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ABSTRACT
Although several computational models that predict disease-associated lncRNAs 

(long non-coding RNAs) exist, only a limited number of disease-associated lncRNAs 
are known. In this study, we mapped lncRNAs to their functional genomics context 
using competing endogenous RNAs (ceRNAs) theory. Based on the criteria that 
similar lncRNAs are likely involved in similar diseases, we proposed a disease lncRNA 
prioritization method, DisLncPri, to identify novel disease-lncRNA associations. Using 
a leave-one-out cross validation (LOOCV) strategy, DisLncPri achieved reliable area 
under curve (AUC) values of 0.89 and 0.87 for the LncRNADisease and Lnc2Cancer 
datasets that further improved to 0.90 and 0.89 by integrating a multiple rank fusion 
strategy. We found that DisLncPri had the highest rank enrichment score and AUC 
value in comparison to several other methods for case studies of alzheimer's disease, 
ovarian cancer, pancreatic cancer and gastric cancer. Several novel lncRNAs in the 
top ranks of these diseases were found to be newly verified by relevant databases or 
reported in recent studies. Prioritization of lncRNAs from a microarray (GSE53622) 
of oesophageal cancer patients highlighted ENSG00000226029 (top 2), a previously 
unidentified lncRNA as a potential prognostic biomarker. Our analysis thus indicates 
that DisLncPri is an excellent tool for identifying lncRNAs that could be novel 
biomarkers and therapeutic targets in a variety of human diseases.

INTRODUCTION

In recent years, a large number of non-coding 
RNAs (ncRNAs) have been identified by large-scale 
genomic studies. A type of ncRNAs are called microRNAs 
(miRNAs) that act by destabilizing and repressing target 
mRNAs post-transcriptionally and are widely studied in 
several human diseases [1]. In contrast, only a small number 
of long non-coding (lncRNAs) (> 200 nucleotides in length) 
have been functionally characterized. Studies have shown 
that lncRNAs are involved in a wide range of biological 
functions, such as chromatin modification [2], the regulation 
of apoptosis and invasion [3] and genomic imprinting [4] as 
well as in many human diseases including cancers [5, 6].

Although many novel lncRNA-disease associations 
have been identified by in vivo or in vitro experimental 
methods, identifying new lncRNA-disease associations 
based on large scale experimental studies is expensive, 
complex and time-consuming. In addition, the lncRNA-
disease associations that are stored in the publicly 
available databases, LncRNADisease [7] and Lnc2Cancer 
[8] are fewer in number than the existing lncRNAs. 
Therefore, there is a need to develop better bioinformatic 
methods that accurately predict potential lncRNA-disease 
associations and analyze lncRNA functions in humans. 

Several bioinformatic methods have been used to 
predict novel lncRNA-disease associations. Based on 
lncRNA expression profiles, Chen and others proposed a 
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predicting method called LRLSLDA [9]. By integrating 
information from lncRNA and gene expression profiles, 
Liu and colleagues developed a computational framework 
to infer human disease-associated lncRNAs [10]. Although 
these methods increased the efficiency of disease-lncRNA 
discovery, their results varied tremendously depending 
on the type of expression data that was being analyzed 
due to spatio-temporal specificity of lncRNAs. Further, 
Yang and colleagues proposed a bipartite network based 
method for analysis of lncRNA-disease associations [11]. 
Zhou and others prioritized candidate disease-related 
lncRNAs by walking on the heterogeneous lncRNA and 
disease network [12]. Although network-based methods 
provided a functional view to study disease risk lncRNAs, 
the methodology evaluating functional similarity is 
time-consuming when large networks are analyzed. 
Considering the limitations of traditional network 
methods, Chen and others developed the IRWRLDA 
method which relies on lncRNA expression and disease 
semantic similarity [13]. Recently, an integrated method, 
named KATZLDA was developed to uncover potential 
lncRNA-disease associations by integrating known 
lncRNA-disease associations, lncRNA expression profiles, 
lncRNA functional similarity, disease semantic similarity, 
and Gaussian interaction profile kernel similarity [14]. 
Although this method provides a comprehensive ranked 
list of lncRNAs based on heterogeneous datasets, only few 
lncRNA candidates are well-annotated. Chen and others 
proposed a novel calculation model called LNCSIM, that 
measures the similarity between two lncRNA-associated 
disease groups and quantifies the functional similarity 
of each lncRNA pair [15]. Further, Chen and colleagues 
developed two improved methods, ILNCSIM [16] and 
FMLNCSIM [17], to predict candidate disease associated 
lncRNAs based on the assumption that lncRNAs with 
similar biological functions are involved in similar 
diseases. These methods have provided valuable results 
for studying the pathological roles of lncRNAs. However, 
experimentally confirmed disease-lncRNA associations 
are limited [18]. Also, developing new and effective 
methods by integrating data from multiple sources to 
predict potential disease risk lncRNAs is challenging.

Recent studies have reported that lncRNAs function 
as competing endogenous RNAs (ceRNAs) and compete 
with other RNA transcripts [19–21]. By sharing common 
miRNA-binding sites with mRNAs, lncRNAs can compete 
with other genes for miRNA molecules, thereby relieving 
miRNA-mediated target repression. This type of lncRNA-
associated ceRNAs have been widely observed in human 
diseases [22]. Recently, several studies have performed 
large scale transcriptional analysis to identify potential 
lncRNA associated ceRNA interactions and further 
investigate lncRNA functions based on experimental and 
RNA sequencing data. For example, starBase v.2.0 applies 
ceRNA function web tools to predict the function of 
ncRNAs and provides Pan-Cancer ceRNA networks [23]. 

Another lncRNA-associated ceRNA database, lnCeDB, 
provides tissue-specific information on ceRNAs [24]. 
LncACTdb identifies functional lncRNA-miRNA-mRNA 
interactions through an integrated pipeline and indicates 
potential cancer prognostic ceRNA biomarkers [25]. Such 
studies help infer lncRNAs functions and their regulation 
in diverse human diseases [26]. However, very few studies 
that predict lncRNA-disease associations based on ceRNA 
theory exist. The ceRNA theory can improve current 
disease lncRNA prediction methods by evaluating lncRNA 
similarities through functional genomics data and bring 
new insights into ceRNA regulation in diseases.

In this study, our aim was to develop an improved 
disease associated lncRNA prioritization method named 
DisLncPri that integrated both ceRNA theory and 
functional genomics data. Our comprehensive analysis 
shows that the DisLncPri method helps not only in 
improving the understanding of lncRNAs regulation at 
the transcriptional level, but also result in novel biomarker 
discovery and therapeutic development of disease.

RESULTS

Systematic analysis of the functional similarity of 
disease-associated lncRNAs using ceRNA theory

In this study, we used the ‘guilt-by-association’ 
strategy to identify lncRNAs based on the ceRNA 
interactions with their competing mRNA partners [27–29]. 
This strategy had been used in our previous work [25] and 
other web servers like Linc2GO [30] and starBaseV2.0 
[23]. We identified the lncRNA-mRNA ceRNA pairs by 
an integrated pipeline and experimentally validated the 
disease-associated lncRNAs from the LncRNADisease 
database. Through its competing mRNAs, each disease-
associated lncRNA was mapped to the functional GO 
terms from three orthogonal ontologies (BP, MF and CC). 
For a disease having ‘n’ associated lncRNAs (n≥2), we 
randomly generated a set of ‘n’ lncRNAs and calculated 
the functional similarity (FS) score between each of the 
lncRNA pairs in the validated and the random groups, 
respectively. The FS score indicates the functional 
similarity between two gene products by combining the 
semantic similarities of their associated terms [31]. We 
found that experimentally validated disease lncRNA 
groups had significant higher FS score than random groups 
in each of the three orthogonal ontologies (Figure 1A–1C, 
Mann-Whitney U-test), indicating a high functional 
similarity between disease-associated lncRNAs. 

Based on this strategy, we performed functional 
analysis on five types of biological networks (HPRD, 
BIND, MINT, BioGrid and IntAct) and an integrated 
network (OPHID). The lncRNAs were mapped to the 
biological network through their respective competing 
mRNA products. The lncRNAs were treated as nodes 
within a large undirected graph and the FS score of these 
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nodes was determined. As previously observed for the GO 
analysis, we found that experimentally validated disease 
lncRNA groups had a higher FS score than the random 
groups in each of the network (Figure 1D–1I, Mann-
Whitney U-test), indicating that the disease lncRNAs 
were close to each other. Previous studies have indicated 
that different lncRNAs might have similar functions by 
performing synergistic regulation in the same network 
module [25] or functional cluster [32]. Based on these 
observations, we concluded that lncRNAs associated 
with the same disease were involved in similiar biological 
functions.

Development of DisLncPri

Based on the above analysis, we hypothesized that 
the property of functional similarity could be used as an 
advantage in prioritization of candidate disease related 

lncRNAs and developed the DisLncPri method (Figure 2). 
Through their competing mRNAs, lncRNAs were mapped 
to the functional context such as GO terms and biological 
network. There were three major steps in DisLncPri. In 
the first step, known disease-associated lncRNAs (seed 
lncRNAs) and candidate lncRNAs were mapped to three 
orthogonal function ontologies (BP, MF and CC) of GO 
(Figure 2A). For every candidate lncRNA, the average FS 
scores were calculated between the candidate and the seed 
group based on the GO function and the candidate lncRNA 
was ranked according to the FS. In the second step, the 
seed lncRNAs and candidate lncRNAs were mapped to 
six biological networks and the average FS score was 
calculated for each candidate based on the network and 
ranked accordingly (Figure 2B). In the third step, the nine 
ranked lncRNA lists from the previous two steps were 
combined for each candidate lncRNA into a single list 
using multiple rank fusion method (Figure 2C). For each 

Figure 1: Systematic analysis of the functional similarity for known disease-associated lncRNAs. (A–C) Comparison of 
FS scores between experimentally validated disease lncRNAs (red points) and randomly selected lncRNAs (green points) based on three 
orthogonal ontologies of GO. (D–I) Comparison of FS scores between experimentally validated disease lncRNAs (red points) and randomly 
selected lncRNAs (green points) based on six biological networks. Experimentally validated disease lncRNA groups had significant higher 
FS score than random groups. The horizontal bars indicate the mean FS score.
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rank, the Q statistic method generated an integrated score. 
This rank indicated the overall priority for each candidate 
lncRNA.

Performance of DisLncPri

To assess the ability of DisLncPri to recognize 
experimentally validated lncRNAs of corresponding 
diseases, we performed a large scale leave-one-

out cross validation (LOOCV) analysis based on 
experimentally verified disease-lncRNA associations 
from the LncRNADisease database [7]. We calculated 
sensitivity (frequency of testing lncRNAs that were 
ranked above a particular cut-off point) and specificity 
(the percentage of lncRNAs ranked below the cut-off 
point) for the rank positions. Then, we plotted receiver 
operating characteristic (ROC) curves based on the 
functional properties of the testing lncRNAs to facilitate 

Figure 2: A flowchart of DisLncPri. There are three major steps in DisLncPri: (A) The candidate lncRNA list is ranked according to 
their FS score with known seed disease lncRNAs based on the three orthogonal function ontologies of GO. (B) With a similar strategy as in 
step A, the candidate lncRNA list is ranked according to their FS score based on the context of six biological networks. (C) The nine ranked 
lncRNA lists from steps (A and B) are combined for each candidate lncRNA into a single list using multiple rank fusion method. LncRNAs 
are indicated as blue circles and mRNAs are indicated as yellow circles.
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the comparison between different functional genomics 
data (Figure 3). The area under curve (AUC) value was 
then measured to evaluate algorithm performance. AUC 
value of 1.0 suggests that the lncRNA being tested is 
ranked on top whereas a value of 0.5 indicates that the 
lncRNA being tested is randomly ranked along the list. 
For every functional genomics dataset tested, DisLncPri 
achieved a very reliable AUC value ranging from 0.83 to 
0.89 (Figure 3A–3I). This indicated that DisLncPri was a 
sensitive and specific method of ranking known disease 
lncRNAs regardless of the data source used.

We further tested the stability of DisLncPri by 
performing the LOOCV analysis on the Lnc2Cancer 
database that we had previously developed [8]. For 
each functional genomics data source, DisLncPri 

achieved a reliable AUC value ranging from 0.72 to 0.88 
(Supplementary Figure S1). These results showed that 
the DisLncPri method was efficient in recovering known 
disease-lncRNA associations from a candidate disease-
related lncRNA set.

Improvement of DisLncPri

Although the disease lncRNAs that were tested 
ranked highly in the candidate list, our analysis 
generated distinct prioritizations for multiple functional 
genomics data sources. In order to minimize variability 
and increase ranking performance, previous studies had 
used an integrating strategy to deal with multiple ranks 
from heterogeneous data sources [33, 34]. We integrated 

Figure 3: ROC curves for LOOCV analysis. (A–C) Three orthogonal ontologies of GO. (D–I) Six biological networks. DisLncPri 
achieved a reliable AUC value from 0.83 to 0.89.
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the Q statistic rank fusion method [33] in the DisLncPri 
framework to minimize the ranking order discrepancy and 
improve the prioritization efficiency. We had used this 
strategy previously to prioritize miRNA target genes [35] 
and cancer-associated lncRNA-mediated feed-forward 
loops [36]. Based on this strategy, DisLncPri integrated 
the nine ranked lists from different functional genomics 
datasets in LOOCV analysis of LncRNADisease. The 
final overall list we obtained was better than all other 
ranks shown in Figure 3 and yielded the highest AUC 
value of 0.90 (overall ROC plot in Figure 4A), indicating 
improved efficiency of DisLncPri. We further plotted ROC 
curves for more than 20 individual diseases based on the 
LOOCV analysis and obtained highly reliable AUC values 
for melanoma (0.98), kidney cancer (0.96) and glioma 
(0.94) as shown in Figures 4B–4Y. When we applied the 
DisLncPri to integrate the multiple rank list of LOOCV 
analysis based on Lnc2Cancer dataset, the integrated rank 
list was better than all the other rank lists and yielded the 
highest AUC value of 0.89 (Supplementary Figure S2).

Comparsion with other methods

We, then compared DisLncPri to other 
computational methods that are based on the assumption 
that similar lncRNAs tend to associate with similar 
diseases [37]. Several algorithms are used to evaluate 
similarity between lncRNAs. For example, the expression 
similarity (ExpSim) algorithm is based on expression 
profiles [9, 10]; the gaussian interaction profile kernel 
similarity (GaussSim) algorithm is based on known 
disease-lncRNA relationships [14, 38]; the functional 
similarity (FunSim) algorithm is based on the structure 
of a directed acyclic graph (DAG) in the disease/gene 
ontology [15] and biological networks [11, 12, 38]. Recent 
studies have also proposed using the hypergeometric 
distribution test (HyperTest) algorithm to infer disease-
lncRNA [10, 39] and disease-miRNA [40] associations 
by evaluating the significance of common targets. Our 
strategy was to prioritize all the candidate lncRNAs for a 
certain disease using DisLncPri and compare the analysis 
with the ExpSim, GaussSim, FunSim and HyperTest 
algorithms that have been used by majority of disease-
associated lncRNA prioritization methods. We manually 
checked the predicted lncRNA lists of different methods 
to find the rank positions of experimentally verified 
cases in the literature. We then analyzed the case studies 
of several high morbidity and mortality diseases like 
alzheimer’s disease, ovarian cancer, pancreatic cancer 
and gastric cancer (Supplementary Table S1). For each 
disease, known disease-associated lncRNAs were used 
as seed lncRNAs, and all the other unknown lncRNAs 
were used as candidates for prioritization. Since different 
methods could result in different sized prediction lists, we 
calculated the enrichment score (ES) values based on the 
rank positions of experimentally verified disease lncRNAs 

for comparison [35]. ES value was defined as log2 (n/2/
rank) for a ranked list of n lncRNAs. We found that 
DisLncPri method had a higher ES score than other similar 
methods (Figure 5A). Further, performance evaluation was 
carried out in terms of sensitivity and specificity, and the 
ROC curves were plotted (Figure 5B). LOOCV analysis 
was then performed to compare DisLncPri with others. We 
found that DisLncPri had the highest AUC value (0.90) 
in the LOOCV analysis (Supplementary Figure S3). 
The ROC curves for the different diseases are shown 
in Supplementary Figures S4–S7. The analysis showed 
that the DisLncPri method had the highest AUC value in 
comparison to other methods.

Case studies of human diseases

To demonstrate the ability of our DisLncPri method 
in predicting novel disease-associated lncRNAs, we 
tested case studies of four important diseases (alzheimer’s 
disease, ovarian cancer, pancreatic cancer and gastric 
cancer). Prediction results for the top 20 ranks were 
manually verified by a literature survey (Table 1). Detailed 
analysis for each disease is shown below. 

Alzheimer’s disease (AD) is the most prevalent 
cause of dementia characterized by progressive loss of 
memory, cognitive and intellectual capacity [41]. In the 
DisLncPri predicting results, we found 3 novel lncRNAs 
in top 20 (MEG3 at 1, PVT1 at 6, and LINC01616 at 
13) that were not known to be associated with AD in 
the LncRNADisease database although being linked to 
AD in recently reported studies. MEG3 was reported to 
activate and improve the binding affinity to target gene 
promoter of TP53 [42], which is a potential biomarker 
for diagnosis of AD [43]. PVT1 was shown to regulate 
c-Myc gene transcription over a long distance [44] and 
the c-Myc pathway is a key player in progression of AD 
[45]. In a previous study, LINC01616 was downregulated 
in AD patients compared with controls [46]. Functional 
analysis indicated that LINC01616 was associated 
with the protein ubiquitination pathway. The ubiquitin-
proteasomal system pathway is altered in AD brains and 
multiple genes in this pathway have been implicated in 
AD pathogenesis [47].

Ovarian cancer is the most lethal gynecological 
cancer reported to metastasize frequently in women 
globally [48]. In the DisLncPri predicting result list, 
we found 4 novel lncRNAs in top 20 (GAS5 at 1, 
MALAT1 at 4, MEG3 at 6 and HOTAIR at 9) that 
were recently associated with ovarian cancer. GAS5 
was shown to be downregulated and characterized to 
inhibit cell proliferation, migration and invasion and 
promote apoptosis in epithelial ovarian cancer cells [49]. 
A recent study found that MALAT1 was deregulated in 
ovarian cancer and postulated to play a suppressive role 
[50]. MEG3 was shown to activate p53 and involved in 
progression of various types of cancers. Ectopic expression 
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Table 1: Novel lncRNA-disease associations confirmed by literature survey in the top 20 ranked 
list of DisLncPri

Disease lncRNA Ensembl ID Rank
Alzheimer’s disease MEG3 ENSG00000214548 1

PVT1 ENSG00000249859 6
LINC01616 ENSG00000261340 13

Ovarian cancer GAS5 ENSG00000234741 1
MALAT1 ENSG00000251562 4
MEG3 ENSG00000214548 6
HOTAIR ENSG00000228630 9

Pancreatic cancer GAS5 ENSG00000234741 4
AP000221.1 ENSG00000229962 11
CTC-338M12.5 ENSG00000250222 17

Gastric cancer FRGCA ENSG00000236663 1
MALAT1 ENSG00000251562 13
MEG3 ENSG00000214548 20

Figure 4: ROC curves for DisLncPri by integrating different functional genomics dataset. (A) The overall ROC curve 
yielded the highest AUC value of 0.90. (B–Y) Case studies for 24 complex diseases in LOOCV analysis after improvement of DisLncPri. 
HTT: Hereditary Haemorrhagic Telangiectasia.
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of MEG3 was reported to suppress the proliferation and 
growth of ovarian cancer cells and promote apoptosis [51]. 
Overexpression of HOTAIR was recently shown to predict 
poor patient prognosis and promote tumor metastasis in 
epithelial ovarian cancer [52]. 

Pancreatic cancer has a high mortality rate and 
the 5-year relative survival rate is extremely low [53]. 
The DisLncPri data showed several novel lncRNAs 
associated with pancreatic cancer. These included GAS5 
at 4, AP000221.1 at 11 and CTC-338M12.5 at 17. A 
previous study identified the crucial role for GAS5 in 
the molecular etiology of pancreatic cancer and as a 
potential therapy target [54]. AP000221.1 and CTC-
338M12.5 were shown to be differentially expressed in a 
drug-resistant pancreatic cancer cell line with increasing 
dosages of gemcitabine [55] suggesting that they may 
be good diagnostic or prognostic biomarkers as well as 
therapeutic targets. 

Gastric cancer is one of the most commonly 
diagnosed cancers and the second leading cause of 
cancer death worldwide [56]. We found 3 novel lncRNAs 
in the top 20 (FRGCA at 3, MALAT1 at 13 and MEG3 
at 20) that were recently associated with gastric cancer. 
Knockdown and overexpression experiments of FRGCA 
showed that it played a critical role in gastric cancer 
progression and was a potential therapeutic target [57]. 
MALAT1 was found to be highly expressed in gastric 
cancer cells and probably promoted GC cell proliferation 
partly by regulating SF2/ASF [58]. MEG3 was identified 
as a competing endogenous RNA to regulate gastric 
cancer progression and ectopic expression of MEG3 
in HGC-27 and MGC-803 cells was shown to inhibit 
cell proliferation, migration, invasion, and promote 
apoptosis [59]. 

Analysis of high-throughput datasets

High throughput microarray and RNA sequencing 
analysis are generally performed to obtain whole-
transcriptome sequences and detect the less-abundant 
mRNA and lncRNA transcripts in disease and paired 
normal samples. The drawback of these analyses is 
the large amount of differently expressed mRNAs/
lncRNAs obtained that needs to be validated to eliminate 
false positives before any biological analysis [60]. For 
example, oesophageal cancer is one of the most deadly 
forms of disease worldwide. In China, over 90% of the 
oesophageal cancer cases are oesophageal squamous 
cell carcinoma (OSCC) that is highly aggressive and 
malignant with poor prognosis [61]. A recently published 
dataset (GSE53622) provided lncRNA expression profile 
of OSCC and adjacent normal tissues from 60 patients. 
In this dataset, 1834 differentially expressed lncRNAs 
were found at the threshold of 0.05 p-value (Bonferroni 
corrected Student’s t test) and 980 differentially expressed 
lncRNAs at a stringent threshold of 0.01. In such a 
scenario, it is hard to choose appropriate candidates for 
further biological analysis. In order to reduce the false 
positives, we used DisLncPri to prioritize the lncRNA lists 
resulting from the expression profile of GSE53622. Three 
well-annotated lncRNAs (H19, HOTAIR and ANRIL) 
from lncRNADisease database were used as known 
OSCC-related seed lncRNAs. These three lncRNAs are 
associated with prognosis of OSCC and other cancers 
[62–64]. Subsequently, we examined whether the top 
lncRNAs prioritized by DisLncPri were related with 
OSCC patient prognosis. We performed univariate Cox 
regression analysis on the top 20 prioritized lncRNAs 
based on their expression value across 60 OSCC patients. 

Figure 5: Comparison of DisLncPri analysis with other methods. (A) DisLncPri method had a higher ES score than other similar 
methods. Error bars are 95% confidence Interval. (B) DisLncPri had the highest AUC value in comparsion with others. 
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We found 8 lncRNAs that had significant effects on 
OSCC patient survival (Table 2, P < 0.05). To evaluate the 
association between each of the 8 lncRNAs with OSCC 
prognosis, we performed Kaplan-Meier survival analysis 
and found 5 that divided the 60 OSCC patients into two 
groups with either high- and low-survival rates (Figure 
6A–6E). To further test whether these lncRNAs could 
be used as potential prognostic biomarkers, we applied 
them to an independent OSCC dataset (GSE53624) that 
had 119 patients with well-annotated clinical follow-
up data. We found lncRNA ENSG00000226029 (top 2 

in the list) that had significant effects on OSCC patient 
survival in the independent dataset (P = 0.03, Coefficient 
= 2.43). Kaplan-Meier survival analysis revealed that this 
lncRNA also divided the 119 OSCC patients into high- 
and low-risk groups with significantly different survival 
times (Figure 6F, P < 0.05). To the best of our knowledge, 
lncRNA ENSG00000226029 has not been reported to be 
related with OSCC in previous studies. Thus, our analysis 
identified lncRNA ENSG00000226029 as a novel OSCC 
risk lncRNA that could be used as a novel prognostic 
biomarker.

Table 2: Univariate Cox regression analysis showing 8 lncRNAs that significantly affect OSCC 
patient survival (P < 0.05)

Rank LncRNAs Ensembl ID HR(95%CI) Coefficient P-value
1 CTB-113D17.1 ENSG00000272568 5.20(2.51–10.75) 1.65 8.89E–06
2 RP4-798A10.2 ENSG00000226029 9.75(3.59–26.49) 2.28 7.93E–06
4 MIR202HG ENSG00000166917 6.05(2.13–17.14) 1.80 7.08E–04
6 TFAP2A-AS1 ENSG00000229950 0.57(0.37–0.88) −0.56 1.10E–02
12 SCGB1B2P ENSG00000268751 0.23(0.07–0.79) −1.47 1.96E–02
13 RP11-510M2.2 ENSG00000247324 1.91(1.02–3.59) 0.65 4.32E–02
19 AL133493.2 ENSG00000233922 0.17(0.06–0.48) −1.78 9.10E–04
20 MALAT1 ENSG00000251562 2.90(1.11–7.60) 1.07 3.02E–02

Figure 6: Kaplan-Meier survival analysis for lncRNAs as predicted by DisLncPri. (A–E) DisLncPri predicted five risk 
lncRNAs which could significantly divide the 60 OSCC patients into two groups with high- and low-survival rates. (F) The lncRNA 
ENSG00000226029 (top 2 in the list) had significant effects on OSCC patient survival in another independent dataset.
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DISCUSSION

In our previous study, we performed a framework 
to prioritize cancer risk miRNAs using GO data only 
[65]. Further, we developed a miRNA target prioritization 
method by integrating biological process of GO and the 
HPRD network [35]. Although successful in context of 
miRNAs, this framework did not highlight contributions 
from other functional data sets. In this work, we proposed 
an improved disease associated lncRNA prioritization 
method named DisLncPri in which lncRNAs were mapped 
to nine functional genomics contexts through their mRNA 
interactions. We fused multiple functional data sets and 
used Q statistic method to integrate distinct functional 
correlation prioritization ranks into a single rank. This 
strategy was used to discover the missing annotated 
lncRNAs and minimize bias for well-annotated cases.

We then performed systematic analysis to infer 
lncRNA relationships and found high functional similarity 
between experimentally validated lncRNAs of the same 
disease. To test whether this functional similarity could be 
used as an advantage in prioritization of candidated disease 
related lncRNAs, we performed a large scale leave-one-
out cross validation strategy across different functional 
contexts. Our method achieved highly AUC values up to 
0.90 and 0.89 for the LncRNADisease [7] and lnc2Cancer 
[8] datasets, respectively. Then, we performed case studies 
of high morbidity and mortality diseases like alzheimer’s 
disease, ovarian cancer, pancreatic cancer and gastric 
cancer (Supplementary Table S1). We manually checked the 
predicted lncRNA lists of different methods and found that 
several novel lncRNAs in the top rank were newly verified 
by relevant databases or in recent experimental studies. 

The major drawback of high-throughput analyses 
is the large amount of differentially expressed genes that 
requires extensive validation analysis before performing 
biological experiments [60]. To reduce the false positive 
lncRNAs from disease-control microarray analysis, we 
used DisLncPri to prioritize lncRNAs from a microarray 
(GSE53622) of oesophageal cancer. In the list of top 20, 
we found eight lncRNAs that were significantly associated 
with the prognosis of OSCC patients. Survival analyses 
demonstrated that lncRNA ENSG00000226029 (top 2) 
also had significant effects on OSCC patient survival in 
an independent dataset (GSE53624) and therefore can 
be a key prognostic biomarker for OSCC. Our analysis 
therefore suggests that the DisLncPri method not only 
will improve the understanding of lncRNA-disease 
associations, but also help discover and authenticate novel 
biomarkers and therapeutics.

MATERIALS AND METHODS

Identification of potential ceRNA interactions

Putative miRNA-lncRNA interactions were 
identified using miRanda algorithm (version Nov, 2010) 

with default parameters (Score ≥140 and Energy≤7.0) 
[29]. The human mature miRNA sequences were 
downloaded from the miRBase (release 21) [66]. The 
lncRNA sequences were obtained from the GENCODE 
database (v21) [67]. A total of 15877 lncRNAs were used 
as candidates in our framework. Furthermore, the AGO-
CLIP sequencing datasets [23] were used to identify 
experimentally supported cases from the set of predicted 
miRNA-lncRNA interactions. A total of 1007618 unique 
binding site clusters were compiled in humans. The 
miRNA-mRNA interactions were downloaded from two 
highly reliable online miRNA reference databases—
the TarBase (v6) [68] and the mirTarBase (release 
4.5) [69], which store manually curated collections of 
experimentally supported miRNA targets. After combining 
datasets, 43497 validated non-redundant human miRNA-
target pairs were assembled for this study.

To identify the lncRNA-mRNA ceRNAs, a 
hypergeometric test was used to evaluate the significance 
of the shared common miRNAs between each lncRNA 
and mRNA. If the genome context had a total number of 
‘N’ miRNAs, of which ‘K’ and ‘M’ are the numbers of 
miRNAs associated with the current lncRNA and mRNA, 
respectively and ‘x’ is the common miRNA number shared 
by the lncRNA and mRNA, the P value was calculated as 
follows. An adjusted p < 0.01 by Benjamini and Hochberg 
correction was used as the threshold.

0

( )( )1
( )

K N Kx
t M t

N
t M

P
−
−

=

= −∑ ,         (1)

Leave-one-out-cross validation

To test the performance of DisLncPri, we carried out 
a large scale LOOCV analysis based on experimentally 
verified disease-lncRNA associations. For a given 
disease with a number of ‘n’ experimentally verified 
lncRNAs, these ‘n’ lncRNAs were used as seed sets. In 
each validation run, we selected an lncRNA as the test 
case from the ‘n’ seed lncRNAs one by one. Further, the 
test case lncRNA was deleted from seed sets and added 
to 99 randomly generated lncRNAs without any reported 
association with the analyzed disease. This group of 
100 lncRNAs was used as the candidate set. DisLncPri 
then used the ‘n-1’ seed lncRNAs to prioritize the 100 
candidate lncRNAs (including the 1 test case) based on 
their average FS scores with seed lncRNAs. We localized 
the rank position of the test case in each validation 
run. These procedures were applied to each of the nine 
functional genomics data (three orthogonal ontologies of 
GO and six biological networks). 

Functional similarity score

For a given disease with ‘n’ known lncRNAs (dl-
1,... ,dl j,...,dl n) and a set of ‘m’ candidate lncRNAs (cl 1,... 
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,cl i,...,cl n), the FS values between each ‘cl ’ and ‘dl ’ pair 
were calculated based on the context of GO and biological 
network, respectively. For each of the candidate lncRNAs, 
a number of ‘n FS’ were generated and the average of all 
the ‘n FS’ was calculated as final FS score. Further, the 
candidate lncRNAs were ranked based on the final FS 
(Supplementary Figure S8).

For a candidate lncRNA having ‘m’ competing genes 
(clg1,…,clgi…clgm) and a known disease lncRNA having ‘n’ 
competing genes (dlg1,…,dlgi…dlgn), the FS score between 
these two lncRNAs can be calculated as the average value 
of ‘m x n FS’ scores between each gene pairs:

1 1
/( )

m n

ij
i j

FS FS m n
= =

= ×∑ ∑ ,  (2)

In the context of GO annotation, the FS score 
between two genes was previously defined [70] and 
used as the information content (IC) value of the most 
informative common ancestor among the terms mapped 
(Supplementary Figure S9). For two genes i and j, with 
GO terms, a and d as their common ancestors, the IC 
values for a and d terms were calculated as: 

( ) log , ( ) loga dn nIC a IC dN N= − = − ,  (3)

 ‘na’ is the number of genes mapped to term ‘a’, ‘nd’ 
is the number of genes mapped to term ‘d’, and ‘N’ is the 
total number of genes in the whole human genome. The 
FS score for two genes ‘i’ and ‘j’ is defined as max(IC (a), 
IC (d)), which is the most informative common ancestor 
term of ‘i ‘and ‘j’. 

As previous studies have indicated that functionally 
related biological molecules tend to be implicated in the 
same network module or close to each other, the functional 
similarity for the two nodes can be evaluated by their 
topological relationship [12, 35]. In context of the biological 
network, the FS score between two gene nodes was defined 
as the reciprocal of shortest path (Supplementary Figure 
S10). A short path between two gene nodes will lead to a 
higher FS score thus indicating high functional similarity. 
Dijkstra’s algorithm was used to calculate the shortest path 
between two nodes in the network.

Multiple data rank fusion

We calculated the overall ranks from separate 
lncRNA lists using the following Q statistic formula, used 
in previous multiple rank fusion studies [33, 35]: 

1
1 2 0 1

1
( , ,... ) !,  1,  ( 1)
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i ik i

N N k N k
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VQ r r r V N V V r
i

− −
− +
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where r1 is the rank ratio for data source ‘i’, N is the 
number of data sources used and r0 = 0.

Survival analysis

Univariate Cox regression analysis was used to 
identify lncRNAs that significantly impacted patient 
survival (P < 0.05). The Kaplan-Meier survival analysis 
was performed for the two groups of patients and 
statistical significance was assessed using the log-rank test 
(P < 0.05). All analyses were performed based on R 3.2.2 
framework.

Biological network datasets

We downloaded biological datasets from six 
databases: HPRD (v9.0) [71], BIND (v1.0) [72], MINT 
(v2.5) [73], BioGrid (v3.1.90 ) [74], IntAct (v2.0) [75] and 
OPHID (v1.95) [76]. To deal with the network redundancy, 
self-loops of one node and round-trips between two nodes 
were refined into one interaction. Detailed information of 
nodes and interactions are shown in Supplementary  Table 
S2. Cytoscape software (v3.1.1) was used to illustrate and 
analyze the properties of the networks (Supplementary 
Figures S11A–S11F and S12A–S12F).

LncRNA expression profiles

The genome-wide lncRNA expression profiles 
across different human tissues were derived from the 
NONCODE database [77] that contains 16 tissues of the 
HumanBodyMap 2.0 data (ENA archive: ERP000546) 
and eight cell lines (GSE30554). LncRNA expression 
files of two independent oesophageal cancer datasets 
(GSE53622, GSE53624) were downloaded from the GEO 
database. The probe sets were re-annotated to the human 
genome by BLAST method with alignment score of 100% 
identity. The mean expression of the different array probes 
was calculated to infer their expression levels. Patients 
with well-annotated clinical follow-up information were 
retained for survival analysis.

LncRNA-disease associations

Known lncRNA-disease associations were 
downloaded from the LncRNADisease and the Lnc2Cancer 
databases. After deleting duplicate records and mapping 
lncRNA name to Ensembl ID, we found 453 distinct 
experimentally supported lncRNA-disease associations 
for 171 lncRNAs and 182 diseases in LncRNADisease 
database and 625 distinct experimentally supported 
lncRNA-disease associations for 295 lncRNAs and 87 
cancers in Lnc2Cancer database. 



Oncotarget4653www.impactjournals.com/oncotarget

CONFLICTS OF INTEREST

None.

FUNDING

This work was supported by the National High 
Technology Research and Development Program of 
China [863 Program, 2014AA021102], the National 
Program on Key Basic Research Project [973 Program, 
2014CB910504], the National Natural Science Foundation 
of China [91439117, 61473106, 31401090 and 31601080], 
the funds for Creative Research Groups of the National 
Natural Science Foundation of China [81421063], the 
Postdoctoral Science Foundation of China [2015M571432, 
2016T90308, 2016M600258 and LBH-Z14148], Harbin 
Medical University Scientific Research Innovation Fund 
[2016JCZX47], Harbin Special Funds for Innovative 
Talents of Science and Technology Research Project 
[RC2016QN003028], and Yu Weihan Outstanding Youth 
Training Fund of Harbin Medical University. 

REFERENCES

1. Bartel DP. MicroRNAs: target recognition and regulatory 
functions. Cell. 2009; 136:215–233.

2. Bernstein E, Allis CD. RNA meets chromatin. Genes Dev. 
2005; 19:1635–1655.

3. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, 
Mattick JS, Perera RJ. The melanoma-upregulated long 
noncoding RNA SPRY4-IT1 modulates apoptosis and 
invasion. Cancer Res. 2011; 71:3852–3862.

4. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, 
Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. 
Kcnq1ot1 antisense noncoding RNA mediates lineage-
specific transcriptional silencing through chromatin-level 
regulation. Mol Cell. 2008; 32:232–246.

5. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, 
Jurisica I, Andrulis IL, Tsao MS, Penn LZ. The c-Myc 
oncogene directly induces the H19 noncoding RNA by 
allele-specific binding to potentiate tumorigenesis. Cancer 
Res. 2006; 66:5330–5337.

6. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, 
Ansell PJ, Zhao J, Weng C, Klibanski A. Activation of 
p53 by MEG3 non-coding RNA. J Biol Chem. 2007; 
282:24731–24742.

7. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, 
Yan G, Cui Q. LncRNADisease: a database for long-non-
coding RNA-associated diseases. Nucleic Acids Res. 2013; 
41:D983–986.

8. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, 
Guo M, Yue M, Wang L, Li X. Lnc2Cancer: a manually 
curated database of experimentally supported lncRNAs 
associated with various human cancers. Nucleic Acids Res. 
2016; 44:D980–985.

 9. Chen X, Yan GY. Novel human lncRNA-disease 
association inference based on lncRNA expression profiles. 
Bioinformatics. 2013; 29:2617–2624.

10. Liu MX, Chen X, Chen G, Cui QH, Yan GY. A 
computational framework to infer human disease-associated 
long noncoding RNAs. PLoS One. 2014; 9:e84408.

11. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B. 
A network based method for analysis of lncRNA-disease 
associations and prediction of lncRNAs implicated in 
diseases. PLoS One. 2014; 9:e87797.

12. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, 
Zhou H, Sun J. Prioritizing candidate disease-related long 
non-coding RNAs by walking on the heterogeneous lncRNA 
and disease network. Mol Biosyst. 2015; 11:760–769.

13. Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: 
improved random walk with restart for lncRNA-disease 
association prediction. Oncotarget. 2016; 7:57919–57931. 
doi: 10.18632/oncotarget.11141.

14. Chen X. KATZLDA: KATZ measure for the lncRNA-
disease association prediction. Sci Rep. 2015; 5:16840.

15. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. Constructing 
lncRNA functional similarity network based on lncRNA-
disease associations and disease semantic similarity. Sci 
Rep. 2015; 5:11338.

16. Huang YA, Chen X, You ZH, Huang DS, Chan KC. 
ILNCSIM: improved lncRNA functional similarity 
calculation model. Oncotarget. 2016; 7:25902–25914. doi: 
10.18632/oncotarget.8296.

17. Chen X, Huang YA, Wang XS, You ZH, Chan KC. 
FMLNCSIM: fuzzy measure-based lncRNA functional 
similarity calculation model. Oncotarget. 2016; 7: 
45948–45958. doi: 10.18632/oncotarget.10008.

18. Chen X, Yan CC, Zhang X, You ZH. Long non-coding 
RNAs and complex diseases: from experimental results to 
computational models. Brief Bioinform. 2016.

19. Ebert MS, Sharp PA. Emerging roles for natural microRNA 
sponges. Curr Biol. 2010; 20:R858–861.

20. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS. Target 
mRNA abundance dilutes microRNA and siRNA activity. 
Mol Syst Biol. 2010; 6:363.

21. Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, 
Sevignani C, Fabbri M, Cimmino A, Lee EJ, Wojcik SE, 
Shimizu M, Tili E, Rossi S, et al. Ultraconserved regions 
encoding ncRNAs are altered in human leukemias and 
carcinomas. Cancer Cell. 2007; 12:215–229.

22. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A 
ceRNA hypothesis: the Rosetta Stone of a hidden RNA 
language? Cell. 2011; 146:353–358.

23. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: 
decoding miRNA-ceRNA, miRNA-ncRNA and protein-
RNA interaction networks from large-scale CLIP-Seq data. 
Nucleic Acids Res. 2014; 42(Database issue):D92–97.

24. Das S, Ghosal S, Sen R, Chakrabarti J. lnCeDB: database 
of human long noncoding RNA acting as competing 
endogenous RNA. PLoS One. 2014; 9:e98965.



Oncotarget4654www.impactjournals.com/oncotarget

25. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang T, 
Guo Z, Li X. Identification of lncRNA-associated competing 
triplets reveals global patterns and prognostic markers for 
cancer. Nucleic Acids Res. 2015; 43:3478–3489.

26. Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X. Identification 
of prognostic biomarkers in glioblastoma using a long non-
coding RNA-mediated, competitive endogenous RNA 
network. Oncotarget. 2016; 7:41737–41747. doi: 10.18632/
oncotarget.9569.

27. Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, 
Zhao G, Bu D, Jiao F, Shao Q, Chen R, Zhao Y. Long 
non-coding RNAs function annotation: a global prediction 
method based on bi-colored networks. Nucleic Acids Res. 
2013; 41:e35.

28. Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, Zhang G. 
Comprehensive analysis of lncRNA-mRNA co-expression 
patterns identifies immune-associated lncRNA biomarkers 
in ovarian cancer malignant progression. Sci Rep. 2015; 
5:17683.

29. Wang P, Zhi H, Zhang Y, Liu Y, Zhang J, Gao Y, Guo M, 
Ning S, Li X. miRSponge: a manually curated database for 
experimentally supported miRNA sponges and ceRNAs. 
Database (Oxford). 2015; 2015.

30. Liu K, Yan Z, Li Y, Sun Z. Linc2GO: a human LincRNA 
function annotation resource based on ceRNA hypothesis. 
Bioinformatics. 2013; 29:2221–2222.

31. Pesquita C, Faria D, Falcao AO, Lord P, Couto FM. 
Semantic similarity in biomedical ontologies. PLoS Comput 
Biol. 2009; 5:e1000443.

32. Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG, Zhao JM, 
Li S, Guo J, Sun HL, Li CQ. Construction and analysis of 
cardiac hypertrophy-associated lncRNA-mRNA network 
based on competitive endogenous RNA reveal functional 
lncRNAs in cardiac hypertrophy. Oncotarget. 2016; 
7:10827–10840. doi: 10.18632/oncotarget.7312.

33. Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De 
Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan 
B, Carmeliet P, Moreau Y. Gene prioritization through 
genomic data fusion. Nat Biotechnol. 2006; 24:537–544.

34. Sifrim A, Popovic D, Tranchevent LC, Ardeshirdavani A, 
Sakai R, Konings P, Vermeesch JR, Aerts J, De Moor B, 
Moreau Y. eXtasy: variant prioritization by genomic data 
fusion. Nat Methods. 2013; 10:1083–1084.

35. Wang P, Ning S, Wang Q, Li R, Ye J, Zhao Z, Li Y, Huang T, 
Li X. mirTarPri: improved prioritization of microRNA 
targets through incorporation of functional genomics data. 
PLoS One. 2013; 8:e53685.

36. Ning S, Gao Y, Wang P, Li X, Zhi H, Zhang Y, Liu Y, 
Zhang J, Guo M, Han D, Li X. Construction of a lncRNA-
mediated feed-forward loop network reveals global 
topological features and prognostic motifs in human 
cancers. Oncotarget. 2016; 7:45937–45947. doi: 10.18632/
oncotarget.10004.

37. Huang YA, Chen X, You ZH, Huang DS, Chan KC. 
ILNCSIM: improved lncRNA functional similarity 
calculation model. Oncotarget. 2016; 7:25902–14. doi: 
10.18632/oncotarget.8296.

38. Ganegoda GU, Li M, Wang W, Feng Q. Heterogeneous 
network model to infer human disease-long intergenic non-
coding RNA associations. IEEE Trans Nanobioscience. 
2015; 14:175–183.

39. Chen X. Predicting lncRNA-disease associations and 
constructing lncRNA functional similarity network based 
on the information of miRNA. Sci Rep. 2015; 5:13186.

40. Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, 
Wang Y. Prioritization of disease microRNAs through a 
human phenome-microRNAome network. BMC Syst Biol. 
2010; 4 Suppl 1:S2.

41. Scheltens P, Blennow K, Breteler MM, de Strooper B, 
Frisoni GB, Salloway S, Van der Flier WM. Alzheimer’s 
disease. Lancet. 2016.

42. Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, 
Luo H, Bu D, Zhao H, Skogerbo G, Wu Z, Zhao Y. Large-
scale prediction of long non-coding RNA functions in a 
coding-non-coding gene co-expression network. Nucleic 
Acids Res. 2011; 39:3864–3878.

43. Tan M, Wang S, Song J, Jia J. Combination of p53(ser15) 
and p21/p21(thr145) in peripheral blood lymphocytes as 
potential Alzheimer’s disease biomarkers. Neurosci Lett. 
2012; 516:226–231.

44. Carramusa L, Contino F, Ferro A, Minafra L, Perconti G, 
Giallongo A, Feo S. The PVT-1 oncogene is a Myc protein 
target that is overexpressed in transformed cells. J Cell 
Physiol. 2007; 213:511–518.

45. Jiang W, Zhang Y, Meng F, Lian B, Chen X, Yu X, Dai E, 
Wang S, Liu X, Li X, Wang L, Li X. Identification of active 
transcription factor and miRNA regulatory pathways in 
Alzheimer’s disease. Bioinformatics. 2013; 29:2596–2602.

46. Zhou X, Xu J. Identification of Alzheimer’s disease-
associated long noncoding RNAs. neurobiolaging. 2015; 
36:2925–2931.

47. Riederer BM, Leuba G, Vernay A, Riederer IM. The role 
of the ubiquitin proteasome system in Alzheimer’s disease. 
Exp Biol Med. 2011; 236:268–276.

48. Bast RC, Jr., Hennessy B, Mills GB. The biology of ovarian 
cancer: new opportunities for translation. Nat Rev Cancer. 
2009; 9:415–428.

49. Gao J, Liu M, Zou Y, Mao M, Shen T, Zhang C, Song S, 
Sun M, Zhang S, Wang B, Zhu D, Li P. Long non-coding 
RNA growth arrest-specific transcript 5 is involved in ovarian 
cancer cell apoptosis through the mitochondria-mediated 
apoptosis pathway. Oncol Rep. 2015; 34:3212–3221.

50. Liu SP, Yang JX, Cao DY, Shen K. Identification of 
differentially expressed long non-coding RNAs in human 
ovarian cancer cells with different metastatic potentials. 
Cancer Biol Med. 2013; 10:138–141.

51. Sheng X, Li J, Yang L, Chen Z, Zhao Q, Tan L, Zhou Y, 
Li J. Promoter hypermethylation influences the suppressive 
role of maternally expressed 3, a long non-coding RNA, in 
the development of epithelial ovarian cancer. Oncol Rep. 
2014; 32:277–285.

52. Qiu JJ, Lin YY, Ye LC, Ding JX, Feng WW, Jin HY, 
Zhang Y, Li Q, Hua KQ. Overexpression of long non-



Oncotarget4655www.impactjournals.com/oncotarget

coding RNA HOTAIR predicts poor patient prognosis and 
promotes tumor metastasis in epithelial ovarian cancer. 
Gynecol Oncol. 2014; 134:121–128.

53. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, 
Fuchs CS, Petersen GM, Arslan AA, Bueno-de-Mesquita HB, 
Gross M, Helzlsouer K, Jacobs EJ, LaCroix A, Zheng W, 
Albanes D, et al. Genome-wide association study identifies 
variants in the ABO locus associated with susceptibility to 
pancreatic cancer. Nat Genet. 2009; 41:986–990.

54. Lu X, Fang Y, Wang Z, Xie J, Zhan Q, Deng X, Chen H, 
Jin J, Peng C, Li H, Shen B. Downregulation of gas5 
increases pancreatic cancer cell proliferation by regulating 
CDK6. Cell Tissue Res. 2013; 354:891–896.

55. Zhou M, Ye Z, Gu Y, Tian B, Wu B, Li J. Genomic analysis 
of drug resistant pancreatic cancer cell line by combining 
long non-coding RNA and mRNA expression profling. Int J 
Clin Exp Pathol. 2015; 8:38–52.

56. Orditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, 
Laterza MM, Andreozzi F, Ventriglia J, Savastano B, 
Mabilia A, Lieto E, Ciardiello F, De Vita F. Treatment of 
gastric cancer. World J Gastroenterol. 2014; 20:1635–1649.

57. Cai H, Ye X, He B, Li Q, Li Y, Gao Y. LncRNA-
AP001631.9 promotes cell migration in gastric cancer. Int J 
Clin Exp Pathol. 2015; 8:6235–6244.

58. Wang J, Su L, Chen X, Li P, Cai Q, Yu B, Liu B, Wu W, 
Zhu Z. MALAT1 promotes cell proliferation in gastric 
cancer by recruiting SF2/ASF. Biomed Pharmacother. 2014; 
68:557–564.

59. Peng W, Si S, Zhang Q, Li C, Zhao F, Wang F, Yu J, Ma R. 
Long non-coding RNA MEG3 functions as a competing 
endogenous RNA to regulate gastric cancer progression. J 
Exp Clin Cancer Res. 2015; 34:79.

60. Vikman P, Fadista J, Oskolkov N. RNA sequencing: 
current and prospective uses in metabolic research. J Mol 
Endocrinol. 2014; 53:R93–101.

61. Yang L, Parkin DM, Ferlay J, Li L, Chen Y. Estimates of 
cancer incidence in China for 2000 and projections for 2005. 
Cancer Epidemiol Biomarkers Prev. 2005; 14:243–250.

62. Zhou YW, Zhang H, Duan CJ, Gao Y, Cheng YD, He D, 
Li R, Zhang CF. miR-675–5p enhances tumorigenesis 
and metastasis of esophageal squamous cell carcinoma 
by targeting REPS2. Oncotarget. 2016; 7:30730–47. doi: 
10.18632/oncotarget.8950.

63. Miao Z, Ding J, Chen B, Yang Y, Chen Y. HOTAIR 
overexpression correlated with worse survival in patients 
with solid tumors. Minerva Med. 2016.

64. Li Z, Yu X, Shen J. ANRIL: a pivotal tumor suppressor long 
non-coding RNA in human cancers. Tumour Biol. 2016; 
37:5657–5661.

65. Li X, Wang Q, Zheng Y, Lv S, Ning S, Sun J, Huang T, 
Zheng Q, Ren H, Xu J, Wang X, Li Y. Prioritizing human 

cancer microRNAs based on genes’ functional consistency 
between microRNA and cancer. Nucleic Acids Res. 2011; 
39:e153.

66. Kozomara A, Griffiths-Jones S. miRBase: integrating 
microRNA annotation and deep-sequencing data. Nucleic 
Acids Res. 2011; 39:D152–157.

67. Kersey PJ, Lawson D, Birney E, Derwent PS, Haimel M, 
Herrero J, Keenan S, Kerhornou A, Koscielny G, Kahari A, 
Kinsella RJ, Kulesha E, Maheswari U, et al. Ensembl 
Genomes: extending Ensembl across the taxonomic space. 
Nucleic Acids Res. 2010; 38:D563–569.

68. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, 
Hatzigeorgiou AG. The database of experimentally 
supported targets: a functional update of TarBase. Nucleic 
Acids Res. 2009; 37:D155–158.

69. Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, 
Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, 
Wu MC, Huang CY, et al. miRTarBase: a database curates 
experimentally validated microRNA-target interactions. 
Nucleic Acids Res. 2011; 39:D163–169.

70. Resnik P. Using Information Content to Evaluate Semantic 
Similarity in a Taxonomy. In Proceedings of IJCAI-95. 
1995:448–453.

71. Keshava Prasad TS, Goel R, Kandasamy K, 
Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, 
Raju R, Shafreen B, Venugopal A, Balakrishnan L, 
Marimuthu A, Banerjee S, et al. Human Protein Reference 
Database—2009 update. Nucleic Acids Res. 2009; 
37:D767–772.

72. Bader GD, Hogue CW. BIND--a data specification for 
storing and describing biomolecular interactions, molecular 
complexes and pathways. Bioinformatics. 2000; 16:465–477.

73. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, 
Schneider MV, Castagnoli L, Cesareni G. MINT: the 
Molecular INTeraction database. Nucleic Acids Res. 2007; 
35:D572–574.

74. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, 
Tyers M. BioGRID: a general repository for interaction 
datasets. Nucleic Acids Res. 2006; 34:D535–539.

75. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, 
Bridge A, Derow C, Feuermann M, Ghanbarian AT, 
Kerrien S, Khadake J, Kerssemakers J, Leroy C, Menden M, 
et al. The IntAct molecular interaction database in 2010. 
Nucleic Acids Res. 2010; 38:D525–531.

76. Brown KR, Jurisica I. Online predicted human interaction 
database. Bioinformatics. 2005; 21:2076–2082.

77. Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, 
Bu D, Sun N, Zhang MQ, Chen R. NONCODE 2016: an 
informative and valuable data source of long non-coding 
RNAs. Nucleic Acids Res. 2016; 44:D203–208.


