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ABSTRACT
Thiopurines are widely used as anticancer and immunosuppressive agents. 

However, life-threatening myelotoxicity has been noticed and largely explained by 
genetic variations, including NUDT15 polymorphisms (e.g., rs116855232). In this study, 
we conduct a meta-analysis to investigate the impact of rs116855232 on thiopurines-
induced myelotoxicity susceptibility (1752 patients from 7 independent cohorts), as 
well as on thiopurines intolerance dose (2745 patients from 13 cohorts). Variant allele 
of rs116855232 contributes 7.86-fold (P < 0.00001, 95% CI: 6.13–10.08) higher risk to 
develop leucopenia with high specificity (91.74%) and sensitivity (43.19%), and lower 
thiopurines intolerance dose (P < 0.00001). Through bioinformatics prediction, amino 
acid changes induced by genetic variants are considered to reduce the stability, and 
break an α helix of NUDT15, which is part of the thiopurine binding pocket. Additionally, 
we conduct an expression quantitative trait loci (eQTL) analysis for NUDT15, and find 
a promoter-located eQTL signal (rs554405994), which may act as a potential marker 
to predict thiopurines-induced myelotoxicity. In conclusion, genetic polymorphisms 
in NUDT15 are strongly associated with adverse drug reaction (ADR) of thiopurines, 
although more evidences are needed to determine values of all functional NUDT15 
polymorphisms for clinical regimen, rs116855232 should be considered as a highly 
credible pharmacogenetic indicator for thiopurines using espcially is Asians.

INTRODUCTION

As immunosuppressive and anticancer pro-drug, 
thiopurines (e.g., azathioprine [AZA], mercaptopurine  
[6-MP]), alone or in combination with other agents, remain 

a gold standard medical therapy for the maintenance of 
disease remission in patients with acute lymphoblastic 
leukemia (ALL), inflammatory bowel diseases (IBD), 
and so on [1, 2]. AZA and 6-MP can convert to active 
metabolites 6-thioguanine nucleotides (6-TGNs) via 
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multiple sequential anabolic reactions [3, 4], which (e.g., 
deoxythioguanosine triphosphate) can incorporate into 
double-stranded DNA to trigger futile mismatch repair 
and lead multiple types of cells (e.g., T lymphocytes) to 
apoptosis and subsequent resolution of inflammation [5–8].  
Meanwhile, 6-MP and its metabolites can be methylated 
by thiopurine methyltransferase (TPMT) and interrupt 
intervening DNA synthesis [9, 10]. Therefore, TPMT 
activity has been noticed to be negatively related to 
6-TGN content in plasma [11]. 

Large interindividual variations in dose responses 
and ADR susceptibility has been noticed due to the narrow 
therapeutic index of thiopurine drugs, with common 
dose-dependent toxicities, including myelotoxicity and 
hepatotoxicity [8, 12]. One well reported and accepted 
explanation is that patients with TPMT deficiency 
induced by genetic variants can increase sensitivity 
to myelotoxicity effects of thiopurine drugs [13, 14]. 
Actually, several single nucleotide polymorphisms (SNPs) 
in TPMT gene (e.g., rs1142345) have been labeled as 
pharmacogenetic markers, and strongly recommended 
to be genotyped for clinic usage of thiopurines [15–18]. 
However, racial diversity of TPMT SNPs in terms of 
variant allele frequencies limits their prediction values. For 
example, rs1142345, which is the most common TPMT 
SNP (also indicated as TPMT*3C), has allele frequency 
of 4% in Caucasians, but only 1.3% in East Asians. 
Paradoxically, thiopurines-induced leukopenia is more 
common in Asians, and quite a few patients with wild-
type TPMT are intolerant to full dose of thiopurine drugs 
[19, 20], suggesting the existence of other underlying race 
specific genetic polymorphisms in thiopurine response. 
Recently, two independent studies have identified a 
variant in NUDT15 gene (i.e., rs116855232, inducing 
p.Arg139Cys) to be associated with intolerance to 
thiopurines or thiopurines-induced ADR in patients with 
ALL and IBD, respectively [2, 12]. Such association 
has been replicated by multiple independent studies  
[14, 21–28], and expanded to several other NUDT15 
SNPs, including rs147390019 (inducing p.Arg139His) 
[24]. Large genetic population studies (e.g., ExAC project) 
demonstrate that variant allele of rs116855232 of NUDT15 
is most common in East Asians (10.4%) and Hispanics 
(7.1%), rare in Europeans (0.46%), but barely detected 
in Africans, while rs147390019 is mostly in Hispanic 
(1.75%) [29], contributing to ancestry-related differences 
in thiopurine drugs tolerance [12, 19, 30]. 

NUDT15 is deemed to dephosphorylate the 
thiopurine active metabolites TGTP and TdGTP, 
preventing their incorporation into DNA and negatively 
affecting the cytotoxic effects of thiopurines [2, 3, 14, 
21–24, 28, 31–33]. Crystal structure of NUDT15 has been 
characterized, making it possible to estimate the impact 
of Arg139Cys and Arg139His on NUDT15 activity, and 
subsequent cell sensitivity to thiopurine treatment. Indeed, 
in vitro pharmacological analyses and cellular drug 

response examinations have been done and determined 
the NUDT15 deficiency induced by not only genetic 
variants, but also the expression level of NUDT15 [24], 
highlighting the importance of NUDT15 SNPs genotyping 
for clinic use of thiopurine drugs.

In this study, we aim to conduct a systematic 
review and meta-analysis to investigate the association 
of NUDT15 SNPs with clinic thiopurine response on the 
basis of existing researches, and examine the impact of 
these common variants on NUDT15 structure through 
bioinformatics analyses. Finally, eQTL analyses are 
proceeded to search more pharmacogenetic markers for 
thiopurine induced ADR in NUDT15 gene, in order to 
increase the prediction sensitivity.  

RESULTS

Meta-analyses

Through literature searching (see Methods), 20 
independent cohort studies that demonstrated in 11 articles 
met the inclusion criteria for meta-analysis (Figure 1). 
Characteristics of these studies were summarized in Table 1. 
We conducted meta-analyses on association of rs116855232 
with thiopurines-induced myelotoxicity susceptibility, as 
well as thiopurines intolerance dose. First, 7 studies were 
included with a total of 602 cases (patients with thiopurines-
induced myelotoxicity) and 1150 controls (patients without 
myelotoxicity) for myelotoxicity susceptibility analysis. 
Fixed effect model was used since no heterogeneity was 
observed in the allele model (P = 0.68, and I2 = 0%). 
Compared to C allele, variant T allele significantly exhibited 
a 7.86-fold (OR = 7.86, 95% CI: [6.13, 10.08]) increased 
risk to develop thiopurines-induced myelotoxicity in both 
IBD and ALL (P < 0.00001, Figure 2). Totally, the presence 
of rs116855232 variant allele had a sensitivity of 43.19% 
(260/602) and specificity of 91.74% (1055/1150) for all 
myelotoxicity events, while the specificity reached 84.59% 
(1323/1564) for early myelotoxicity events (Supplementary 
Tables 1 and 2). Additionally, Consistent association was 
also observed in dominant model (P < 0.00001, OR = 9.48, 
95% CI: [7.20, 12.47]), and recessive model (P < 0.00001,  
OR = 18.10, 95% CI: [6.34, 51.68]). Secondly, 13 studies 
assessed the association between rs116855232 and 
thiopurines intolerance dose with a sample size of 2745. 
Random model was employed in dosage maintenance 
meta-analysis since the high heterogeneity among studies. 
Compared to CC carriers (as reference group), T allele 
carriers (CT and TT genotypes) required 28% (P < 0.00001, 
95% CI: [–0.34, –0.21]) lower mean daily thiopurines 
dose. Because thiopurine dosage used in ALL patients is 
significantly higher than that in IBD patients, we separated 
the patients into two groups in terms of disease types, and 
found similar risk of thiopurines-induced myelotoxicity and 
thiopurine maintenance dosage reduction rate for T allele 
(Figure 3).
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For both meta-analyses, we used Begg’s test and 
Egger’s test to measure the publication bias for all model, 
no evidence of obvious asymmetry was observed, such 
as Figure 4. Sensitivity analyses were also carried out by 
removing each study one at a time, the ORs remain stable, 
suggesting that the conclusion of rs116855232 impact 
on thiopurines-induced myelotoxicity susceptibility and 
thiopurines intolerance dose were robust and reliable.

Crystal structure and protein stability prediction 

Besides rs116855232, two additional functional 
SNPs (i.e., rs186364861 [inducing Val18Ile], and 
rs147390019 [inducing Arg139His]) were also reported 
recently. To investigate the effect of the Val18Ile, 
Arg139His and Arg139Cys mutants on the protein function 
of NUDT15, we firstly constructed their mutant models 
through mutating selected residue of the crystal structure, 
and optimize the mutant region structure by using loop 
refinement. Through bioinformatics prediction, we noticed 
that Arg139His and Arg139Cys were located at the second 

α-helix, may perturb the α-helix loop and the base of the 
substrate binding pocket (Figure 5A, 5B, 5C). Additionally, 
Arg139Cys could lead to the formation of a disulfide bond 
with the adjacent cysteine residue (Cys140) that may 
further reduce the enzyme activity of NUDT15 (Figure 5B).  
However, Val18Ile mutant at the first β-sheet has less effect 
on the protein structure. Subsequently, mutant energy 
calculation showed similar results (data not shown). For 
protein stability estimation, mutant energy of Arg139His 
and Arg139Cys variants are greater than 0.5 kcal/mol, 
largely decrease the protein stability compared to wildtype 
and Val18Ile mutant, indicating the possible role of these 
genetic variants on NUDT15 function (Figure 5D). 

Cis-eQTL and epigenome regulation analyses for 
NUDT15

Although ~90% of early thiopurines-induced 
myelotoxicity can be predicted by rs116855232, sensitivity 
of such SNP for late myelotoxicity is still low, indicating 
more variants may be involved in such ADR. As down-

Table 1: Principle characteristics of the studies included in the Meta-Analysis for SNPs at 
NUDT15 rs116855232 locus

Year Author [*] Ethnicity
Sample sizea Genotype 

counts (case)

Genotype 
counts 

(control)
 AZA dose (mg/m2) (mean ± SD) (normalized dose)b

Diseases Type of study

Case Control TT CT CC TT CT CC TT CT CC

2014 Suk-Kyun 
Yang [2] Korean 346 632 14 133 199 0 43 589 2.335 ± 0.485  

(0.522 ± 0.108)
3.697 ± 2.145  

(0.827 ± 0.480)
4.472 ± 2.436  

(1 ± 0.545) IBD myelotoxicity susceptibility 
and intolerance dose

2015 Y Kakuta 
[22] Japanese 34 101 5 10 19 0 13 88 NA 1.613 ± 0.891  

(0.557 ± 0.307)
2.915 ± 1.203  

(1 ± 0.413) IBD myelotoxicity susceptibility 
and intolerance dose

2016 Ayumi 
Asada [21] Japanese 45 116 2 18 25 0 14 102 2.12 (0.872) 2.26 ± 1.130  

(0.930 ± 0.465)
2.43 ± 1.270  
(1 ± 0.523) IBD myelotoxicity susceptibility 

and intolerance dose

2016 X. Zhu [27] Chinese Han 65 188 4 36 25 0 17 171 NA NA NA IBD myelotoxicity susceptibility

2016 Swarup A. V. 
Shah [25] Indian 6 63 1 5 0 0 3 60 2.066 ± 0.566 (0.723 ± 0.198) 2.858 ± 0.566  

(1 ± 0.198) IBD intolerance dose

2015 Jun J. Yang 
[12]

East Asian 61 NA 1 10 50 NA NA NA 10.125 (0.169) 35.55 ± 11.25  
(0.594 ± 0.188)

59.85 ± 17.85  
(1 ± 0.298)

ALL intolerance doseHispanic 222 NA 1 16 205 NA NA NA 2.175 (0.033) 52.425 ± 13.4  
(0.796 ± 0.355)

65.85 ± 16.65  
(1 ± 0.253 )

Other 380 NA 0 5 375 NA NA NA NA 59.475 ± 13.95  
(0.924 ± 0.217)

64.35 ± 17.55  
(1 ± 0.273)

2015 Yoichi 
Tanaka [14] Japanese 38 54 5 13 20 1 5 48 NA NA NA ALL myelotoxicity susceptibility

2015 D-C Liang 
[23]

Taiwan 
Chinese 310 NA 2 70 238 NA NA NA 18.8 ± 7.4  

(0.213 ± 0.084)
61.4 ± 23.4  

(0.696 ± 0.265)
88.2 ± 30.6  
(1 ± 0.347) ALL intolerance dose

2016
Kanhatai 

Chiengthong 
[28]

Thai 28 54 1 9 18 1 1 52 54.608 ± 8.719 (0.631 ± 0.101) 86.542 ± 9.525  
(1 ± 0.110) ALL myelotoxicity susceptibility 

and intolerance dose

2016
Takaya 

Moriyama  
[24]

Guatemala 181 NA 1 18 162 NA NA NA 8.944 (0.128) 54.954 ± 34.516  
(0.789 ± 0.496)

69.638 ± 30.261  
(1 ± 0.435)

ALL intolerance doseSingaporean 83 NA 1 17 65 NA NA NA 5.522 (0.06) 65.894 ± 25.765  
(0.721 ± 0.282)

91.354 ± 27.674  
(1 ± 0.303)

Japanese 32 NA 1 9 22 NA NA NA 5.013 (0.05) 69.950 ± 28.912  
(0.702 ± 0.290)

99.674 ± 34.231  
(1 ± 0.343)

2016 Hisato 
Suzuki [26] Japanese 46 5 0 10 36 0 0 5 NA 59.946 ± 16.405  

(0.913 ± 0.250)
65.647 ± 23.887  

(1 ± 0.364) ALL myelotoxicity susceptibility 
and intolerance dose

aCase and Control indicates patients with or without thiopurines-induced myelotoxicity, respectively; 
b6-MP dose was converted to AZA equivalent dose using a conversion factor of 2.08, Meeh-Rubner formula was used to unify the units into mg/m2, AZA dose of each genotype was also normalized against 
CC (wildtype) ;  
*numbers in the brackets represent the references in the manuscript 
NA: not available.
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regulation of NUDT15 in cell lines can also sensitize 
leukemia cells to thiopurines [24], we thus conducted an 
eQTLs analyses for NUDT15 to search additional potential 
pharmacogenetic markers in this gene. Expression level 
and SNP genotypes of LCLs were retrieved from the public 
resource (see Methods), and submitted for association 
analyses. Only one SNP (rs554405994) achieved statistical 
significance (P = 0.004) (Figure 6A), and LCLs from 
Asians with variant allele are related to lower NUDT15 
expression (Figure 6B). rs554405994 locates in the 
promoter region of NUDT15, with a high GC content and 
DNase I sensitivity. Multiple strong transcription factors 
and H3K27Ac binding signal can be detected around this 
rs554405994-located region according to the epigenomic 
information from public resource (i.e., Epigenome 
Browser [38], Figure 6C), indicating variant allele of 
rs554405994 may be associated with NUDT15 expression 
through altering the binding affinity of transcription 
factors with gene promoter. Interestingly, rs554405994 
also induces a GlyVal insertion between position 18 and 
19 of NUDT15, and causes a slight reduction in NUDT15 
activity according to the previous report [24]. Therefore, 
rs554405994 can impact thiopurine metabolism through 
both down-regulating gene expression and reducing 
enzyme activity, thus may be considered as a new causal 
variant for thiopurines-induced myelotoxicity.

DISCUSSION

Ethnic diversity in genetics is an important factor for 
inherited predisposition to disease susceptibility, as well 
as drug treatment outcomes [39, 40]. For instance, SNPs 
at ARID5B locus are associated with ALL susceptibility 
with varied odds radio among ethnicities [41, 42], while 
missense SNP in CDKN2A exhibits significance only 
in Caucasians [43]. 6-MP is commonly used in ALL 
chemotherapy and can induce severe ADR events in some 
patients (mainly myelotoxicity), which can be largely 
explained by TPMT variants in Caucasians and blacks but 
not Asians due to the low variant allele frequency [15, 29]. 
Recently, missense SNP (i.e., rs116855232) in NUDT15 
has been linked to thiopurines-induced myelotoxicity in 
ALL as well as IBD by genome-wide association studies 
[2, 12]. Such association has been replicated in multiple 
independent follow-up studies by considering either 
myelotoxicity event or intolerance dose, and also exhibited 
ethnic specific mainly because the risk allele frequency is 
high in Asians and Hispanics (e.g., ~10% in Asians), but 
rare in Caucasians (0.2%) and not detected in blacks [12]. 
Therefore, rs116855232 of NUDT15 testing is of greater 
diagnostic value than TPMT genotyping for prospective 
risk assessment of thiopurines-induced myelotoxicity in 
Asian population.

Figure 1: Flow chart of included studies for the meta-analysis.
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In this study, we conducted a meta-analysis to 
estimate the impact of rs116855232 in NUDT15 on 
thiopurines-induced myelotoxicity as well as thiopurine 
intolerant. With allele model, T allele carriers have ~8-
fold higher risk compared to C allele carriers to develop 
leucopenia no matter in ALL or IBD. However, patients 
with CT genotype have a significant lower myelotoxicity 
rate (229 out of 322, 71.10%) than TT genotype (31 out 
of 33, 93.94%), thus lower risk to develop leucopenia 
compared to CC genotype in additive model, with  
OR = 7.60 (95% CI: 5.77–10.03) and 18.10 (95%  
CI: 6.34–51.68), respectively. Moreover, the ADR rate 

varied largely in patients with CT genotype range from 
43.48% to 100% (median = 72.22%), probably due to the 
starting dosage of thiopurines. Actually the incidence of 
thiopurines-induced myelotoxicity will increase with the 
higher standard dose (e.g., 35% vs. ~25% IBD patients 
suffered ADR in Suk-Kyun’s study compared with others), 
but the T allele frequency are similar within patients 
with ADR among studies. However, statistical analysis 
can’t be done due to the limited number of studies and 
complicated study design. For meta-analysis for thiopurine 
maintenance dose, high heterogeneity was observed in 
both IBD and ALL studies, possibly induced by drug 

Figure 2: Forest plot of association of rs116855232 with thiopurines-induced leukopenia in allele model. 

Figure 3: Forest plot of thiopurines intolerance dose associated with rs116855232 (T carriers compared to CC carriers).
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response variations in patients with CT genotype as 
described above. However, we didn’t use additive model 
to estimate the contribution of TT genotype to thiopurine 
intolerant compared to CC genotype, because 11 out of 13 
studies have no more than one patient with TT genotype 
of rs116855232. Overall, our results indicate the important 
diagnostic value of rs116855232 in NUDT15, especially 
patients with TT genotype. Moreover, Suk-Kyun Yang et 
al demonstrated the significant higher diagnostic value of 
rs116855232 as indicator for early (OR = 35.13) than late 
leukopenia (OR = 5.29), with accordingly sensitivity of 
89.40% (59/66) and 31.43% (88/280), respectively [2], 
suggesting not only the strong effect of rs116855232 on 
thiopurines-induced myelotoxicity, but also some other 
factors may be involved in late myelotoxicity events. 
Interestingly, additional SNPs in NUDT15 described by 
Takaya et al are related to final maintenance thiopurines 
dosage, including rs147390019 (only common in Hispanic 
[1.7%]) and rs186364861 (only common in Asian 
[1.6%]) [24]. Compound heterozygote of these SNPs 
illustrated similar effect on thiopurines dosage adjustment 
as homozygous variant of rs116855232, indicating more 
attention should be paid for all functional NUDT15 SNPs. 
However, meta-analysis is not applicable due to the 

lack of independent studies for these SNPs. In addition, 
interaction of TPMT and NUDT15 variants have also been 
considered in some studies, heterozygous of functional 
SNPs of both genes show significant lower intolerant 
thiopurine dose than mono-heterozygous SNPs, but higher 
than homozygous variants in either SNPs [24]. However, 
more independent studies are needed for validation 
because the sample size of patients with either compound 
heterozygous of NUDT15 variants or heterozygous 
genotype in both TMPT and NUDT15 is small. 

According to the previous report, NUDT15 is a nudix 
hydrolase which can degrade dGTP and dGDP in vitro, 
suggesting that it may reduce the active metabolites 
of thiopurine in vivo [44]. Indeed, loss-of-function of 
NUDT15 enzymatic activity induced by amino acid change 
of Arg139Cys (induced by rs116855232 risk allele), can 
largely explain thiopurines-induced myelotoxicity and 
thiopurines maintain dose. Other clinical relevant genetic 
variants were also conducted to estimate their impact on 
NUDT15 function. Interestingly, rs147390019 introduces 
amino acid change at the same position as rs116855232, 
resulting in Arg139His. As the crystal structure of 
wildtype NUDT15 and the importance of the position 
Arg139 in thiopurine has been characterized [45, 46], we 

Figure 4: Funnel plot of publication bias test for association between rs116855232 polymorphism and thiopurines-
induced myelotoxicity susceptibility.



Oncotarget13581www.impactjournals.com/oncotarget

further figured out that both Arg139Cys and Arg139His 
greatly impact on the crystal structure of NUDT15 by 
breaking α-helix of the active domain and reducing the 
stability of mutated NDUT15. However, it can’t explain 
the effect of Val18Ile (induced by rs186364861) and 
Val18_Val19insGlyVal (induced by rs554405994) since 
little change has been seen in NUDT15 structure with 
these altered amino acids (data not shown). Due to the 
possibility of prediction error, experimental crystallization 
and structure analysis for mutated NUDT15 is needed to 
determine the impact of these SNPs. Additionally, Takaya 
et al established stable cell lines and observed significant 
increase of TGTP/TGMP ratio as well as DNA-TG content 
in NUDT15 knockdown cells [24], raising a possibility that 
eQTL for NUDT15 may also be related to clinical ADR 
events. We thus conducted an eQTL analysis and screened 
out the top eQTL signal (i.e., rs554405994), which is 
predicted to be located at the promoter region with multiple 
binding sites of regulatory factors. Interestingly, this SNP 
has been described above as an inframe indel, inducing 

two amino acids (GlyVal) insertion between position 
18 and 19. Therefore, the risk allele of rs554405994 is 
related to lower expression level and decreased enzyme 
activity of NUDT15 [24], thus could be considered as 
another pharmacogenetic marker for thiopurine response. 
However, further clinical confirmation studies are needed 
to determine the improved sensitivity for thiopurines-
induced myelotoxicity after considering rs554405994, 
especially for the late ADR.

In conclusion, our meta-analysis demonstrates the 
strong significant association of the SNP (rs116855232) 
at NUDT15 with thiopurines-induced myelotoxicity 
susceptibility and thiopurines intolerance dose in either 
ALL or IBD. Although rs116855232 has already been 
labeled as pharmacogenomics marker in PharmGKB 
(www.pharmgkb.org), we considered the recommended 
level could be upgrade from 1B to 1A for thiopurines 
usage. Besides, more independent studies are needed to 
estimate the impact other functional SNPs of NUDT15 to 
guide the clinical usage of thiopurines. 

Figure 5: Impact of rs116855232 on protein structure and stability structures are illustrated for (A) wildtype,  
(B) Arg139Cys and (C) Arg139His for NUDT15, and subsequent protein stability has also been analyzed (D).
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MATERIALS AND METHODS

Literature and study acquisition

Systematically literature searching was carried 
out independently by two investigators from PubMed, 
Google Scholar and the Chinese National Knowledge 
Infrastructure (CNKI) date to July 27, 2016 according to 
following search terms: “rs116855232”, or “NUDT15”, or 
“thiopurine drugs” and “polymorphisms” and “NUDT15”, 
or “thiopurines” and “NUDT15”, or “polymorphism” 
and “NUDT15”. All papers were restricted to English  
(N = 30). Initially, checking of the titles as well as the 
abstracts was conducted to remove the duplicated articles 
along with papers that did not meet our subject. Then, we 
read through every remaining studies and retained valuable 
papers which meet the following criteria: (1) thiopurine 
drugs therapy based toxicity studies; (2) association of 
SNPs at NUDT15 with thiopurine drugs intolerance or 
susceptibility to toxicity was evaluated; (3) information 
of patient number was provided, including patients with 
or without ADR, respectively; (4) provided the genotype 
counts or sufficient data to impute the genotypes, (5) data 
without overlap (N = 11). When multiple publications 
reported on the same or overlapping data, only the 
publication with the most updated or detailed data was 
included. The literature screening flow presented in 
Figure 1. Neither Ethical approval nor patient consent was 

needed, because all the information was acquired from 
published studies.

Data extraction and verification

Using strict inclusion and exclusion criteria, detail 
information was extracted from each publications, 
including first author, ethnicity, sample size, and etc. 
6-MP dose was converted to AZA equivalent dose using a 
conversion factor of 2.08 [2], and Meeh-Rubner formula 
was used to unify the units into mg/m2. Corresponding 
authors were contacted with if datasets were not accessible 
or incomplete for the required data. For accuracy, all the 
information was double checked and reviewed by another 
investigator. Detail information about the included papers 
was listed in Table 1 and Supplementary Tables 3, 4 and 5.

Meta-analyses

By using Review Manager 5.3 software [34], we 
intended to analyze the association of rs116855232 
polymorphism with thiopurine induced leukopenia 
susceptibility, or thiopurines intolerance dose, with allele 
model (variant T allele vs. wildtype C allele), dominant 
model (TT+TC vs.CC), and recessive model (TT vs. 
TC+CC). Carriers of rs116855232 CC was defined as 
a reference group in SNP genetic models, while CT 
or TT was defined as “rs116855232 T carriers”. To 

Figure 6: eQTL and epigenetic analysis for NUDT15 SNPs (A) eQTL has been screened around NUDT15 locus and 
illustrated with online tool (i.e., LocusZoom); (B) association of NUDT15 expression with the top eQTL signal (rs554405994) was 
shown with boxplot; (C) Epigenomic signals at NUDT15 locus was illustrated by using online tool (i.e., Epigenome Browser).
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remove any heterogeneity caused by pharmacodynamic 
differences in thiopurine drugs sensitivity among the 
study populations, the thiopurine drugs maintenance 
dose (mean ± SD) in each genotype (including CT, TT, 
and T carriers, respectively) was normalized against the 
reference group [35]. Heterogeneity among those studies 
were evaluated by the Q statistic and the I2 statistic, of 
which Q approximately follows a χ2 distribution with k-1 
(k indicates the number of studies) degrees of freedom. 
P value was used to detect the significance level of 
heterogeneity. I2 = (Q-(k-1))/Q*100%, ranging from 
0–100%. I2 was considered as a critical value, when  
I2 < 50% and P > 0.1, fixed-effect model was used to 
calculate summary odds ratios (OR) and 95% confidence 
interval (95% CI), while the random-effect model should be 
employed under the circumstances of I2 > 50% and P < 0.1  
because of high heterogeneity. 

Crystal structure prediction and protein stability 
estimation

The initial three dimensional geometric coordinates 
of the X-ray crystal structure of NUDT15 (PDB code: 
5BON) were downloaded from the Protein Databank 
(PDB). The Val18Ile, Arg139His and Arg139Cys mutant 
models were constructed using the Build Mutants protocol 
of Discovery Studio 3.5 (Accelrys Inc., USA). Disulfide 
bridges of Arg139Cys mutant model was selected 
manually. Loop refinement protocol, which uses a looper 
algorithm to optimize the structure of a selected non-
terminal loop region of a protein structure, was performed 
to evaluate the protein structure change of the mutants. 
Mutation energy (stability) was calculated using pH-
dependent mode to investigate the effect of single-point 
mutations on protein stability.

Cis-eQTL analyses

Expression level of NUDT15 gene was obtained 
from public RNA-seq data resource of Lymphoblastoid 
cell lines for CHB/JPT (GSE11582) [36], and genotypes of 
SNPs (Chr13: 48582000-48622000, hg19 human genome 
version) around NUDT15 were obtained from the 1000 
genome project website (http://browser.1000genomes.
org/). SNPs with variant allele detected in less than 
three individuals were excluded. Genotype-expression 
association was assessed through a linear regression model 
for the available individuals (N = 447). Regional plots 
were constructed by plotting the negative logarithm of the 
P value for each SNP in a 11.2-kb window at the NUDT15 
locus using LocusZoom [37].

Abbreviations

AZA = azathioprine, 6-MP = 6-mercaptopurine, IBD 
= inflammatory bowel diseases, ALL = acute lymphoblastic 

leukemia, SNP = single nucleotide polymorphism, 95% 
CI = 95% confidence intervals, OR = odds ratios, eQTL = 
expression quantitative trait loci, CNKI = Chinese National 
Knowledge Infrastructure.
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