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ABSTRACT
The aim of this study was to describe a metabolomic study of breast cancer using 

1H-NMR combined with bioinformatics analysis. 1H-NMR spectroscopy combined with 
multi-variate pattern recognition analysis was used to cluster the groups (serum 
and urine samples from breast cancer patients and healthy controls) and establish 
a breast-cancer-specific metabolites phenotype. Orthogonalpartial least-squares 
discriminant analysis (OPLS-DA) was capable of distinguishing serum and urine 
samples from breast cancer patients  and healthy controls and establishing a breast-
cancer-specific metabolite profile. A total of 9 metabolites in serum concentration 
and 3 metabolites in urine concentration differed significantly between breast cancer 
patients and healthy controls. Serum samples from breast cancer patients were 
characterized by decreased concentrations of choline,  glucose, histidine, valine, 
lysine, acetate, tyrosine and glutamic, accompanied by increased concentrations of 
lipid relative to healthy controls. In urine samples, the level of phenylacetylglycine 
and guanidoacetate was significantly lower, while the level of citrate was significantly 
higher in breast cancer patients relative to healthy controls. In conclusion, this study 
reveals the metabolic profile of serum and urine from breast cancer patients. NMR-
based metabolomics has the potential to be developed into a novel clinical tool for 
diagnosis or therapeutic monitoring for breast cancer. However, because of limitations 
of methods and technique, further research and verification is needed.

INTRODUCTION

Breast cancer is one of the most common cancers 
and the fifth leading cause of cancer-related deaths 
among women worldwide [1].  The clinical diagnostic 
methods for breast cancer include physical examinations, 
mammography and histopathology. In order to avoid poor 
prognosis and increase long-term survival, it is important 
to make an accurate diagnose as early as possible. 
However, a major factor that contributes to poor prognosis 
is the fact that diagnosis is often delayed due to limitation 
in the conventional diagnostic screening methods [2]. 
Although several tissue biomarkers have been identified, 
biopsy cannot be frequently repeated. Therefore, new 
sensitive and noninvasive biomarkers are still urgently 
needed to improve early detection rates of breast cancer. 

Metabolomics, as the downstream of transcriptomics, 
genomics, and proteomics, is an emerging research field 
for detection, identification and quantification of low-

molecular-weight metabolites that are involved in the 
metabolism in an organism at a specified time under 
specific environmental conditions [3]. Metabonomics 
can provide complementary information that cannot be 
obtained directly from the genotype, geneexpression 
profiles, or even the proteome of an organism [4]. In 
addition, it can identify early signals/biomarkers of 
cellular abnormalities that occur before the changes of 
gross phenotype [5]. Currently, metabolomics has been  
widely used in biomarker detection, disease diagnosis and 
evaluation of  treatment and prognosis [6]. 

Among the various techniques of metabolic 
profiling, nuclear magnetic resonance(NMR) spectroscopy 
has been widely applied in metabolite identification 
and quantification as a reproductive, non-targeted and 
non-destructive method that requires minimal sample 
preparation [7]. Proton nuclear magnetic resonance  
(1H NMR) spectroscopy is especially sensitive because 
protons are present in virtually all metabolites [8]. 
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Bioinformatics methods, such as the unsupervised 
(principal component analysis, PCA) and supervised 
(partial leastsquares- discriminant analysis, PLS-
DA and orthogonal partial least-squares-discriminant 
anlaysis, OPLS-DA) methods are commonly applied to 
metabolomics data [9].

Currently, cancer metabolomics is gradually 
becoming a hot topic. Metabolomics methods could be 
used to monitor changes of specific metabolism in process 
of tumor development,  to predict tumor progression, to 
monitor tumor response to intervention, to determining 
a characteristic metabolic pattern for cancer patients, to 
identify tumor associated biomarkers and to provide helps 
for early diagnosis, prognosis  evaluation and efficacy 
analysis for cancer patients. Metabolomics has been 
successfully applied to biomarkers screening for many 
cancers, such as bladder [10], colon [11], lung [12] and 
prostate cancers [13].  However, metabolomics studies 
on breast cancer is rarely reported. Hence, serum and 
urine metabolomic profiles from breast cancer patients 
and healthy controls were obtained using 1H-NMR 
spectroscopy coupled with pattern recognition. The aim 

is to tap the potential biomarkers for early diognosis for 
breast cancer and to try to enhance understanding of the 
pathobiology of the disease.

RESULTS

1H-NMR spectrum of serum and urine

1H-NMR CPMG of serum and urine samples of 
group A and B are depicted in Figure 1. More than30 
different metabolites were identified and quantified 
according to their chemical shifts and signal multiplicity. 
The main different peaks between the two groups are 
concentrated in the area of 0.5–5.5 and 6.5–9.0 ppm for 
serum samples and 0.5–9.0ppm for urine samples (Figure 1 
and Figure 2).To conduct an overview of discrimination 
between group A and B, further analysis was applied.

PCA

The PCA was first carried out and the score plot was 
obtained as in Figure 3. As can be seen from Figure 3, 

Figure 1: 1H NMR spectra (δ0.5-5.5 and δ6.5-9.0) of  serum samples obtained from group (A and B). Keys: Asn: asparaginate; Gln: 
Glutamine; Glu: Glutamate; His: histidine; Ile: Isoleucine; Lys: Lysine; NAG: glucosaminidase.

Figure 2:  1H NMR spectra (δ0.5-9.0) of urine samples obtained from group (A and B). Keys: 1: octanoate; 3: alanine; 4: 
4-ethylphenol; 7,acetate, 8,N-acetylglutamate; 10,dimethylamine; 12,N,N-dimethylglycine; 13,sarcosine; 16, trimethylamine N-oxide; 
19,phenylacetylglycine; 21,urea; 23,p-cresol glucuronide; 24,hippurate; 25,pseudouridine.
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serum and urine samples in group A and B both have a 
tendency to separate, and specific biological information 
will be analyzed further.

PLS-DA 

Supervised analysis techniques were then used, including 
PLS-DA and OPLS-DA. Based on the PLS-DA models for 
serum samples, group A and group B were discriminated with 
an R2X of 0.39 and a Q2of 0.75(Figure 4), while the R2X and 
Q2 in PLS-DA model for urine samples of the two groups was 
0.37 and 0.64 respectively (Figure 5). The models for  serum 
and urine samples of group A and B were both valid, indicating 
that there were significant differences of metabolome for serum 
and urine samples between the two groups.

OPLS-DA 

The OPLS-DA model was constructed subsequent 
to PLS-DA analysis using the first principal component 
and the second orthogonal component as Figure 6 and 
Figure 7. The quality of the models was described by 
the cross-validation parameters R2X and Q2, which 
represented the total variation for the X matrix, and the 
values are tabulated in Table 1. In OPLS-DA score plots 
of serum sample, a significant biochemical distinction 
between groups A and B was identified with R2X = 0.39 
and Q2 = 0.75 (Figure 6). In addition, some degree of 
separation for urine samples between groups A and B 
could also be visualized with R2X = 0.37 and Q2 = 0.58 
(Figure 7).

Figure  3: PCA scores plot based on 1H NMR spectra of serum and urine sample of groups (A and B). Serum and urine samples in group 
A and B both have a tendency to separate.

Figure 4: PLS-DA scores plots (left panel) derived from 1H NMR spectra of serum samples obtained from group (A and group B) and 
cross validation (right panel) by permutation test. Note: group A: black box (■); group B: blue triangle (▲).
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Metabolites statistics for serum and urine

Metabolites with statistical significance were further 
summarized by analyzing the correlative coefficient 
derived from OPLS-DA. The correlation coefficient 
is then compared with the cut-off value table to obtain 
metabolites that cause differences between groups. 
Nine metabolites were detected at significantly different 
levels in serum samples between groups A and B as in 
Table 2. Compared with group B, the level of choline,  
glucose, histidine, valine, lysine, acetate, tyrosine and 
glutamic was significantly lower, while the level of lipid 
was significantly higher in serum samples of group A. 
In urine samples, the level of phenylacetylglycine and 

guanidoacetate was significantly lower, while the level 
of citrate was significantly higher in group A relative to 
group B (Table 3).

DISCUSSION

As a heterogeneous disease, every kind of cancer 
has its own metabolic characteristics [14]. As we all 
know, the metabolic state of malignant tumor tissue than 
the normal tissue is more robust. Due to various factors 
inside and outside the body, the synthesis activity of 
DNA and RNase increased, while protein anabolism and 
catabolism are enhanced, and anabolism is more powerful 
than catabolism [15]. Even the decomposition products of 

Table 1: Clinical information of participants
Clinical features Group A Group B t P

No. of women 11 11
Age 
 Median(years)
 Range

58
45–72

59
46–70

1.298 0.379

BMI(kg/m2) 21.3 ± 1.9 22.0 ± 1.2 1.560 0.204
Pathologic grade
 I
 II
 III

3
4
4

Disease stage
 I
 II
 III
 IV

2
5
3
1

Lymph node metastasis
 N0
 N1

5
6

Figure 5: PLS-DA scores plots (left panel) derived from 1H NMR spectra of urine samples obtained from group (A and group B) and cross 
validation (right panel) by permutation test. Note: group A: black box (■); group B: blue triangle (▲).
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normal tissue proteins are used to synthesize the nutrients 
needed by tumor tissue. Therefore, the occurrence and 
development of tumor are closely related to metabolic 
changes in the body [16]. Although metabolomics studies 
have been widely used in a variety of tumors, there are 
few reports using metabonomics to study biomarkers of 
breast cancer [17].

This study used an NMR-based metabonomics 
approach to develop a metabolic profile of patients with 
breast cancer. We demonstrate distinct differences in the 
spectra acquired between breast cancer patients and healthy 
controls. Based on statistical models, the technique has the 
potential to serve as a diagnostic tool for breast cancer and 
to identify metabolic features of the disease. In the present 
study, more than 30 metabolites were detected in the serum 
and urine samples of breast cancer patients and healthy 
controls based on the results of 1H-NMR. Nine metabolites 
were detected at significantly different levels in serum 
samples, while three metabolites were also detected in urine 
samples between breast cancer patients and healthy controls.

The process of amino acid metabolism is complex 
and involves a series of metabolites. Amino acids are raw 
materials of protein synthesis and catabolism products 

in vivo. The changes of amino acids composition 
and concentration can reflect the metabolic status of 
patients. Characteristics of amino acid metabolism 
in cancer patients include the following two points  
[18–19]: (1) uptake of  amino acids is faster in tumor cells 
compared to normal cells, resulting in certain amino acids 
reducing in host body; (2) to meet the needs of growth 
and metabolism, tumor tissue with a nitrogen atom trap 
function, can take the initiative to compete with the host 
for nitrogen compounds and constantly ingest a variety 
of essential amino acids and non-essential amino acids 
for cells proliferation. In this study, there were significant 
differences in the contents of five amino acids in the serum 
between breast cancer patients and healthy controls. The 
serum levels of histidine, valine, lysine, tyrosine and 
glutamate in breast cancer patients were significantly 
lower than those in healthy controls. Among them, valine 
and lysine are essential amino acids, while histidine is a 
semi-essential amino acid. 

In addition, a decrease of amino acids in cancer 
patients  is closely related to malnutrition. It is reported 
that 40% to 80% of cancer patients are combined to 
malnutrition and weight loss in 15% of patients within 

Table 2: OPLS-DA coefficients derived from the NMR data of different metabolites in serum 
Metabolites ra

Choline 0.70
Glucose 0.67
Histidine 0.65
Valine 0.69
Lipid −0.71
Lysine 0.82
Acetate 0.83
Tyrosine 0.63
Glutamic 0.74

aCorrelation coefficients, positive and negative signs indicate positive and negative correlation in the concentrations, 
respectively. The correlation coefficient of│r│> 0.602 was used as the cutoff value for the statistical significance based on 
the discrimination significance at the level of P = 0.05 and df(degree of freedom) = 9. 

Figure 6: OPLS-DA scores plots (left panel)  and corresponding coefficient loading plots (right panel) for serum samples of group (A and 
group B). The color map shows the significance of metabolites variations between the two classes. Peaks in the positive direction indicate 
metabolites that are more abundant in the groups in the positive direction of first principal component. Note: group A: black box (■); group 
B: blue triangle (▲).
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6 months from diagnosis is more than 10% [20]. In 
this study, the average BMI of 11 patients with breast 
cancer  was 20.41 ± 1.35, which is lower than the 
normal population. Malnutrition would decrease the 
tolerance of cancer patients on surgery, chemotherapy, 
radiotherapy and other anti-tumor treatment and 
increase incidence of adverse reactions [21]. Therefore, 
doctors should pay attention to amino acid supplements 
for tumor patients.

It has been reported that amino acid metabolism 
of different kind of cancers has specificity [22]. 
Serum amino acid levels between esophageal cancer, 
osteosarcoma, lymphoma and soft tissue sarcoma showed 
inconsistencies. Experiments in vitro showed that the 
consumption of arginine, threonine, taurine and glutamine 
in liver cancer cells increased significantly [23]. Ye et 
al. [24] confirmed that serum concentration of tyrosine, 
glycine, glutamine, alanine, valine and isoleucine in 
cervical cancer patients was significantly lower than 
those in healthy controls. The results of this study 
showed that the consumption of histidine, valine, lysine, 
tyrosine and glutamate significantly increased in breast 
cancer patients. In addition, tumor stage may also affect 
the body’s amino acid levels. It was reported that the 
concentration of tyrosine, methionine and phenylalanine 
in patients with hepatocellular carcinoma increased with 
tumor stage [25]. However, due to the small sample size 
of this study, we did not carry out the study of staging and 
amino acid metabolism.

This study also showed that serum levels of choline 
and glucose in breast cancer patients were significantly 
lower than those in healthy controls. We speculate that 
this may also be due to the high consumption state. 
Serum levels of serum lipid in breast cancer patients were 
higher than healthy controls, indicating that the patient’s 
serum lipid metabolism was in a disorder state. In the 
urine sample, the content of phenylacetylglycine and 
guanidoacetate in serum of patients with breast cancer 
was significantly lower than that of healthy controls, while 
citrate content was significantly higher than that of healthy 
controls. All of these indicate that breast cancer patients 
are in high metabolic and high consumption state.

In conclusion, this study illustrates the successful 
application of 1H-NMR spectroscopy-based metabolomics 
for investigating the metabolic changes in serum and 
urine of patients with breast cancer. Our results indicate 
significant dysregulation of metabolic pathways in breast 
cancer patients. Specifically, we found that breast cancer 
was associated with metabolism disorder of amino acid, 
lipid and organic acids.

MATERIALS AND METHODS

Patients

This study was approved by the Ethics Committee of 
Shaanxi provincial people's hospital. All study participants 
provided written informed consent before participation. 

Table 3: OPLS-DA coefficients derived from the NMR data of different metabolites in urine 

Metabolites ra

Citrate −0.63
Phenylacetylglycine 0.82
Guanidoacetate 0.79

aCorrelation coefficients, positive and negative signs indicate positive and negative correlation in the concentrations, 
respectively. The correlation coefficient of│r│> 0.576 was used as the cutoff value for the statistical significance based on 
the discrimination significance at the level of P = 0.05 and df(degree of freedom) = 10. 

Figure 7: OPLS-DA scores plots (left panel)  and corresponding coefficient loading plots (right panel) for urine  samples of group (A and 
group B). Note: group A: black box (■); group B: blue triangle (▲).
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Eleven patients with pathological diagnose of breast 
cancer were recruited to this study as group A between 
September 2015 and November 2015, while 11 cases of  
healthy volunteers were from  physical examination center 
of our hospital as group B during the same period.  All 
the participants did not suffer from other tumors, diabetes 
and cardiovascular diseases. The clinical information of 
participants was summarized in Table 1. Age and BMI 
between the two groups has no significant difference(both 
P > 0.05).

Sample collection and storage

After fasting and avoiding alcohol and medicine for 
12 hours, each participant was collected serum and urine 
in the early morning before undergoing any treatment. 
Venous blood samples were collected into plastic serum 
tubes (5 ml) and allowed to clot by standing tubes 
vertically at room temperature for 60 min. Serum was 
obtained after centrifugation at 3000 rpm for 10 min, and 
samples were stored at −80°C until analysis. Morning 
urine of all participants were collected and  immediately 
frozen at −80°C until for analysis.

Instruments, reagents and software 

Instruments used were as follows: NMR Varian 
Inova 600MHz configured with ultra-low temperature 
probe(Varian, Palo Alto, USA); Heraeus sepatech TGL-
16B (Anting Scientific Instrument Factory, Shanghai, 
China); ultra cold storage freezer of −80°C (SANYO 
Electric Biomedical co.,Ltd, JP). All the reagents were 
purchased from Sigma–Aldrich(St Louis, MO, USA), 
unless stated otherwise. Software used were as follows: 
MestReNova software (V7.0, USA) TOPSPIN(V2.1, 
GER); AMIX software (V3.9.11, GER); SIMCA-P+ 
software package (soft independent modeling of class 
analog, V11.0, Umetrics AB, Umea, SWE).

Specimen preparation for 1H-NMR analysis

Serum and urine samples were thawed at room 
temperature and homogenized using a vortex mixer. Then 
170 μl D2O and 30 μl PB solution(600 mmol/L) were 
added to 400 ml serum. After centrifugation at 12000 rpm 
 for 10 min at 4°C, 550 μl of the supernatants was transferred 
into 5-mm NMR tubes and stored at 4°C until analysis. 
100 μl PB solution(600 mmol/L) including TSP was added 
to 500 μl urine. 500 μl of the supernatants was dispensed 
into 5-mm NMR tubes for analysis after mixing, 5 min in 
room temperature and 12000 rpm for 10 min at 4°C.

1H-NMR analysis

All NMR data were recorded using a Varian Unity 
INOVA 600 MHz AVANCE II spectrometer equipped 

with a 5 mm triple resonance inverse cryoprobe and a 
z-gradient system at 599.92 MHz. The temperature of 
the samples was controlled at 25°C during measurement. 
Prior to data acquisition, tuning and matching of the probe 
head followed by shimming and proton pulse calibration 
were performed automatically for each sample. For each 
sample, 1H Carr-Purcell-Meiboom-Gill (CPMG; 80 ms 
spin-lock eliminating the broad resonance lines of high 
molecular weight compounds in the serum specimens) 
sequence was applied to transverse relaxation weighted 
experiment to filter out signals belonging to proteins and 
other macromolecules, and then  one-dimensional (1D) 
1H NOESY (RD-90°-t1-90°-tm-90°-ACQ) spectra were 
recorded. For each spectrum of serum samples, 96 scans 
were accumulated with 2.1 s relaxation delay, a spectral 
width of  8000 Hz, 100ms total echo time and 1.0 s direct 
acquisition time, while for urine samples 64 scans were 
accumulated with 2.1 s relaxation delay, a spectral width 
of 8384.9 Hz, 100 ms total echo time and 0.9541 s direct 
acquisition time.

1H-NMR spectral data processing

To reduce the complexity of the NMR data and 
facilitate the pattern recognition, the raw NMR data were 
manually Fourier transformed using MestReNova V7.0 
software before data processing. The 1H-NMR spectra of 
all samples were phase adjusted and baseline corrected 
using Topspin software V2.1. The serum samples were 
scaled referencing to lactate bimodal resonance at 1.33 
ppm, while the urine samples was scaled referencing to 
TSP at 0.0 ppm. The spectra ranging from 0.5 to 9.0 ppm 
was subsequently divided into 1700 integral segments 
corresponding to 0.005 ppm using AMIX software V3.9.11. 
The regions of 4.2–6.5 ppm were removed to eliminate 
the influence of the water and urea peak. In addition, the 
integrated data were normalized before pattern recognition 
analysis to eliminate the dilution or bulk mass differences 
among samples by the total area normalization way.

Multivariate statistics

The standardized data were import to SIMCA-P 
+ package for multivariate analysis, including principal 
component analysis(PCA) and partial least squares-
discriminate analysis(PLS-DA). The first and second 
principal component were taken for PCA, PLS-DA 
and orthogonal partial least-squares discriminant 
analysis(OPLS-DA). The results of PCA was displayed 
by score plot to observe the main cluster sampling and  
abnormal outliers. Then PCA and PLS-DA analysis were 
conducted again for further verification between different 
comparison groups. Standardization of PLS-DA was done 
by unit variance scaling, the results was also displayed by 
score plot, and the accuracy of the model was verified by  
cross-validation and permutations experiment. A 20-fold 
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cross-validation was employed to obtain Q2 and R2 values, 
which represent the predictive ability of the model and the 
explained variance, respectively. To further validate the 
quality of the PLS-DA model, permutation tests consisting 
of a randomly permuting class membership and running 
200 iterations were carried out. The verified model was 
further analyzed using OPLS-DA displayed by score plot 
according to which the significantly changed metabolites 
were extracted. Loading diagram showed the significantly 
changed metabolites and their contribution(correlation 
coefficient of r value represented the contribution of 
different metabolites). The sensitivity, specificity, and 
classification rate(percentage of samples correctly 
classified) of OPLS-DA models were then depicted. 
Significant differences were detected by Pearson correlation 
coefficient to determine significantly changed metabolites 
and to give them  reasonable biological explanation.

Consent

Written informed consent was obtained from 
patients and healthy controls for the publication of this 
report and any accompanying images. 
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