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ABSTRACT

Cancers are composed of cells with distinct molecular and phenotypic features 
within a given tumor, a phenomenon termed intratumor heterogeneity (ITH). Previously, 
we have demonstrated genomic ITH in localized lung adenocarcinomas; however, the 
nature of methylation ITH in lung cancers has not been well investigated. In this study, 
we generated methylation profiles of 48 spatially separated tumor regions from 11 
localized lung adenocarcinomas and their matched normal lung tissues using Illumina 
Infinium Human Methylation 450K BeadChip array. We observed methylation ITH within 
the same tumors, but to a much less extent compared to inter-individual heterogeneity. 
On average, 25% of all differentially methylated probes compared to matched normal 
lung tissues were shared by all regions from the same tumors. This is in contrast 
to somatic mutations, of which approximately 77% were shared events amongst all 
regions of individual tumors, suggesting that while the majority of somatic mutations 
were early clonal events, the tumor-specific DNA methylation might be associated with 
later branched evolution of these 11 tumors. Furthermore, our data showed that a 
higher extent of DNA methylation ITH was associated with larger tumor size (average 
Euclidean distance of 35.64 (> 3cm, median size) versus 27.24 (<= 3cm), p = 0.014), 
advanced age (average Euclidean distance of 34.95 (above 65) verse 28.06 (below 65), 
p = 0.046) and increased risk of postsurgical recurrence (average Euclidean distance 
of 35.65 (relapsed patients) versus 29.03 (patients without relapsed), p = 0.039).

INTRODUCTION

Cancer is a genetically heterogeneous disease. 
Cancer cells harbor distinct molecular and phenotypic 

features within a given tumor, a phenomenon termed 
intratumor heterogeneity (ITH) [1]. Genomic ITH has 
been found in numerous cancer types such as chronic 
lymphocytic leukemia, clear cell renal cell carcinoma, 
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glioma, pancreatic, prostate, colorectal and lung cancers 
[2–9]. ITH may have important clinical implications such 
as sampling bias from a single tumor biopsy, development 
of therapeutic resistance and disease recurrence [9, 10]. 
In addition to genomic aberrations, somatic epigenetic 
alterations may also impact neoplastic transformation and 
fitness [11, 12]. DNA methylation is a major component of 
epigenetic modification of the genome and predominantly 
occurs at cytosine residues within CpG dinucleotides 
(CpG sites) and clusters of CpG sites are termed “CpG 
islands” [13]. The pattern of DNA methylation in any 
given cell is a result of a dynamic process of methylation 
and demethylation. Once established, these patterns can 
be inherited without significant change from one cell 
generation to the next [14]. Altered DNA methylation 
is often observed in cancers with genome-wide DNA 
hypomethylation and site-specific hypermethylation of 
CpG islands [11, 15, 16].

Previously, we have characterized genomic ITH 
in 11 localized lung adenocarcinomas using a multi-
region sequencing approach [9]. However, the nature 
of methylation ITH in lung cancer has yet to be fully 
explored. Here, we generated methylation profiles of the 
same multi-region DNA samples from the 11 localized 
lung adenocarcinomas and matched normal lung tissues 
used in our previous study [9]. DNA methylation status 
was evaluated utilizing the Illumina Infinium Human 
Methylation 450K BeadChip array covering more than 
450,000 CpG sites and 99% RefSeq genes. We first 
performed unsupervised clustering analysis to investigate 
the variation of DNA methylation patterns within the 
tumors and across different tumors. To understand 
methylation changes during cancer evolution of these 
tumors, we defined the methylation status of each probe in 
tumor samples compared to matched normal lung tissues 
and categorized differentially methylated probes into 
early (i.e. clonal) and later (i.e. subclonal) events. We then 
examined genome-wide relationship between methylation 
and genomic changes. Lastly, we attempted to assess 
the association between DNA methylation profiles and 
clinicopathological features of these tumors.

RESULTS

Identification of DNA methylation intra- and 
inter-tumor heterogeneity

Genome-scale DNA methylation profiles were 
generated for the same cohort of 11 localized lung 
adenocarcinomas and matched normal lung tissues 
(Supplementary Table 1). Of these 11 patients, four 
have had disease relapse and the remaining patients are 
currently relapse-free. To determine the variation of DNA 
methylation patterns between different regions of the 
individual tumors and across the different tumors, we 
performed unsupervised hierarchical clustering of the 

most variable CpG probes. As shown in Figure 1a and 
Supplementary Figure 1a, heterogeneity was observed 
between different tumor regions within the same tumor; 
however, individual tumor regions were more similar 
to each other as compared to the matched normal lung 
tissues. When comparing all the samples across different 
patients, the normal lung tissues from different patients 
tended to cluster together while different tumor regions 
from the same patient always clustered together (Figure 
1b and Supplementary Figure 1b). Taken together, these 
results demonstrated marked inter-individual methylation 
patterns and significant divergence between normal and 
tumor tissues. Next, we categorized the probes based on 
genomic locations by mapping the probes to their relative 
distance to CpG island and gene body [17]. Among the 
top 1% most variable probes across all regions of tumors, 
40% were located in open sea, 31% were within a CpG 
island, 20% were in shores and 9% were in shelves (Figure 
1c), which was similar to the genomic distribution of all 
probes.

Tumor-specific methylation aberrations during 
cancer development

To understand methylation changes during cancer 
development for these 11 localized lung adenocarcinomas, 
we compared all tumor tissues to matched normal lung 
tissues and defined the methylation status of each probe in 
tumor samples as differentially methylated (i.e. beta value 
of tumor sample minus beta value of matched normal lung 
sample; Δ beta was > 0.3 or < -0.3 in at least one tumor 
region of a tumor) or unchanged. Among the differentially 
methylated probes, it was defined as clonal if Δ beta > 0.3 
in all tumor regions of a given tumor or Δ beta < -0.3 
in all tumor regions of a given tumor. Otherwise, it was 
defined as subclonal. On average 25% of all differentially 
methylated probes were shared by all regions from the 
same tumors (Table 1). These findings were in contrast 
to genomic ITH of these tumors; where on average 77% 
of all somatic mutations [9] were shared events amongst 
all regions of individual tumors (p = 5.821e-07, Student’s 
t test) (Table 1). Using a less stringent cutoff of Δ beta 
was > 0.2 or < -0.2, the difference between methylation 
and genomic ITH remained significant (p = 1.639e-
05, Student’s t test) (Supplementary Table 2). Among 
the tumor suppressor genes that have been reported to 
be down-regulated by hypermethylation during cancer 
development [18], we observed an increased DNA 
methylation level (i.e. beta values > 0.3 when comparing 
to matched normal lung tissue) near the promoter regions 
(i.e. mapping to transcription start site from -500 to 200bp) 
of SFRP1, RASSF1, GATA5, ESR1, RARB, CDKN2A, 
SFRP5, GATA4, SFRP2 and 34.3% (12 of 35) of these 
tumor-specific methylation were shared by all regions of 
individual tumors (Supplementary Figure 2), suggesting 
that these were early clonal events during development of 
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Figure 1: Assessment of methylation intratumor and intertumor heterogeneity of localized lung adenocarcinomas. 
(a) Unsupervised hierarchical clustering of intratumoral DNA methylation. Columns are the tumor regions and rows are the DNA 
methylation status (beta values; ranged from 0 to 1) for the top 1% CpG probes (n = 4, 855). Dark blue denotes low and yellow indicates 
high methylation level. (b) Unsupervised hierarchical clustering of intertumoral DNA methylation across the cohort of 11 patients for the 
top 1% CpG probes (n = 3, 879). (c) Top: DNA methylation CpG probes are mapped to gene regions relatively to the proximity to CpG 
island. Bottom: Genomic distributions of the CpG probes obtained from 1% probes and 100% probes.

these tumors. On the contrary, 95% (20 of 21) of known 
cancer gene mutations [9] in these tumors were clonal 
events (p = 4.631e-06, Fisher's Exact Test).

Relationship between methylation and genomic 
landscape

We further investigated the relationship between 
methylation and genomic landscape of each tumor. To 

maximally utilize the data and capture the comprehensive 
genomic and methylation landscape of each sample, 
rather than using binary data, we calculated pairwise 
distances between each pair of samples from the same 
patient using beta values of all probes for methylation, 
allelic frequencies of all mutations and log2 ratios for 
copy number alterations (mutation and copy number data 
were obtained from previous study [9]). The comparison 
of distance matrices based on methylation, mutation and 
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copy number changes displayed high similarity across 
all tumors (Figure 2a, Supplementary Figure 3). We 
then further measured this similarity by calculating the 
Pearson correlation coefficient between methylation and 
genomic distance matrices. A positive linear relationship 
was observed between methylation and mutation or copy 
number distances (R2 = 0.912, p = 3.2e-70 for methylation 
versus mutation; R2 = 0.919, p = 1.7e-72 for methylation 
versus copy number alterations, linear regression analysis) 
(Figure 2b, Supplementary Figure 4, Supplementary 
Figure 5). Subsequent bootstrapping analysis confirmed 
that the correlation was significant in all cases (p < 
0.0175 for methylation versus mutation; p < 0.0077 for 
methylation versus copy number alterations) except for 
patient 292 who had only 3 tumor samples, which were 
insufficient for the analysis (Figure 2c). These data are 
consistent with the previous findings in prostate cancer 
and glioblastoma [19, 20] suggesting that the global 
landscapes of methylation and genomic were correlated to 
each another in these tumors.

To explore the potential mechanisms underlying the 
observed correlation between methylation and genomic 
landscape in this cohort, we first examined whether the 
methylation profiles were affected by copy number 
state or tumor purity and found no correlation between 
methylation status (i.e. beta values of array probes) 
and copy number state of corresponding chromosomal 
segments (i.e. log2 ratios) (r ranged from –0.0530 to 
0.0352, Pearson correlation) or tumor purity in each 

sample (by pathologists review: r = 0.1444, p = 0.0963, 
Pearson correlation) (Supplementary Table 3). Then, we 
investigated whether mutations in genes directly regulating 
methylation [21] could be responsible for the correlation. 
However, we did not identify any detrimental mutation in 
these genes including DNMT1, DNMT3B, IDH1, IDH2, 
TET1, TET2, TET3, UHRF1, EZH2.

Association between DNA methylation ITH and 
clinicopathological characteristics

With the full acknowledgement of small sample 
size in our cohort, we attempted to assess whether 
tumor-specific methylation change is associated with 
clinicopathological characteristics. We calculated the 
Euclidean distance between each tumor region to the 
matched normal lung tissue. The result showed that ever 
smokers (including current and former smokers) and 
larger tumors (> median size) tend to have a higher degree 
of overall tumor-specific methylation changes (average 
Euclidean distance of 90.47 for tumors > 3cm (median) 
versus 64.75 for tumors <= 3 cm, p=0.026; average 
Euclidean distance of 85.57 for tumors from ever smokers 
versus 60.68 for tumors from never smokers, p = 0.041, 
Student’s t-test (Supplementary Figure 6), while tumor 
size and smoking status are not correlated to each other 
(p = 0.256, Student’s t-test).

We further quantified the extent of methylation 
ITH of each tumor using mean Euclidean distances 

Table 1: Comparison of clonal tumor-specific DNA methylation and clonal genomic mutations of 11 localized lung 
adenocarcinomas

Case Proportion of clonal tumor-specific 
DNA methylation

Proportion of clonal genomic 
mutations§

270 0.291 0.533

283 0.112 0.862

292 0.457 0.934

317 0.348 0.986

324 0.481 0.878

330 0.130 0.671

339 0.246 0.711

356 0.024 0.571

472 0.205 0.743

499 0.135 0.955

4990 0.292 0.595

Average 0.247 0.767

p-value 5.821e-07 (differentially DNA methylation versus 
genomic mutation) -

§ Proportion of clonal genomic mutations were derived from previous study [25].
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Figure 2: Relationship between methylation and genomic landscape. (a) An illustration of methylation and genomic distance 
matrices comparison. Heat maps show the Euclidean distance for all samples of patient 283 based on methylation, mutation, and copy 
number alteration profiles. (b) Linear regression analysis of all samples between methylation and mutation or copy number alteration 
Euclidean distance matrices. With respect to the mutation data, each element of the resulting distance matrix was divided by the sum of 
mutation distance for each patient to obtain the normalized mutation distance. (c) Bootstrapping analysis of all samples. The correlation 
coefficient between methylation and mutation or copy number alteration Euclidean distance matrices of each patient was compared to 
the null distribution that was obtained by randomly shuffling the labels of methylation and genomic Euclidean distance matrices for 
100,000 times.
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between different tumor regions within the same tumors 
and assessed the association of DNA methylation ITH 
with patient characteristics (Supplementary Table 1). 
Our analysis demonstrated that a higher extent of DNA 
methylation ITH was associated with larger tumor 
size (35.64 (> 3cm) versus 27.24 (<= 3cm), p = 0.014, 
Student’s t-test) and advanced age (34.95 (above 65) verse 
28.06 (below 65), p = 0.046, Student’s t-test) (Figure 3a 
and 3b). No association of DNA methylation ITH with 
gender or smoking status was observed (Supplementary 
Figure 7). Of particular interest, the four relapsed patients 
demonstrated a significantly higher level of methylation 
ITH than patients who have not relapsed (35.65 (relapsed) 
versus 29.03 (not relapsed), p = 0.039, Student’s t-test) 
(Figure 3c). The observed correlations appear to be 
independent from each other (tumor size versus relapsed, p 
= 0.8642, Student’s t-test; tumor size versus age, r = 0.256, 
p = 0.0654, linear regression analysis; age versus relapse, 
p = 0.7543, Student’s t-test). With the limited sample size, 
our data suggest that DNA methylation ITH might be 
associated with inferior clinical outcome in patients with 
localized lung adenocarcinomas and an ongoing study 
with a larger cohort is validating these interesting findings.

DISCUSSION

In this study, we investigated the nature of 
methylation ITH in 11 localized lung adenocarcinomas 
using multiregional sampling approach. The DNA 
methylation array data revealed evidence of heterogeneity 
within the same tumors, but to a much less extent 
compared to inter-individual heterogeneity. Consistent 
with our observations, recent work by Brocks et al. showed 
that different regions of the same tumor were more similar 
to each other than those from different individuals [19].

Tumors are not only masses of malignant cells, 
but are a complex milieu consisting of many cell types, 
including epithelial cells, blood and lymphatic vessel 
endothelial cells, and infiltrating immune cells. Each 
cell type likely harbors a distinct methylation profile; 
therefore, the overall methylation heterogeneity may 
reflect not only the individual methylation profiles of 
distinct cancer cell populations, but also inform on the 
cell types and/or methylation status of each component. 
In the current study, all tumor samples had at least 40% 
viable cancer cells and 37 of 48 tumor samples had viable 
cancer cells of 50% or more (Supplementary Table 3), 
while the proportion of non-epithelial cell components 
such as fibroblasts or immune cells was small in the 
majority of tumors. Furthermore, different tumor regions 
from the same patient always clustered together despite 
their differences in tumor purity or proportion of non-
epithelial cell components, while the normal lung tissues 
from different patients clustered together. In fact, patient 
270 with uniformly high tumor purity in all tumor regions 
(80%, 85%, 85%, 90% and 100% viable malignant cells) 
had one of the highest methylation ITH, while patient 
283 with relatively low tumor purity in individual tumor 
regions (40%, 50%, 60%, 75% and 80% viable malignant 
cells) demonstrated the most homogenous methylation 
patterns among different tumor regions (Figure 3 and 
Supplementary Figure 6). Taken together, our data suggest 
that DNA methylation intra- and inter-tumor heterogeneity 
may be mainly attributed to spatial difference in 
methylation of lung cancer cells.

Profiling ITH using multi-region sampling 
approach provides an opportunity to reconstruct the 
tumor’s evolution in cancer development. Previously, we 
characterized genomic ITH and found that on average 
77% of all somatic mutations and 95% of known cancer 

Figure 3: Association between DNA methylation ITH level and patient characteristics. Boxplots show the methylation ITH 
as the Euclidean distance between different tumor regions within each tumor. Solid horizontal line within each box is the median; solid box 
shows the 25 and 75 percentile, and caps show the 5 and 95 percentile. (a) The association of methylation ITH and tumor size - average 
Euclidean distance 35.64 (> 3 cm, median) versus 27.24 (<= 3 cm). (b) The association of methylation ITH with advanced age - average 
Euclidean distance 34.95 (above 65) versus 28.06 (below 65). (c) The association of methylation ITH with recurrence status - average 
Euclidean distance 35.65 (relapsed patients) versus 29.03 (patients without relapsed). Matched normal lung tissues were excluded in this 
analysis. All p-values are from Student’s t-test.
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gene mutations were clonal events. In the current study, 
only approximately 25% of all differentially methylated 
probes (compared to matched normal lung tissues) were 
clonal events shared by all regions of individual tumors. 
With the limited sample size, these findings suggest the 
possibility that while the majority of somatic mutations 
are early molecular events during cancer development, the 
tumor-specific methylation may be associated with later 
branched evolution in these 11 tumors.

Although the tumor-specific methylation (compared 
to matched normal lung tissues) and somatic genomic 
mutations appear to occur at different molecular times 
during cancer development in these 11 localized lung 
adenocarcinomas, the comprehensive DNA methylation 
landscape was significantly correlated with genomic 
landscape in these tumors. Recent studies have also shown 
that the patterns of methylation and genomic landscapes 
were highly correlated in prostate and brain cancers [19, 
20]. However, the mechanisms underlying this correlation 
are still unknown.

Although the sample size in this study is small, 
our data demonstrated that the extent of methylation 
ITH might be associated with larger tumor size (average 
Euclidean distance of 35.64 (> 3cm, median size) versus 
27.24 (<= 3cm), p = 0.014, Student’s t-test), advanced age 
(average Euclidean distance of 34.95 (above 65) verse 
28.06 (below 65), p = 0.046, Student’s t-test) and increased 
risk of postsurgical recurrence (average Euclidean distance 
of 35.65 (relapsed patients) versus 29.03 (patients 
without relapsed), p = 0.039, Student’s t-test) in lung 
cancers. Similar findings were also observed in chronic 
lymphocytic leukemia where a high level of methylation 
heterogeneity was associated with adverse clinical 
outcome [22]. These data suggest that methylation ITH 
may have both biological and clinical impact. Studies with 
a larger cohort are warranted to validate these intriguing 
findings and explore the potential of methylation ITH as a 
prognostic biomarker.

MATERIALS AND METHODS

Patient material, sample collection and 
processing

All 11 patients’ history, method of collection and 
processing were previously described in Zhang et al. [9]. 
To date, patient 356 has developed recurrence. Please 
see Supplementary Table 1 for the updated clinical 
information.

Illumina 450K DNA methylation

Genomic DNA (approximately 500 ng) was 
bisulfite converted using EZ DNA Methylation Kit 
(Zymo Research Corp. Irvine, CA, USA) following 
the manufacturer’s protocol. Bisulfite converted DNA 

materials were then processed and hybridized to the 
Infinium HumanMethylome 450k arrays (Illumina, 
San Diego, CA, USA) according to manufacturer’s 
recommendation.

Preprocessing and initial quality assessments of the 
raw data were examined using the following Bioconductor 
R packages. Subset-quantile within-array normalization 
(SWAN) [23] was used to normalize raw methylation 
values. IlluminaHumanMethylation450k.db annotation 
package was used to annotate the CpG probes location. 
Before any genomics and statistical analyses were 
conducted, we normalized and inspected the methylation 
data for the presence of substantial confounding batch 
effects. No obvious batch effect was observed.

Clustering analysis

For inter-individual DNA methylation analysis, 
probes on sex chromosomes (Chr X or Y) and probes 
containing single-nucleotide polymorphism (dbSNP137 
common) were filtered out to avoid potential confounding 
effects. The remaining 387,901 probes were used to 
calculate the Euclidean distance between different samples 
and unsupervised hierarchical clustering (complete 
linkage) was performed for the most variable probes 
across the cohort at different cut-offs (i.e. 1% = 3,879 
CpGs; 2% = 7,758 CpGs; 5% = 19,395 CpGs; 10% = 
38,790 CpGs).

For intratumoral DNA methylation analysis for 
each patient, filtering was not applied. A total of 485,512 
probes were used for calculation of Euclidean distance and 
unsupervised hierarchical clustering (complete linkage) 
was performed for the top 1% probes (n = 4,855 CpGs).

Correlation analysis

Methylation-based Euclidean distance matrices 
were generated based on beta values from all probes 
(n = 485,512). Mutation and copy number alteration 
profiles were derived from previous study [9]. Mutation-
based Euclidean distance matrices were generated based 
on variant allele frequencies of all somatic mutations 
while the copy number alteration-based Euclidean distance 
matrices were based on log2 ratios (i.e. tumor DNA versus 
matched germline DNA), where the segmentation data was 
converted to a gene by sample matrix using Bioconductor 
R package ‘CNTools’ [24].

Pearson’s correlation coefficient was calculated 
to estimate the similarity between methylation and 
genomic distances matrices. A linear regression was used 
to determine the relationship between the similarities 
of methylation and mutation or copy number alteration 
Euclidean distances. Bootstrapping analysis:the null 
distribution for each patient was generated by randomly 
shuffling the labels of methylation and genomic Euclidean 
distance matrices for 100,000 times and then calculated 
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the correlation coefficient of the resulting matrices for 
each bootstrap. An empirical p value was estimated by 
comparing the correlation coefficient between methylation 
and genomic Euclidean distance matrices of each patient 
to the null distribution.

Statistical analysis

All statistical analyses were conducted 
using R environment for statistical computing and 
visualization [25].
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