence 
and prognosis/survival, were shown in the Table 2 and 
electronic supplementary materials with special markers 
(Supplementary Tables S2, S3, S4 and S5).

Altered metabolism in colorectal cancer

Cellular respiration/carbohydrate metabolism 
perturbations 

Altered levels of metabolites, reported in 
metabolomic studies of CRC related to glycolysis, the 
TCA cycle and anaerobic respiration, were shown in 
Supplementary Table S2. Nine metabolite biomarkers, 
related to above pathways, were reported in more than 

one metabolomic study, including eight biomarkers which 
had consistent results and only one biomarker which had 
contradictory results across different studies. Fumarate, 
as the TCA intermediate [20],was found decreasing in 
tissue profiling [19], while elevating in urine profiling[11]. 
Glucose, as the origin of above pathways, was reported 
decreasing in six studies, containing four studies on tissue 
[16, 17, 19, 21], one study on serum [22] and one study 
on feces specimen [23]. Lactate, a product of anaerobic 
glycolysis [24], was found increasing in seven studies, 
including five studies on tissue [13, 16-19] and two 
studies on serum [14, 25]. Arabitol, galactose, mannose 
and pyruvate were reported decreasing in all studies, 
respectively, while glycerol and succinate were found 
elevating in all studies, respectively. Galactose, galactitol 
and glucose in perturbed galactose metabolism pathway 
had the same decreasing trend in all literatures [16, 17, 
19, 22, 23], which may be explained by that galactitol and 
glucose are the products of galactose. The metabolites 
with the same change tendency in more than one literature 
had potential clinical significance and were shown in Table 
2. All the cellular/carbohydrate metabolites were enriched 
in twenty-four pathways (Figure 3A). 
Lipid metabolite perturbations 

Metabolites, related to fatty acid oxidation, were 
frequently altered in CRC patients (Supplementary Table 
S3). Fifteen biomarkers, related to lipid metabolism 
pathway, were reported in more than one metabolomic 
study, including three biomarkers which had contradictory 
results and twelve biomarkers which had consistent results 
across the different studies. In one study arachidonic acid 
was found to be increased in tissue of CRC patients [21] 
while decreased in another [19]. Fumarate was elevated 
in urine of CRC cases in one study [11] while decreased 
in tissue [19]. Increased levels of myristate in tissue of 
CRC cases [18] was found down-regulated in urine [11]. 
Lactate, 2-aminobutyrate, choline, hydroxybutyrate, 

Recurrence and 
Survival Iso-butyrate 1.4 - - 1 increasing S3

Recurrence and 
Stage Acetate 2.97 <0.005 2.27 2 increasing S3

Recurrence and 
Stage Putrescine 1.53±0.08 <0.005 1.1±0.05 2 increasing S4

Survival and 
Stage Proline/ L-Proline 1.279 <0.01 - 5 increasing S4

Survival and 
Stage P-cresol-b-Oglucuronide - - - 1 increasing S5

Note: akey change means the metabolites have the same tendency in more than one literatures.
 *N means the times of biomarkers reported in literatures.
&increasing/decreasing=up-regulated / down-regulated in CRC.
$fold change, VIP of the metabolite reported in more than one literature were denoted by mean±sd. p value of the metabolite 
reported in more than one literature were denoted by the max one.
bFor contradictory (A,B), A means value for the contradictory marker with down-regulated, while B for up-regulated; 
-means the values were not reported
 Type # means the biomarkers are from original supplementary tables, e.g Type#-S3 means from Table S3. 
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succinate, acetate, oleic acid, glycochenodeoxycholate 
and phosphocholine (PC) were increased across all 
studies. Myoinositol, triglycerides and 1-octanol were 
decreased in all studies. The metabolites with the same 
change tendency in more than one literature had potential 
clinical significance and were shown in Table 2. All the 
lipid metabolites in supplementary table 3 were enriched 
in thirty pathways (Figure 3B).
Amino acid metabolite perturbations 

Amino acid metabolism is one of the pathways that 
had been commonly reported to be altered in CRC in the 
studies included in this systematic review (Supplementary 
Table S4). Eighteen biomarkers related to amino acid 
metabolism pathways were reported in more than one 
metabolomic study, including eleven contradictory 
biomarkers and seven consistent biomarkers across 
different studies. For instance, glycine was reported to 
be increased in tissues from two studies [16, 19] while 
to be decreased in serum from two other studies [22, 26]. 
Alanine was reported to be increased in serum and tissue 
in two studies [18, 25] while to be decreased in serum 
and urine in four other studies [11, 14, 26, 27]. Taurine 
was reported to be increased in tissue in three studies 
[16, 17, 19] while decreased in the same tissue in another 
study [13]. Histidine, methionine, and tryptophan were 
decreased in CRC cases in all studies while glutamic 
acid, proline/L-proline, iso-glutamine and putrescine 
were increased in all studies. The metabolites with the 
same change tendency in more than one literature had 
potential clinical significance and were shown in Table 2. 
All the amino acid metabolites were enriched in thirty-two 
pathways (Figure 3C).
Nucleotide metabolites and other significant metabolite 
perturbations

 Nucleotide metabolites and other significant 
metabolites altered in CRC patients were summarized 
in Supplementary Table S5. Nine biomarkers were 
reported in more than one metabolomic study, including 
five biomarkers which had contradictory results and four 
biomarkers which had consistent results across different 
studies. For example, uracil had higher levels in tissues 
of CRC cases in three studies and in feces in one study 
[13, 18, 23, 28] while lower in urine in another study 
[11]. P-cresol was up-regulated in urine of CRC cases 
in one study [15] while was down-regulated in the same 
urine in another study [11]. Carnitine and hypoxanthine 
were reported to be increased in CRC cases in all studies. 
Phenol and urea were reported to be decreased in CRC 
cases in all studies. The metabolites with the same 
change tendency in more than one literature had potential 
clinical significance and were shown in Table 2. All the 
metabolites were enriched in twenty-one pathways (Figure 
3D).

DISCUSSION

This systematic review provides a qualitative 
assessment of studies conducted on metabolomic profiling 
in CRC. From this review, we found that some individual 
results were contradicting. For example, Li et al. and 
Mirnezami et al. found that the glycine was higher in 
CRC when compared with controls, while Leichtle et 
al. and Ma et al. found that glycine was lower in CRC. 
The reason was likely due to different bio-fluids, since Li 
et al. and Mirnezami et al. performed the metabolomic 
profiling in the tissues samples, while Leichtle et al. and 
Ma et al. conducted it in the serum samples [12, 16, 22, 
26]. Besides, we have discovered that the diagnostic or 
predictive accuracy of metabolites were different across 
studies, and biomarkers for early diagnosis, stage, 
prognosis, survival and recurrence were distinctive. 
It could be explained by the diversity of specimens, 
metabolomic analytical platforms, different experiment 
subjects and/or sample sizes. 

In this review, we presented the diagnostic 
implications of metabolomic profiling in detection of 
CRC. Previous studies have reported that the routine 
noninvasive diagnostic tools in clinical use were not 
satisfactory [29, 30]. It is known that early diagnosis 
and detailed stages of CRC have a significant impact on 
CRC management, prognosis, recurrence, or survival [31-
33]. Furthermore, the targeted metabolomic researches 
certificated that the most results were consistent with the 
discovery phase[34, 35]. Our results indicated that sample 
metabolomic profiling could distinguish CRC patients, 
including early stage patients, from normal controls and 
will be a promising tool in early noninvasive diagnosis 
of CRC. 

Metabolite perturbations and relevant biological 
pathways were examined which included cellular 
respiration, carbohydrate, amino acid, lipid, nucleotide, 
and ketone metabolisms. There were significant 
alterations in metabolites of glycolysis, TCA cycle, and 
anaerobic respiration pathways which indicated significant 
perturbations of energy metabolism in CRC. Altered 
energy metabolism, as a hallmark of cancer, was first 
identified almost a century ago when Warburg discovered 
that cancer cells primarily used anaerobic glycolysis to 
produce energy, even in the presence of oxygen, which was 
called the Warburg effect [36]. Further, the Warburg effect 
was known to cause an increase in lactate production and 
lower the pH of malignant tissue, which in turn impaired 
DNA repair mechanisms [37]. This phenomenon was 
demonstrated in CRC metabolomics with perturbations 
of 6-phosphogluconic acid, citrate, formate, isocitrate, 
pyruvate, 3-phosphoglycerate, L-Glutamine, succinate 
and lactate in studies. Lipid metabolism also had an 
essential role in malignant proliferation, suggesting that 
adipocytes act as an energy source for cancer cells in 
malignances such as prostate and kidney cancers [38-
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40]. Increased fatty acid oxidation was associated with an 
over-expression of uncoupling proteins that could promote 
chemo resistance in cancer cells through mitochondrial 
‘‘uncoupling’’, helping cancer cells to survive [41]. In 
our systematic review, the fatty acid oxidation alterations 
included mitochondrial beta-oxidation of long chain 
saturated fatty acids, oxidation of branched chain fatty 
acids and mitochondrial beta-oxidation of short chain 
saturated fatty acids. This phenomenon was demonstrated 
in CRC metabolomics with perturbations of stearic acid, 
carnitine, octadecanoic acid and succinate. Consistent with 
abnormal fatty acid oxidation, abnormal phospholipid 
biosynthesis were demonstrated in CRC metabolomics 
with perturbations of phosphocholine, choline, LPA(16:0) 
and LPC(16:0). As the essential components of biological 
membranes, abnormal phospholipid biosynthesis in the 
CRC patients was probably associated with this biological 
activity and was due to accelerated cell proliferation [42, 
43]. Amino acid metabolism was another novel pathway 
that was commonly altered in cancer cells, including 
abnormal tryptophan metabolism, abnormal alanine 
metabolism, abnormal glucose-alanine cycle, abnormal 
glutamate metabolism, abnormal arginine and proline 
metabolism, abnormal beta-alanine metabolism, and 
abnormal histidine metabolism. Nucleotide metabolism 
was also a novel pathway that was commonly altered in 
cancer cells, including abnormal thioguanine pathway and 
abnormal mercaptopurine metabolism pathway.

Overall, metabolomics has revealed multiple 
dysregulated metabolites that were related to the 
differences in metabolic pathways between CRC and 
control samples and potentially could have turned out 
to be multiple clinically useful biomarkers. Despite 
the promising preliminary results, a consensus group 
of biomarkers for CRC has not yet been emerged. The 
biomarker development in CRC metabolomics has not 
progressed beyond Phase 1 pre-clinical exploratory 
studies. Such a group of biomarkers is a necessary 
prerequisite for larger scale studies of CRC detection. 
Also, the fusion of metabolic profiling data could enlarge 
the size of data set and improve the stability of biomarkers 
detection economically. It is necessary to study effective 
data fusion method, integrate current data of CRC 
and re-analyze the fusion data. The standardization of 
metabolomic platforms, including separating techniques, 
is crucial to minimize variability due to equipments and 
approaches to metabolite identification and quantitation. 
Subsequently, larger studies, addressing a more diverse 
population, need to be designed and executed. Beyond the 
question of screening biomarkers, our review provided 
insights into the biology of CRC development. Apart 
from the obvious scientific interest, such knowledge will 
form the basis for new therapeutic interventions that can 
interrupt these neoplastic pathways. Rigorous adherence 
to these approaches will set the stage for metabolomics to 
be validated both as a diagnostic tool and as the basis for a 
new generation of therapeutic agents for CRC.

MATERIALS AND METHODS 

Search strategy 

 A literature search was done through three 
databases (PubMed, Web of Science and Embase) with 
the combination of the keywords “metabolomics”, 
“metabolite”, “metabolome”, “metabolic profiling”, 
“colorectal cancer”, “colorectal neoplasm”, “colorectal 
carcinoma”, “colorectal tumor”, “biomarker”, “diagnosis”, 
“recurrence”, “prognostic” and “survival” in all fields 
from 1998 to January 2016. Three independent searching 
procedures were performed according to our aim: 
diagnosis; prognosis or survival; recurrence. Literature 
searching for each aim was conducted in three databases, 
based on search strategy. The inclusions and exclusions 
were displayed in the section 2.2. After obtaining all 
papers, we firstly combined literatures according to aims 
and excluded the duplicates. Then, we screened literatures 
based on titles and abstracts and excluded articles not 
meeting our inclusion criteria. Last, we combined all 
articles and excluded duplicates. All the remaining papers 
were downloaded in full-text. Two researchers (Zhang Y 
and Zhao W) independently assessed all articles, based on 
their full text. When it came to disagreement regarding 
inclusion or exclusion, they would consult with a senior 
researcher (Zhang F) and generate a consensus. The 
searching and screening literature workflow was displayed 
as follows (see Figure 1). 

Inclusion and exclusion criteria

 All studies that investigated the metabolomic profile 
of biological samples from tissues or bio-fluids of patients 
with CRC, compared to an appropriate control group, 
were included in our analysis. We limited our studies to 
employing mass spectrometry (MS) and nuclear magnetic 
resonance (NMR). All metabolomic studies concerning 
human in vitro or animal CRC models were excluded. 
Only original articles, published in English with full text 
available, were selected for the final analysis. 

Data extraction and analysis

 After we selected the final literature, the following 
information was extracted from each study, if provided:

1. first author’s name and publication year
2. specimen type
3. analytic platform
4. sample size, including number of cases and 

controls
5. origin
6. whether there was an independent validation
7. whether it was a prospective research
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8. significantly altered metabolites in patients with 
CRC compared to a control group

Data extraction was carried out by two independent 
researchers (Zhang Y, Zhao W) to avoid author bias.

Methodological quality assessment

 In this study, we applied QUADOMICS, an 
adaption of quality assessment tool for diagnostic 
accuracy studies (QUADAS), to assess the methodological 
quality of the selected studies, which takes into account 
for the particular challenges when systematic reviews of 
‘omics’-based techniques were being performed [44]. The 
quality of the studies was summarized by the percentage 
of applied criteria scored positively. We did not use a 
threshold integer while assessing the quality of studies, 
as has been previously reported [45]. A cutoff assessing 
the quality of published studies has not been yet published 
by either QUADAS or QUADOMICS, as such a cutoff 
would not sufficiently discriminate between a study with 
a major methodological flaw that invalidates the results in 
comparison to one with minor methodological flaws [44, 
46, 47]. QUADOMICS can assess the quality of diagnostic 
studies in a highly dynamic field which faces the challenge 
of sieving the huge amount of results recently produced 
[44].

Metabolites enriched into pathways

The biomarkers extracted from the literatures were 
enriched into pathways based on cellular/carbohydrate 
metabolites, lipid metabolites, amino acid metabolites and 
nucleotide metabolites respectively. The enrichments were 
performed through MetaboAnalyst software (http://www.
metaboanalyst.ca).
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