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ABSTRACT
Background: Early prognostication of neurological outcome in comatose patients 

after cardiac arrest (CA) is important for devising patient treatment strategies. 
However, there is still a lack of sensitive and specific biomarkers for easy identification 
of these patients. We evaluated whether molecular signatures from blood of CA 
patients might help to improve the prediction of neurological outcome. 

Methods: We examined 22 comatose patients resuscitated after CA and obtained 
peripheral blood samples 48 hours after CA. To identify novel blood biomarkers, 
we aimed to measure neurological outcomes according to the Cerebral Performance 
Category (CPC) score at 6 months after CA and to determine blood transcriptome-
based molecular signature of poor neurological outcome group.

Results: According to the CPC score, 10 patients exhibited a CPC score of one 
and 12 patients, a CPC score four to five. Blood transcriptomics revealed differently 
expressed profiles between the good outcome group and poor outcome group. A total 
of 150 genes were down-regulated and 237 genes were up-regulated in the poor 
neurological outcome group compared with good outcome group. From the blood 
transcriptome-based signatures, we identified that MAPK3, BCL2 and AKT1 were more 
specific and sensitive diagnostic biomarkers in poor neurological outcome with an 
area under the curve of 0.867 (p<0.0001), 0.800 (p=0.003), and 0.767 (p=0.016) 
respectively. 

Conclusions: We identify three biomarkers as potential predictors of neurological 
outcome following CA. Further assessment of the prognostic value of transcriptomic 
analysis in larger cohorts of CA patients is needed.

INTRODUCTION

Sudden cardiac arrest (CA) remains an important 
cause of morbidity and mortality, although the overall 
outcome has improved recently through better emergency 
care, including early cardiopulmonary resuscitation 
(CPR), early defibrillation, and implementation of post-
resuscitation care bundles [1, 2]. And also, many patients 
who have restoration of spontaneous circulation (ROSC) 
remain comatose. In comatose survivals, neurological 

outcome prediction is important for treating clinicians 
when making appropriate treatment decisions and 
counseling families about the withdrawal of life-sustaining 
therapies [3]. To improve the accuracy of prognosis 
prediction in those patients, the combination of several 
prognostic tools with clinical examination are clinically 
recommended [4]. Neurological examination remains the 
first step, and other tools, including electroencephalogram 
(EEG), electrophysiological examinations, brain imaging, 
and serum biomarkers of brain damage like neuron-
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specific enolase (NSE) and S-100B are used [5, 6]. But 
these tools are required appropriate skills and experiences 
for accurate interpretation and, especially, imaging studies 
have not been fully standardized and are subject to inter 
observer variability [6-8]. Moreover, since targeted 
therapeutic hypothermia (TTH) was shown to effectively 
improve the neurological outcome of comatose cardiac 
arrest survivors, TTH has become the standard of care 
for these comatose patients. As TTH is combined with 
several drugs, like sedative drugs and muscle relaxants 
and hypothermia, it affects metabolism of these drugs and 
decreases reliability of a clinical examination of those 
patients. TTH makes the prognostication of neurological 
outcome more complex [6].

Of those several prognostic tools, biomarker testing 
requires less bedside expertise, may be less confounded 
by sedatives and is more readily repeated. With these 
advantages of biomarkers, studies of biomarkers like 
NSE, S-100B and neurofilament heavy chain levels have 
been performed about the usefulness as a predictor for 
neurological outcome. But, they showed that different 
serum levels of biomarkers correlate with poor outcomes 
in each study. Besides, standardization and optimal timing 
of each biomarker have yet to be determined [9-13]. 
Hence, there is increasing interest in biomarkers, which 
have more sufficient sensitivity and specificity to be 
clinically useful.

In general, prior to the onset of dysfunctional 
effects in brain injury, the effects are already present at 
the cellular level. Effects at the cellular level depend on 
the intensity and duration of ischemia-reperfusion in the 
brain, and could be reflected by the activations of different 
pathogenesis of brain injuries. At the onset of cardiac 
arrest, genome expression, molecular and cellular changes 
develop and biomarkers reflecting these pathological 
mechanisms will be recognized as potent predictors for 
neurological outcome from CA.

The aim of this study was to evaluate whether 
molecular signature of peripheral blood from comatose 
patients after CA may help to find as a useful biomarker to 
predict neurological outcome.

RESULTS

Characteristics of patients

We investigated whether molecular signature of 
peripheral blood from early stage CA patients reflects 
different pathogenesis of CA, providing novel windows 
of gene expression changes as unique molecular signatures 
for CA. Early CA patients who remained comatose 48 
hr after CA were selected for transcriptome analysis. 

Figure 1: A schematic view of the procedure which contained patient cohorts and technologies used to find novel 
biomarkers in peripheral blood of CA patients. The CPC cohorts at 48 hr after CA were separated to CPC 1-2, 3-4, and 5 and the 
blood transcriptome scans of CA patients were performed about selected patient sample. After the blood transcriptome scan, the data were 
analyzed to two different groups: Expression profiles of the CPC cohort and differentially expressed gene signatures in Poor cohort.
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Figure 1 provides an overview of this study design. The 
initial cohort consisted of 37 comatose patients who were 
successfully resuscitated from CA (CPC score 1-2 [n = 
15], CPC score 3-4 [n = 9], CPC score 5 [n = 13]). Of 
these patients, 13 patients were excluded from the initial 
dataset due to lack of definite CA signatures. Two patients 

with CPC score 4 were excluded because of poor RNA 
quality or low RNA yield. Finally, 22 participants were 
dichotomized into good neurological outcome, CPC 1 (n 
= 10), and poor neurological outcome CPC 4-5 (n = 12), 
were analyzed on whole genome expression microarray 
to profile post-CA with its innate characteristic molecular 

Table 1: Patient characteristics

VF/VT, ventricular fibrillation/ventricular tachycardia; PEA, pulseless electrical activity; ROSC, return of spontaneous 
circulation; APACHE II, Acute Physiology and Chronic Health Evaluation II; GCS, Glasgow Coma Scale; NSE, neuron-
specific enolase. Data are presented as mean with interquartile range, or number with percentages.
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Figure 2: Hierarchical clustering analysis of expression profiling and determination of high-accuracy gene classifiers 
in CA patients. A. Two-dimensional diagram of differential expressions of 412 genes and the data were organized by transcript and CPC 
category based on similarity. B. Dendrogram was derived from clustering using the 412 gene set. To identify classifier genes in the each 
CPC groups, the expression data of 22 specimens were subjected to the One Way ANOVA test (p < 0.01). C. Accuracy was tested by using 
the leave-one-out cross validation (LOOCV) method, and all tested-22 samples were categorized to three different CPC categories. D. PCA 
analysis of the 412 genes in each CA patient samples. The yellow sphere circle indicates the CPC 1 group, the blue circle indicates the 
CPC 4 group; the green circle indicates the CPC 5 group. E. Venn diagrammatic analysis of common gene signatures between CPC 4 and 
CPC 5 group. F. The dendrograms were obtained 64 genes of CPC 4 group and 34 genes of CPC 5 group. The heat-map showed supervised 
hierarchical clustering of recapitulated gene signature performed by using Genplex software; Pearson correlation, median centering, and 
complete linkage were used for all clustering applications.
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signature.
Detailed demographics of enrolled patients are 

summarized in Table 1. There were no differences between 
the two outcome groups with regard to age, sex, initial 

cardiac rhythm, and preexisting diseases. Witnessed 
arrest, a shockable initial rhythm, the cardiac cause of 
CA etiology, the shorter time from arrest to ROSC, the 
lower score of APACHE II and the lower level of NSE at 

Figure 3: Gene set enrichment analysis of the differentially expressed gene signatures in the CA patients. A. Volcano 
plot representation of differentially expressed gene signatures between Good (CPC 1) and Poor (CPC 4-5) cohorts. The number of 
differentially expressed genes was depicted in the blue and red box. B. GSEA corresponding heat map images of the enrichment of the 
CPC category. Genes in heat maps are shown in rows; a sample is provided in one column. Expression levels are represented as a gradient 
from high (red) to low (blue). C. The bar chart of 21 gene set lists of less than nominal p-value 0.05. D. GSEA enrichment plots of 
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY enriched to neurological outcome is shown; the barcode indicates gene positions. 
The y-axis indicates the extent of enrichment.
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48 hr after CA favored good outcome group. Significant 
differences in the presence of a witnessed arrest, the time 
from arrest to ROSC, APACH II and NSE were observed 
between the good and poor neurological outcome groups.

Blood transcriptome scans differentiated cerebral 
performance category score at 48 hr after cardiac 
arrest

Largely, transcriptomic regulation is driven by 
dynamic intracellular responses to a biological stimulus. 
Thus, to explore whether the large-scale gene expression 
change in peripheral blood reflects different pathogenesis 
of CA and to identify differentially expressed gene set of 
each CPC group, one way ANOVA test and hierarchical 
clustering analysis were performed. As shown in Figure 
2A, hierarchical clustering analysis of the 22 samples 
with 412 outlier genes that passed ANOVA test (p < 0.01) 
resulted in two main clusters within dendrogram. One 
cluster (left; yellow) contained all of the CPC 1 group, 
and a second cluster (right; navy and green) contained 
all of the CPC 4 and the CPC 5 (Figure 2B). This result 
indicated that large-scale gene expression changes 

of early stage CA patients and such gene expression 
changes might serve as unique molecular signature for 
the diagnosis or prediction of CA. To retrieve 412 outlier 
genes that precisely discriminate each CPC, we used one 
way ANOVA-Bonferroni multi-classification algorithms, 
followed by whole computation (gene selection algorithm, 
the ratio of between-group to within-group sums of 
squares [BSS/WSS]). Then, these 412 outlier genes were 
further validated by prediction confidence analysis, the 
leave-one-out cross validation (LOOCV). A summary of 
the frequencies of class assignments using high-accuracy 
classifier (412 genes) is provided in Figure 2C with 100% 
of prediction for each 3 different class. As shown in 
Figure 2D, PCA of the 412 gene expressions was carried 
out for the correlation present in the multi-attributes. To 
compare differentially expressed genes between CPC 4 
and CPC 5, we further analyzed recapitulated genes by 
Venn diagrammatic gene selection method. As depicted 
in Figure 2E, genes that were differentially expressed 
compared to CPC 1 were 64 and 31 in CPC 4 and CPC 5 
group respectively, and displayed as heat-map (Figure 2F). 
Among these, 23 genes were identified as common genes 
in both CPC 4 and CPC 5 group.

Figure 4: The ROC curve analysis and correlation of the three candidate molecular markers. A. The receiver operating 
characteristic (ROC) curves for MAPK3, BCL2 and AKT1. (AUC: area under the curve; 95% C.I.: 95% confidence interval). B. The 
correlation between the expression of MAPK3, BCL2 and AKT1 in good and poor outcome groups.
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Identification of predictive molecular signatures 
and their biological processes based on the CPC 
transcriptomics

In addition, we sought to identify differentially 
expressed gene set of each poor CPC score group 
compared to good CPC score group by using Welch’s t 
test as described in Materials and Methods.

From previous clustering analysis, we detected 
that CPC 4 and CPC 5 have considerably similar gene 
expression patterns different with CPC 1 group (Figure 
2B and 2C). Therefore, to identify molecular markers 
that could predict poor CPC score, we combined CPC 
4 and 5 into one group, and performed next analyses to 
select differentially expressed genes for poor CPC score 
compared with good CPC score group (CPC 1). Briefly, 
to identify gene expression changes characteristic of poor 
CPC, we used the Volcano plot method with a stringent 
cut off value (p < 0.05 and 1.3-fold change) to show the 
poor CPC-related expression data. As shown in Figure 
3A, 237 genes were significantly up-regulated and 150 
genes were down-regulated in the poor group compared 
to the good groups. Lists of genes that were down- or 
up-regulated genes in poor CPC are summarized in 
Supplementary Table 1. To gain greater insight of the 
molecular mechanisms associated with the poor CPC 
molecular markers in patient’s blood, we performed gene 
set enrichment analysis (GSEA) on the differentially 
expressed genes on genes deregulated by neurological 
outcome to identify signaling pathways enriched by poor 
CPC group. Differentially expressed genes were presented 
as a correlation heatmap and the groups were separated to 
CPC 1 group (good) and CPC 4, 5 group (poor) (Figure 

3B). From GSEA, we charted the 21 gene set lists with 
nominal p-value of less than 0.05 on a bar graph in Figure 
3C. In addition, the identification of the specific enriched 
signaling pathway, which was uncovered because of its 
characteristic to selectively up-regulate or down-regulate 
in poor CPC group, could help to understand molecular 
mechanisms of neurological outcome. As expected, we 
found the KEGG_NEUROTROPHIN_SIGNALING_
PATHWAY gene set was associated with neurological 
disease. The enrichment plot showed a significantly 
positive correlation with gene signatures of poor CPC 
subset in Figure 3D (NES = 1.48, p < 0.04).

From GSEA, we calculated top 10 gene sets that 
were ordered by NES rank and draw up gene set lists 
including each core genes in Table 2. Interestingly, among 
these core genes of top 10 gene sets, AKT1, BCL2, and 
MAPK3 were commonly enriched in almost gene sets. 
These findings also suggest that specific molecular 
markers could respond to gene signatures of neurological 
outcome in circulating blood of CA patients. Comparative 
analysis of receiver operating characteristic (ROC) curve 
was performed to determine whether these candidates 
were putative biomarkers of poor CPC. The areas under 
the curve (AUC) of MAPK3 (AUC, 0.867, P < 0.0001), 
BCL2 (AUC, 0.800, P = 0.0031) and AKT1 (AUC, 
0.767, P = 0.0169) were indicated to classify CPC 1 
group and CPC 4, 5 group (Figure 4A). The results from 
the ROC curve analysis indicated preoperative MAPK3 
as the strongest independent predictor for neurological 
outcome. Then, we analyzed the relationship between 
the expression of MAPK3, BCL2 and AKT1 in good and 
poor outcome groups. We notably found that there were 
significant negative correlations between AKT1 and BCL2, 

Figure 5: The qRT-PCR of the three candidate molecular markers. The qRT-PCR analysis of the three candidate molecular 
markers, MAPK3, BCL2 and AKT1. (mean ± S.D, *P < 0.05 versus CPC1).
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 Table 2: Enriched gene set in response to CPC difference by GSEA
No. Gene set ES NES NOM p-val GENE Description

1

PID_ILK_PATHWAY

0.61 1.6

0.01 HSP90AA1 heat shock protein 90kDa alpha 
(cytosolic), class A member 1

LIMS1 LIM and senescent cell 
antigen-like domains 1

ZYX zyxin

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

2

KEGG_FOCAL_
ADHESION

0.48 1.54

0.01 THBS1 thrombospondin 1

PTK2 PTK2 protein tyrosine kinase 2

BCL2 B-cell CLL/lymphoma 2

BIRC3 baculoviral IAP repeat-
containing 3

BIRC2 baculoviral IAP repeat-
containing 2

ZYX zyxin

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

ACTN4 actinin, alpha 4

3

KEGG_PROSTATE_
CANCER

0.59 1.53

0.02 BCL2 B-cell CLL/lymphoma 2

HSP90AA1 heat shock protein 90kDa alpha 
(cytosolic), class A member 1

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

4

SIG_
IL4RECEPTOR_
IN_B_
LYPHOCYTES

0.54 1.5

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

STAT6
signal transducer and activator 
of transcription 6, interleukin-4 
induced

5

KEGG_
NEUROTROPHIN_
SIGNALING_
PATHWAY

0.59 1.48

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

6

KEGG_
COLORECTAL_
CANCER

0.59 1.48

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

7

BIOCARTA_IL2RB_
PATHWAY

0.59 1.48

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3
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and negative correlations between BCL2 and MAPK3. 
Furthermore, we found the positive correlation between 
AKT1 and MAPK3 in good and poor neurological outcome 
group (Figure. 4B). Next, to validate the expression of 
AKT1, BCL2, and MAPK3 in the large cohort of cardiac 
arrest patients, we recapitulated gene expression levels of 
AKT1, BCL2, and MAPK3 in the datasets available from 
the NCBI, GEO database (GSE29540). Consistently, 
MAPK3 gene expression was significantly up-regulated in 
larger patient cohorts with a poor neurological outcome; 
however, BCL2 and AKT1 were not observed significant 
expression change. (Supplementary Figure 1)

Clinical predictors of neurological outcomes

A logistic regression analysis model was constructed 
to rule out the effects of irrelevant factors including 
several univariate factors. Multiple logistic regression 
was used to identify clinical covariates that predict a 
poor neurological outcome. The following covariates 
were tested: age, sex, witnessed arrest, initial rhythm, 
time arrest to ROSC, history of previous diseases, cardiac 
arrest etiology, vital sign (blood pressure, heart rate, 
respiration rate, temperature) at 48 hr after CA, APACHE 
II, the level of NSE, MAPK3, BCL2 and AKT1 at 48 hr 
after CA. The level of MAPK3, BCL2, and AKT1 were 
independent predictors of poor neurological outcome (P < 
0.05). The combined results from the ROC curve analysis 
and multivariate logistic regression indicated preoperative 
MAPK3 as the strongest independent predictor for poor 
neurological outcome (OR, 1.225, 95% CI, 1.136 to 
16.732; P = 0.045).

Biochemical validation of AKT1, BCL2, and 
MAPK3 expression in the validation cohort

In order to validate gene expression data of 
microarrays and to confirm transcriptional levels of 

differentially expressed genes, we performed quantitative 
real-time reverse transcriptase-polymerase chain reaction 
(qRT-PCR) analysis. As shown in Figure 5, transcriptional 
levels of three genes (AKT1, BCL2, and MAPK3) that were 
up- or down regulated in the validation cohort. Microarray 
data of BCL2 gene was down-regulated by 1.46 fold, and 
MAPK3 and AKT1 were up-regulated by 1.31 ~ 1.35 
fold. Results of qRT-PCR were appeared to be under or 
over-expressed in transcriptional level. Similarly, down-
regulated gene (BCL2) by 2.97 fold and up-regulated 
genes (MAPK3 and AKT1) by 3.38~5.65 fold in qRT-PCR 
results (Figure 5).

DISCUSSION

Neurocognitive disturbances are common among 
survivors of CA. Although initial management of CA, 
including bystander cardiopulmonary resuscitation 
and early defibrillation, has been implemented over the 
last years, few therapeutic interventions are available 
to attenuate the extent of brain injury occurring after 
CA. Several studies have been performed to device 
neuroprotective strategies that target multiple pathways 
involved in the pathophysiology of postanoxic brain 
injury [14]. Neurological outcome prediction in comatose 
patients after CA is important for individual patient care 
and to help guide end-of-life decision making. It should 
be recommended that Prognostication focused on end-of-
life be delayed beyond 72 hr after CA with accurate use of 
several prognostic tools.

In several recent studies, RNA extracted from whole 
blood was used to evaluate RNA expression patterns 
based on microarrays and showed that total or specific 
RNA contents were extracted without RNA degradation 
or inhibited RNA induction in whole blood samples. 
We used large scale whole genome expression analysis 
to determine whether gene signatures are associated 
with comatose patients from CA. We confirmed that 
transcriptomic analysis of blood cells from patients with 

8

BIOCARTA_BAD_
PATHWAY

0.59 1.48

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

9

PID_KIT_PATHWAY

0.59 1.48

0.04 BCL2 B-cell CLL/lymphoma 2

AKT1 v-akt murine thymoma viral 
oncogene homolog 1

MAPK3 mitogen-activated protein 
kinase 3

10

ST_INTEGRIN_
SIGNALING_
PATHWAY

0.61 1.46

0.04 PTK2 PTK2 protein tyrosine kinase 2

ZYX zyxin

AKT1 v-akt murine thymoma viral 
oncogene homolog 1
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good neurological outcome might be distinguished from 
patients with poor neurological outcome. In the poor 
outcome group, 237 genes were up-regulated and 150 
genes were down-regulated compared with good outcome 
group. Data-mining approaches through GSEA revealed 
that differently expressed genes from patients with poor 
neurological outcome were significantly associated with 
biological processes linked to MAPK3, BCL2, and AKT1, 
which are mainly related with the death or apoptosis of 
neurons and cells. 

The occurrence of hypoxic-ischemic encephalopathy 
after CA was recently integrated in the so-called “post-
resuscitation syndrome”, which is characterized by 
postanoxic brain injury, cardiovascular impairment, and 
a systemic inflammatory response following the ischemia/
reperfusion (I/R) process [18]. Cerebral ischemia is a 
result of insufficient cerebral blood flow for cerebral 
metabolic functions. Reperfusion stimulates many 
pathological mechanisms such as leukocyte infiltration, 
oxidative stress, inflammation, destruction of blood-
brain barrier, platelet activation, nitric oxide release, and 
apoptosis [19]. 

At the cell level, the interaction between ligands and 
receptors regulates a wide spectrum of biological processes 
via the initiation of a complicated cascade of intracellular 
signaling pathways, like extracellular signal-regulated 
kinases (ERK), AKT1, mitogen-activated protein kinase 
(MAPK), PI3γ, protein kinase C, and JAK-STAT [20]. 
The activation of these signaling pathways leads to cell 
cycle arrest, cell proliferation, differentiation, tumorigenic 
develop ment and anti-apoptotic processes [21, 22]. 
MAPKs are a family of serine-threonine protein kinases, 
involved in cell growth, differentiation, transformation, 
and apoptosis. MAPKs play an important role in the 
transmission of signals from cell surface receptors to 
the transcriptional machinery in the nucleus. They are 
activated in response to a variety of extracellular stimuli, 
including Lipopolysaccharides, hypoxia, and inflammatory 
cytokine release . The nuclear targets of MAPK signaling 
pathways are transcription factors, such as activator 
protein-1 and nuclear factor-kappa B, which regulate the 
expression of various pro-inflammatory gene expressions. 
In several studies, ERK 1/2 pathway of the MAPK signal 
transduction cascade has been heavily implicated in the 
pathogenesis of post-ischemic neuronal damage and it has 
been suggested that MAPKs play an important role in the 
pathogenesis of cerebral ischemia-reperfusion injury . As 
previously reported, our study using both microarray and 
qRT-PCR shows that MAPK3 expression is significantly 
activated in the poor neurological outcome compared 
with the good outcome. We also observed that MAPK3 
was significantly sensitive and specific in ROC analysis 
providing novel CPC biomarkers (Figure 4).

Cellular Bcl-2 family proteins are known to 
regulate critical steps in programmed cell death pathway 

by modulating mitochondrial permeability and function. 
They are divided on two distinct groups, anti-apoptotic 
members such as Bcl-2 and Bcl-Xl that prevent cell death 
and pro-apoptotic members like Bax and Bak [30, 31]. 
The animal studies of brain ischemia-reperfusion injury 
showed that the level of Bcl-2 was more decreased in 
severe brain injury [19, 32]. Like these findings from 
other studies, our results show that the gene expression of 
anti-apoptotic protein, Bcl-2 showed greater decreases in 
poor neurological group compared with good neurological 
group.

The phosphatidylinositol 3-kinase (PI3K)/Akt1 
pathway, which has been extensively studied recently, is a 
major cell survival pathway that is closely correlated with 
ischemic brain injury [33]. Akt is a downstream signaling 
molecule of PI3K, which serves key roles in mediating 
anti-apoptotic actions [34]. Three genes encoding Akt 
(akt1, akt2, and akt3) have been identified in mammalian 
genomes. Akt1 is widely expressed in the brain and its 
activation is correlated with phosphorylation of Ser473 
at the C terminus. Akt1 phosphorylation at Ser473 is 
closely related to neuronal survival and plays an important 
role in neuronal protection in ischemic disease of the 
central nervous system [35, 36]. Studies of a cerebral 
ischemia-reperfusion (I/R) animal model demonstrated 
that neuroprotective effects were inhibiting apoptosis 
via activation of the PI3K/Akt1 signaling pathway. 
However, our results were not in accordance with the 
reported results; the poor neurological outcome group 
showed a greater increase in the level of Akt1 compared 
with good outcome group. The reason of these different 
results may be may be due to different study designs. 
Other studies were performed in the hippocampus part of 
the brain, while our study examined circulating blood. In 
a neuroinflammation mouse model generated using LPS, 
the phosphorylation of the level of Akt1 was measured in 
different parts of the brain. They demonstrated different 
changes on Akt1 signaling in major mouse brain regions 
in response to LPS. The Akt1 level was significantly 
increased in the striatum, no changes in the cortex and 
hypothalamus, and an increase in hippocampus although 
no significant difference was found compared with the 
control mice [39]. Since most of cerebral I/R animal model 
studies were performed in the brain tissue, especially in 
the hippocampus, further studies looking at the level of 
Akt in blood are needed.

Since early prognostication after CA is difficult, 
several prognostic tools with clinical examination are 
recommended to improve the accuracy of prognosis. TTH 
makes early prognosis more complex, mainly due to the 
liberal use of sedatives, analgesics, and muscle relaxants 
during TTH. The most of clinically used prognostic 
tools are subject to inter-observer variability. Therefore, 
research into biomarkers that require less expertise, less 
inter-observer variability, and are more readily repeated 
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has been performed. NSE is a biomarker clinically used 
for prediction of outcomes after CA, but its use has been 
limited by a lack of standardization, as well as diverging 
cutoff levels for prediction of poor prognosis in patients 
[9-13]. Identification of new biomarkers and use of other 
prognostic tools may improve the accuracy of prognosis of 
neurological recovery.

Our study has some limitations. First, this study 
was performed in a single tertiary referral center with a 
small sample size. The number of patients enrolled in this 
study was small, resulting in wide confidence intervals 
for sensitivity and specificity. Second, the long period 
between samples collection and analysis of the samples 
might have affected the quality of the samples. Fortunately, 
mRNA is known to be stable both at room temperature and 
after repetitive cycles of freeze-thawing and was stored 
at −80 °C until analysis, and samples were thawed only 
once. Third, we obtained mRNA data at one time point 
only. Initially, we designed this as a preliminary study, 
and chose the time point that appeared best to accurately 
evaluate biomarkers in cardiac arrest. Further studies using 
larger populations of cardiac arrest patients in multiple 
centers are needed to determine the kinetics of mRNA 
levels after CA both hypothermia and normothermia.

In this preliminary study, we evaluated whether 
we could reliably detect differences in gene expression 
between good and poor neurological outcome, and whether 
we could detect biomarkers that predict neurological 
outcome. We verified that the gene expressions of 
circulating blood cells of comatose patients after CA were 
significantly different between good and poor neurological 
outcome group. These different biosignatures allowed 
the identification of MAPK3, BCL2, and AKT1 KTas 
predictors of neurological outcome in comatose patients 
after CA.

Finally, this study suggests that characteristic 
molecular signatures in the circulating blood of comatose 
patients after CA could be useful surrogate markers to 
predict neurological outcome. Further studies on these 
gene signatures are needed to understand the mechanisms 
triggering the development of CA and effects of each of 
these molecules following CA.

MATERIALS AND METHODS

Patients and sample collection

Comatose patients successfully resuscitated from 
CA at a single tertiary center between March 2013 and Feb 
2014 were enrolled into this study. Computed tomography 
of the brain was performed liberally at admission to 
exclude patients with intracranial bleeding. Patients who 
died within 72 hours after CA, were under 18 years, 
experienced traumatic cardiac arrest, severe irreversible 

brain damage, had a known severe neurological diseases 
and terminal malignancy were excluded. Informed consent 
was provided according to the Declaration of Helsinki. 
Written informed consent was obtained from all subjects. 
Histological assessment was previously described. The 
study was approved by the Institutional Review Board of 
Seoul St. Mary’s Hospital (XC12TIMI0075D).

All patients after ROSC were treated according to 
current recommendations [6]. Before the induction of TTH 
in comatose patients, sedation with midazolam (0.08 mg/
kg intravenously) and paralysis with rocuronium (0.8 mg/
kg intravenously) were administered for shivering control, 
followed by continuous infusion of midazolam (0.04-0.2 
mg/kg/h) and rocuronium (0.3-0.6 mg/kg/h). A target 
temperature of 33 °C was maintained for 24 hr. After 
the completion of the TTH, rewarming was performed 
at a rate of 0.25 °C/h until the patient’s temperature 
reached 36.5 °C. Sedation and paralysis were reduced 
during rewarming and were discontinued until the central 
temperature reached 35 °C.

Blood samples for total RNA extraction were 
collected from patients at 48 hr after CA and collected in 
blood RNA tubes (PAXgene, Qiagen BD Company, UK) 
for RNA isolation. Total RNA extracted from PAXgene™ 
tubes was used to study gene expression by microarrays. 

Neurological outcomes

All patients were categorized at discharge according 
to the five-point Cerebral Performance Category (CPC) 
scale: CPC score 1: good cerebral performance, CPC 
score 2: moderate cerebral disability, CPC score 3: severe 
cerebral disability, CPC score 4: coma and CPC score 5: 
death [40]. A CPC score of 1 or 2 after CA was considered 
a good neurological outcome, CPC score of 3, 4, or 5 is 
a poor neurological outcome. Both at discharge and at 
six months after resuscitation, neurological outcome was 
evaluated by the authors via a telephone interview.

RNA isolation and blood whole genome expression 
analysis

Total RNA was extracted from blood samples 
according to optimized methods previously described, 
with slight modifications. Briefly, whole blood (2.5 mL per 
patient) was collected directly into PAXgene Blood RNA 
tubes, labeled with a unique identification number, stored 
at room temperature, and transferred to the laboratory 
within four hours for blood processing. Total RNA was 
extracted from blood samples using the PAXgene blood 
RNA kit (Qiagen) and purified with RNeasy kit (Qiagen) 
according to the manufacturer’s instruction. The quality 
of total RNA was analyzed with the RNA StdSens 
Chips on the Experion™ system (BioRad, Hercules, 
CA). Microarray analysis was performed using Sentrix 
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HumanRef-6 Expression BeadChip or HumanHT-12 v3 
Expression BeadChip (Illumina, Inc., San Diego, CA). 
Approximately 37,000 genes with unique probe IDs were 
common to both platforms and were used for combined 
data analysis. The RNA was processed with Illumina RNA 
Amplification Kit (Ambion, Inc., Austin, TX) according 
to the manufacturer’s instructions starting with 800 ng 
total RNA. Resulting biotin-labeled cRNA was recovered 
and purified with RNeasy kit (Qiagen), hybridized to 
the beadchips, and fluorescently tagged and scanned 
with Illumina BeadStation (Illumina) according to the 
manufacturer’s protocol. All arrays were performed in the 
same core facility. 

Blood transcriptome data analysis

Data analysis for blood transcriptome from CA 
patients was performed using the following softwares: 
GenomeStudio (version 3.0, Illumina), GenPlex™ 
(version 3.0, ISTECH, Inc., Seoul, Korea), EXCEL 
(Microsoft), and GSEA (version 2.07, Broad Institute). 
Briefly, GenomeStudio (version 3.0) was used for the data 
acquisition and calculation of signal values on Illumina 
expression beadchip. Normalization of expression data 
and hierarchical clustering was performed by GenPlex™ 
(version 3.0). For primary data filtering, spots with a 
P-call (Detection call P-value < 0.1) were selected, and 
normalized via quantile normalization. A multitude of 
analyses was performed using the normalized and filtered 
data. Sets of differentially expressed genes (DEGs) were 
identified by combination analysis of Welch’s t test and 
fold change, and the DEGs with a fold change deregulation 
of more than 1.3 and P-value < 0.05 were selected. 

GEO data analysis

To analyze the expression level of AKT1, BCL2, 
and MAPK3, mRNA expression data sets were obtained 
from the National Center for Biotechnology Information 
(NCBI) Gene Expression Omnibus (GEO) database 
(Accession No. GSE29540)

Molecular pathway mining and gene set 
enrichment analysis

To investigate CA-specific genes that are enriched 
into the known molecular databases, Gene Set Enrichment 
Analysis (GSEA) was conducted using the standard 
procedures (http://www.broadinstitute.org/gsea). Briefly, 
the set of microarray data was analyzed for enrichment in 
Canonical pathways gene sets including 1,330 gene sets 
related to the cellular component and biological pathway. 
The GSEA method was used with the dataset collapsed 
to gene symbols, 1,000 permutations and phenotype 

permutation type, and Pearson metric for ranking genes. 
As the output, GSEA provides a nominal P value for each 
gene set, which represents how significantly up- or down-
regulated the genes within that set are in the microarray 
data comparison.

RNA isolation and quantitative real-time 
polymerase chain reaction (qRT-PCR)

Using RNA isolated from blood as a template, a 
tetro cDNA synthesis kit (Bioline USA Inc., Tounton, 
MA, USA) was used to synthesize cDNA. For qRT-PCR 
analysis, reactions were conducted with SensiFASTTM 
SYBR® No-ROX kit (Bioline USA Inc., Tounton, MA, 
USA). The level of GAPDH was used as a loading control. 
The real time PCR was monitored using the CFX96TM 
Real-Time System (BioRad, Hercules, CA) that allowed 
checking of the threshold cycle (Ct): the exponential 
amplification time of PCR products. Results are displayed 
as the mean values from triplicate experiments. Relative 
expression values were normalized to control -2-(Target 

Ct-Control Ct). The primer sequences for MAPK3 were 
purchased from Bioneer (Daejeon, Korea), BCL2 primer 
sequences were 5’-GCTGGACGATAGCTTGGA-3’ 
(forward) and 5’-GATGACAGATAGCTGGTG-3’ 
(reverse) and AKT1 primer sequences were 
5’-CCTGTGGATGACTGAGTACCTGAA-3’ (forward) 
and 5’-GGGCCGTACAGTTCCACAAA-3’ (reverse).

Statistical analysis

All statistical analyses were performed with 
the MedCalc version 12.1.4.0 (MedCalc Software, 
Mariakerke, Belgium). Receiver operating characteristic 
curve (ROC) analysis was constructed to assess the 
sensitivity and specificity of blood biomarkers and 
to determine the ability of the various parameters to 
discriminate CA patients with poor CPC score. The 
method of DeLong et al., was used for the calculation of 
standard error of the areas under the ROC curves (area 
under the curve, AUC) and of the difference between 
two AUCs [41]. P-values less than 0.05 were considered 
statistically significant. Continuous variables are reported 
as mean and interquartile range. Categorical variables 
are reported as number and percentages. Univariate and 
multivariate logistic regression analyses were performed to 
identify independent predictors for good or poor prognosis 
patients. All predictor variables that were identified as 
significant at a two-tailed nominal probability value of less 
than 0.05 in univariate regression analyses were entered 
into a multivariate logistic regression analysis model.
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Data access

Expression profiling data has been deposited in 
the Gene Expression Omnibus under accession code: 
GSE92696.
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