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ABSTRACT
In the summer of 2014, an influenza A(H3N2) outbreak occurred in Yichang city, 

Hubei province, China. A retrospective study was conducted to collect and interpret 
hospital and epidemiological data on it using social network analysis and global 
sensitivity and uncertainty analyses. Results for degree (χ2=17.6619, P<0.0001) 
and betweenness (χ2=21.4186, P<0.0001) centrality suggested that the selection 
of sampling objects were different between traditional epidemiological methods and 
newer statistical approaches. Clique and network diagrams demonstrated that the 
outbreak actually consisted of two independent transmission networks. Sensitivity 
analysis showed that the contact coefficient (k) was the most important factor in the 
dynamic model. Using uncertainty analysis, we were able to better understand the 
properties and variations over space and time on the outbreak. We concluded that use 
of newer approaches were significantly more efficient for managing and controlling 
infectious diseases outbreaks, as well as saving time and public health resources, 
and could be widely applied on similar local outbreaks.

INTRODUCTION

Public health events occurred frequently in China. 
Take 2013 as an example, a total of 1,077 public health 
emergencies occurred. [1] Analysis of these emergencies 
only focused on traditional epidemiological methods in 
the past. Field epidemiological investigation skill has been 
identified as one of the five top weaknesses in national 
health emergency response skills and techniques. [2] 
Traditional epidemiological methods do not consistently 
provide reliable evidence on how to objectively identify 
the correct patients, how to select correct sampling 
objects for laboratory tests, and how to understand and 
describe outbreak characteristics. [3, 4] Social network 
analysis (SNA) and global sensitivity and uncertainty 
analyses (GSUA) are relatively new tools that can be 
used to address these problems. [5, 6] Using SNA, nodes 

and ties represent patients and connections between them 
in network diagrams. Through centrality analysis and 
connectedness measurement, important patients could 
be identified, and the propagation of outbreaks could be 
more accurately described. [7-10] By using these network 
analysis and graphics, SNA could be used to study 
outbreak structures and characteristics. [5, 11, 12] GSUA 
is the study of how uncertainties in the output of a model 
can be apportioned to different sources of uncertainty 
among model inputs. It is a variance-based method for 
analyzing data and models using an objective function. 
[6, 13, 14] GSUA can be used to rank parameters such 
as infection coefficient, contact coefficient, recovery rate 
and death rate based on their relative influence on the 
dynamics of simulated epidemics. [15] It can also inform 
researchers on the dynamics of investigation processes, 
and can potentially play an important role in outbreak 
management.
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From Wednesday, July 16, 2014, to Monday, 
August 4, 2014, an influenza A(H3N2) outbreak with 
63 cases, including nine laboratory-confirmed positive 
cases, occurred in an isolated compulsory detoxification 
center. Yichang center for disease control and prevention 
managed the outbreak using traditional and molecular 
epidemiological methods, and reported it as a general 
public health emergency (grade IV) in the China 
Information System for Disease Control and Prevention.

RESULTS

Selection of sampling objects

Normalized centrality measures (degree and 
betweenness) of all 72 index cases were analyzed using 
SNA (Table 1). A total of 14 nodes (six from platoon A; 

(a): laboratory test positive
(b): laboratory test negative
(c): excluded cases

Table 1: Statistics of normalized centrality measures of all 72 index cases
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eight from platoon B), all with high values of degree and 
betweenness centrality, were suggested to be sampling 
objects (Tables 2 and 3). Kruskal-Wallis test results 
showed statistical significance in degree centrality (χ2 = 
17.6619, P < 0.0001, Table 2) and betweenness centrality 
(χ2 = 21.4186, P < 0.0001, Table 3), showing the two 
selection methods (SNA approach and traditional method) 
of sampling objects to be significantly different.

Outbreak characteristics

A total of 134 drug abstainers were strictly separated 
into two platoons; the 75 abstainers in platoon A resided 

on the second floor, and the other 59 abstainers in platoon 
B resided on the third floor. Each floor had its own 
workshop. The assigned exercise, work-break and dining 
areas were also separate. The mealtime of platoon A 
was 5 minutes earlier than that of platoon B. Therefore, 
there was no close contact between the two platoons. The 
resulting cliques also suggested that the epidemic situation 
may have contained two or more networks. Figure 1 
demonstrates the cliques and structure of the networks. 
Figures 2 and 3 shows the schematic diagrams of the 
possible propagation chain of the two platoons.

Platoon A, which had 36 patients and 25 pairs of 
close contacts, was divided into eight classes. Class 
1 consisted of 11 drug abstainers with five patients 

Table 2: Comparison of the degree of sampling objects in actual outbreak and our retrospective study suggestion
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Figure 1: Diagrams of cliques and network structure, in an isolated compulsory detoxification center in Yichang City, 
Hubei Province, China, July to August 2014. A. The two clusters of the matrix Adjust63. B. The two independent structures of the 
networks.

Figure 2: Schematic diagram demonstrate the possible propagation chain of platoon A. The patient’s name and date of onset 
(accurate to hours) are shown in the box. The possible route and date of propagation are represented as an arrow. The X axis represents the 
onset date. The Y axis represents the classes (dormitories) where the patients lived. WXJ was the key node among the 36 patients, and 7 of 
the 9 classes involved were in platoon A.
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(represented as 11(5)). Similarly, classes 2 to 8 had 
compositions of 12(5), 11(4), 10(8), 10(3), 10(9), 6(2), and 
5(0) abstainers and patients, respectively. The first case 
(patient WXJ) was reported on July 17, and there were 5, 
12, 10, 5, 1 and 2 cases reported on each subsequent day 
thereafter. Platoon B had 27 patients with 18 pairs of close 
contacts and was divided into nine classes. Classes 1 to 9 
contained 8(6), 8(3), 8(2), 6(4), 6(5), 7(3), 7(1), 5(2), and 
4(1) abstainers and patients, respectively. The first case 
(patient XYY) was reported on July 16, and there were 11 
cases reported on July 18, 13 cases on July 19, and two 
cases on July 20.

A total of 21 contacts were recorded in the 
dormitory, six in the refectory and eight in other places 
from platoon A, and 16 in the dormitory, three in the 
refectory and four in other places from platoon B (  
= 0.5403, P = 0.7633). A total of 31 direct and six indirect 
contacts were found in platoon A, whereas 20 direct and 
10 indirect contacts were found in platoon B. More direct 
contacts than indirect contacts were found among the 
patients, although the difference (χ2 = 2.6704, P = 0.1022) 
was not statistically significant.

Table 3: Comparison of the betweenness of sampling objects in actual outbreak and our retrospective study suggestion
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Global sensitivity and uncertainty analyses

Factor k (contact coefficient) was distributed as 
three different ranges. When distributed as k ~ beta (2, 7), 
the first-order indices of factors v, k and r were 0.4144, 
0.4450, and 0.0002, respectively, and the total-order 
indices were 0.5549, 0.5855, and 0.0001, respectively. 
Other indices are shown in Table 4.

Figure 4 shows three cases of the infection dynamics 
exercise based on uncertainty analysis. The plot shows 
that the infection propagated in 97.19% (case 1), 66.80% 
(case 2), and 31.56% (case 3) of individuals in each case, 
respectively.

DISCUSSION

Following the principles of efficiency and 
effectiveness, investigators may neglect quantitative 
analysis for interrelations between cases, contacts, and 
places. This could result in suboptimal selection of 
sampling objects and cases and my lead investigators to 
overlook infection propagation characteristics. [16, 17] 
Although some studies have focused on cases, [18-21] 
places, [22-24] and contact networks, [10, 25, 26] few 

studies have employed quantitative and graphics analyses, 
[15, 27] and no studies to date have combined SNA and 
GSUA approaches for quantitative and graphic analyses 
in field epidemiology for selecting sampling objects and 
characterizing infectious disease transmission in similar 
local outbreaks.

Nodes with high density or centrality are key to 
controlling and preventing disease outbreaks. [7, 8, 28] 
Selectively choosing only clinical symptoms may limit 
information regarding important vectors of transmission 
in those with subclinical or latent infections. [29, 30] SNA 
and GSUA enable quantitative methods for selection of 
sampling objects to help avoid loss of important patients. 
During the outbreak, 20 samples were selected in an 
unbalanced manner (17 from platoon A, only three from 
B), and the positive rate of the two rounds of sampling 
was poor (nine of 20 samples were positive). Therefore, 
the 14 nodes recommended by the SNA approach should 
be a priority for disease control, even in the absence of 
laboratory support. It should be noted that one limitation 
of this method is the inability to detect patients with 
latent infection; accordingly, we suggest collecting other 
samples.

The second problem pertained to mastering the 
characteristics of disease transmission. The strict security 

Figure 3: Schematic diagram demonstrate the possible propagation chain of platoon B. The patient’s name and date of onset 
(accurate to hours) are shown in the box. The possible route and date of propagation are represented as an arrow. The X axis represents the 
onset date. The Y axis represents the classes (dormitories) where the patients lived. XYY was the key node among the 27 patients, and all 
9 classes in platoon B were involved.
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procedures of the detoxification center forbid all drug 
abstainers from bringing any electronic devices inside, 
including mobile phones, watches, and wearable sensors. 
We could also not obtain surveillance video data due to 
privacy considerations. Therefore, rather than state-of-
the-art approaches such as SocioPatterns, [9, 20, 26, 31] 
we had to resort to direct and indirect individual data 
collection. Obtaining the data used to create Figures 2 and 
3 required considerable investigation of three-dimensional 
distribution, contact information, and hospital data. In 
contrast, procuring the data used to create Figure 1 merely 
required collection of contact information. Accordingly, 
the SNA approach was more efficient with regards to 
grasping features of the disease outbreak. Furthermore, 
the government and the society paid a high attention on 

the outbreak, and all subjects investigated were able to 
recall details of the events, even 10 months later, during 
our retrospective investigation in May 2015.

The most important factor of our dynamic model 
was k (contact coefficient), which consistently presented 
a rapidly growing trend. Across the time span of the 
outbreak, we found a clear downward trend of v (infection 
coefficient), whereas r (recovery rate) played almost no 
role. Sums of the total indices different from a value of 1 
indicate the presence of interactions among factors in the 
model. 

In our study, 55 patients had been infected when the 
CDC was informed on July 20, 2014; four days after the 
first case fell ill. Thereafter, a total of 61 patients were 
infected until disinfection and quarantine on July 22. 

Figure 4: Uncertainty analysis shows infection dynamics for the three cases. Dynamic change of infection rate is plotted on 
the Y axis (positive Y indicates infection propagation, negative Y indicates subsidence) by the output variable of interest. The plot shows 
that the critical values for cases 1-3 are 36, 425 and 877, respectively. The X axis represents model runs (total of 1,280). The model outputs 
for each case are sorted in ascending order, so that each plot is a monotonic curve, and the Y axis is cut (scaled from -3 to +5) to visualize 
the plot around zero.

Table 4: First-order and total-order indices generated by sensitivity analysis
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We also noted that until July 23, oseltamivir had been 
used for treatment and prevention purpose. Because the 
effective contacts among 96.83% of patients (61/63) were 
not influenced by disinfection, quarantine or treatment 
measures, the contribution of the contact coefficient 
increased continuously across the time span of the 
epidemic. This may explain why the change in sum of the 
first-order effects was relatively small.

Figure 4 was generated based on the guide of Global 
Sensitivity Analysis: The Primer. [6] Subsequently, the 
solution focused via transformation on Y (a concept similar 
to the basic reproductive rate, R0), where Y = vk(S+I+R)-r. 
In this case, Y > 0 indicates spread of the infection, and Y 
< 0 indicates subsidence of the infection. The X value (36, 
425, 877) indicates the number of model runs (the total 
number of model runs was 1280) with Y being extremely 
close to zero (Y could be positive or negative), after which 
percentages were used to determine the degree of infection 
spread or subsidence. The infection propagated in 31.56% 
(1 - 877/1280 - 1/1280) of the cases in Figure 4, of which 
case 3 can be used as an example. Overall, if we wished 
to control the outbreak effectively and cause the infection 
rate to drop sharply, we would immediately perform the 
most stringent control measures, especially when dealing 
with highly infectious diseases in a relatively closed 
community.

In this study, data were collected primarily from 
interviews with affected patients; hence, the findings may 
be affected by recall-bias or non-response bias. Use of 
state-of-the-art methods would mitigate these biases to 
some degree. The conclusions of our study would also be 
more powerful and persuasive if it were possible to obtain 
virological data on all important nodes that selected by our 
approaches. [32, 33]

Previous studies have demonstrated that both the 
humoral and cellular immune systems are abnormal in 
drug abusers. [34, 35] Thus this population is theoretically 
more susceptible to influenza than the general population. 
However, all patients included in our study were male 
drug abstainers and their median age was 34 (interquartile 
range: 28 to 40), so that the discrepancy of age and gender 
would be equally true.

We suggest that SNA and GSUA approaches may 
be widely used for quantitative and graphic analyses on 
similar infectious disease outbreak and that additional 
prospective studies using molecular biological techniques 
be undertaken.

MATERIALS AND METHODS

Data sources

Data were collected from patients and staff members 
involved in the outbreak. We began by specifying the 
case definitions. Clinically diagnosed cases were defined 

as those with sudden onset of high fever, an axillary 
temperature of 38°C (100.4°F) or above, and at least three 
other clinical symptoms within the past week (dry cough, 
headache, muscle and joint pain, severe malaise, sore 
throat or runny nose). Laboratory-confirmed cases were 
defined as clinically diagnosed cases with influenza virus 
identified in respiratory specimens. Exclusion criteria 
included an axillary temperature below 38°C (100.4°F), 
fewer than three of the symptoms, negative laboratory 
test result before initiation of antiviral treatment, or no 
epidemic history. We also reinvestigated and recorded 
the time of onset (accurate to the hour), extent (direct 
contact defined as close contact within 1 m; indirect 
contact defined as touching objects that patients used), and 
place (dormitory, refectory, or other) of the close contacts 
of all 72 preliminary screening cases (index case: body 
temperature of 37.5°C (99.5°F) or above together with 
one of the symptoms, but without laboratory diagnosis). 
Here, we defined a pair of close contacts as two persons in 
contact irrespective of the time, extent, frequency, or place 
of contact. Secondly, we performed in-depth research on 
medical records, the field environment, disease control 
and prevention measures, and the managements regarding 
the outbreak. Finally, we interviewed all medical staff 
members and administrators to verify the information that 
had been previously collected.

This study was approved by the institutional review 
board of Tongji Medical College of Huazhong University 
of Science and Technology.

Software utilized for data analysis

UCINET version 6.216 (Borgatti, S.P., Everett, 
M.G. and Freeman, L.C. 2002) was used to construct the 
matrix and calculate parameters for SNA. [36] NetDraw 
version 2.084 (Borgatti, S.P. 2002) was used to construct 
sociograms of the networks. [37] MATLAB version 
R2012a (Mathworks, Natick, MA, USA) was used to 
analyze the transmission through GSUA. [38] SAS version 
9.4 (SAS Institute, Cary, NC, USA) was used to perform 
the chi-squared test, Cochran-Mantel-Haenszel statistic, 
and Kruskal-Wallis test. Statistical significance was set at 
P < 0.05.

Data processing

We collected contact information from all 72 index 
cases and established a matrix referred to as “whole72”. 
We calculated the degree centrality and betweenness 
centrality of all index cases (Table 1). Comparison of 
degree and betweenness centrality between traditional 
method and SNA approach was analyzed using the 
Kruskal-Wallis test (Tables 2 and 3).

Based on clinical diagnosis criteria, laboratory test 
results and epidemic history, nine nodes were excluded 
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(see Table 1), and 63 nodes were recognized as patients 
who then formed the matrix “adjust63”. We then added 
two types of relationships (platoon A, platoon B) to create 
a new matrix, “adjust65”. We generated a structure and 
distribution diagram of outbreak networks (Figure 1). 
Based on onset time, contact time and spatial distribution 
(dormitory), we drew two diagrams of the possible 
transmission pattern (Figures 2 and 3).

Parameter I represented the number of infected 
individuals at time t, parameter S represented the 
number of individuals susceptible to infection at time t, 
and parameter R represented the number of recovered 
individuals at time t. Factors v and r represented the 
“infection coefficient” and “recovery rate”, respectively, 
factors v and r were both in accord with a normal 
distribution. Factor k represented the “contact coefficient”, 
which was distributed as k ~ beta (2, 7) at the beginning 
of the influenza outbreak, as k ~ beta (0.5, 10) during 
the period of quarantine, and as k ~ beta (0.2, 15) when 
all patients and susceptible individuals had received 
oseltamivir. The dynamic equations of our retrospective 
study are

We calculated sensitivity indices for the three 
factors. Results for the three configurations of k were 
shown in Table 4. We then performed uncertainty analysis 
with the model simulation outputs (Figure 4).
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