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ABSTRACT
Breast cancer progression is associated with dysregulated expression of the 

immunoglobulin superfamily (IgSF) genes that are involved in cell-cell recognition, 
binding and adhesion. Despite widespread evidence that many IgSF genes could serve 
as effective biomarkers, this potential has not been realized because the studies 
have focused mostly on individual genes and not the entire network. To gain a global 
perspective of the IgSF-related biomarkers, we constructed an IgSF-directed neighbor 
network (IDNN) and an IgSF-directed driver network (IDDN) by integrating multiple 
levels of data, including IgSF genes, breast cancer driver genes, protein-protein 
interaction (PPI) networks and gene expression profiling data. Our study shows that 
IgSF genes in the PPI network have important topological features related to cancer. 
Most IgSF genes are either cancer driver genes themselves or associated with them. 
We also identified a 21-gene IgSF network module with enriched mutations that are 
associated with overall survival based on 450 breast cancer patient samples extracted 
from The Cancer Genome Atlas (TCGA) and multiple independent microarray validation 
datasets. These results highlight the potential of IgSF genes as novel diagnostic, 
prognostic and therapeutic targets for breast cancer.

INTRODUCTION

Breast cancer is the leading cause of cancer death 
among women worldwide. In Chinese women, breast 
cancer is the most prevalent form of cancer with more than 
1.6 million people diagnosed and 1.2 million people dying 
every year. The most common type of breast cancer is 
invasive ductal carcinoma (IDC) that can spread from the 
ducts or the lobules to the surrounding tissue. Prognostic 
biomarkers are useful to choose the appropriate treatment 
for IDC, and they significantly affect the process of 
cancer therapy [1–3]. Studies have shown that the genetic 
diversity in breast cancer impacts response to treatment 
and patient outcomes. This is exemplified by the estrogen 
receptor negative (ER−) and positive (ER+) subtypes that 
have different prognostic gene signatures and responses to 
treatment [4]. Therefore, there is scope to identify novel 

signatures that can enhance predicting the prognostic and 
clinical behavior.

Gene expression of many IgSF members is altered 
in breast cancer, and hence, they are promising candidates 
as prognostic biomarkers. ALCAM (CD166) is a potential 
breast cancer biomarker and a therapeutic target due to 
its role in induction of programmed cell death, apoptosis 
and autophagy in breast cancer [5]. Down regulation 
of CXCR4 inhibits cell migration in breast cancer cells 
[6]. The expression of MUC18 (CD146) promotes the 
progression of human breast cancer cells by increasing 
their motility, invasiveness and tumorigenesis [7]. 
L1CAM is potentially an early diagnostic biomarker in 
breast cancer progression as it promotes cell adhesion 
and migration in vitro [8]. Although these findings 
demonstrate the important role of IgSF members in breast 
cancer progression and metastasis, these studies focus 
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on one or a few IgSF members analyzed in either cell 
lines or in limited patient samples and therefore do not 
present a global perspective of the entire immunoglobulin 
superfamily. 

Current advances in cancer biology and genomic 
methods have generated large-scale gene expression 
profiling datasets (such as TCGA) and other OMICs 
and provide an opportunity to study the entire network 
of IgSF genes as well as identify novel biomarkers for 
breast cancer. Previously, Li and others used cancer gene 
microarray and network data to develop a network-based 
method for cancer prognostic biomarker identification 
[9]. Similarly, Chuang and others used a protein-network-
based approach using data from protein interaction 
databases to identify markers as sub networks [10]. These 
studies demonstrate that integrating gene expression and 
protein-protein interaction data can improve prediction 
performance in network biomarker identification. 

Our aim was to study the role of the IgSF network 
in breast cancer and test its diagnostic, prognostic and 
therapeutic potential. Towards this goal we constructed 
an IgSF-directed neighbor network (IDNN) and an IgSF-
directed driver network (IDDN) to address the role of 
the IgSF network in breast cancer. We identified IgSF 
genes in the PPI network with hub topological features 
connected to breast cancer. We also identified a 21-gene 
module from the IDDN network that was associated with 
the overall survival of breast cancer patients. This module 
included several key IgSF and breast cancer driver genes 
with enriched mutations, demonstrating the functional 
significance of the IgSF genes to predict breast cancer. 
Our findings highlight the novel role of the IgSF-directed 
network in breast cancer. It also highlights their potential 
for biomarker-guided development of preclinical and 
clinical therapeutic modalities.

RESULTS

IgSF genes play a crucial role in breast cancer

We constructed an IgSF-directed neighbor network 
(IDNN) that had 1050 nodes including 283 IgSF genes 
and their 767 neighbors from the PPI network (Figure 1A, 
Supplementary Table S1). We found 33 IgSF genes (KIT, 
PDGFRB, KDR, FGFR1, CD28, NTRK1, etc.) that were 
themselves breast cancer driver genes as well as 250 
IgSF genes (including PTPN11, LCK, GRB2, ABL1, 
APP, etc. Supplementary Table S2) that associated with 
the breast cancer driver genes. The top 10 IgSF genes 
(KIT, PDGFRB, KDR, FGFR3, FGFR1, CD4, NTRK1, 
IGSF21, HSPG2, and PDGFRA) had a direct connection 
in the network, indicating that IgSF genes play hub roles 
in the sub-networks (Figure 1B). We also found a greater 
degree of genes (mean = 16.76) that were both IgSF 
and breast cancer driver genes in the IDNN suggesting 
a intricate link between the IgSF genes and breast cancer 

(Figure 1C, Supplementary Figure S1). Also, enrichment 
of IgSF cancer driver genes in specific modules suggests 
that the IgSF driver genes may play consequential roles 
in special biological modules (Supplementary Figure S2, 
Supplementary Table S3).

 Notably, six of the top 10 IgSF genes in the PPI 
network were well-known breast cancer driver genes, 
including KIT, whose high expression occurs infrequently 
in breast cancer [11]. In the triple negative breast cancer, 
immunohistochemical expression of C-kit and mutations 
of PDGFRA are frequent suggesting that they are good 
candidates for molecular targeted therapy [12]. Our 
findings also suggest that CD4+ follicular helper T cells 
(Tfh) may be prognostic indicators as they are found in 
the breast tumors [13]. Furthermore, down-regulation of 
KDR expression induces apoptosis in breast cancer cells 
[14]. Also, FGFR1 activity is required for the survival of an 
FGFR1-amplified breast cancer cell line [15]. Among the 
IgSF neighbor genes, ABL1 and PDGFR are well known 
breast cancer driver genes that promote acquired resistance 
to aromatase inhibitor (AI) therapy in ER+ breast cancers 
[16]. The activation of the PDGFR and ABL1 pathways is 
associated with long-term estrogen deprivation in MCF7 
breast cancer cells and decreased anti-proliferative response 
to AI treatment in primary ER-positive breast carcinomas.

IgSF genes directly interact with breast cancer 
driver genes

To further explore the relationship between IgSF 
and breast cancer driver genes, we constructed a network 
called IgSF-directed driver network (IDDN). This 
included IgSF genes and breast cancer driver genes that 
were extracted from the IDNN (Figure 2A, Supplementary 
Table S4). The IDDN contained 253 genes, of which 
103 were IgSF and 121 were breast cancer driver genes. 
Among these, 29 of the IgSF genes were also breast 
cancer genes. Compared to the nodes in IDNN, the 
nodes in the IDDN had higher degrees, betweenness 
centrality and closeness centrality (avg. 3.440 vs. 3.220 
for degrees, p = 0.001, Supplementary Figure S3A; avg. 
0.020 vs. 0.012 for betweenness centrality, p = 2.74e-07,  
Supplementary Figure S3B; avg. 0.242 vs. 0.213 for 
closeness centrality, p = 6.78e-09, Supplementary 
Figure S3C; Wilcoxon rank sum test). This suggested that 
the IDDN obtained from IDNN was closer in structure and 
played a crucial role in the biogenesis of breast cancer.

To explore the biological functions of these genes, 
we conducted pathway analysis using the Subpathway 
Miner [17]. The T cell receptor signaling pathway emerged 
as the most significant pathway from this analysis with 
several of the IgSF genes located in key positions, such as 
CBL, LCK, ZAP70, FYN, CD28, PD-1, CTLA4, ICOS, 
and CD4/8 (Figure 2B). Since the expression of CBL can 
inhibit LCK and ZAP70 gene expression, CBL gene may 
play a crucial role in the pathway [18]. 
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We then performed a GO enrichment analysis using 
IgSF and breast cancer driver genes. Some common GO 
terms that we found associated with breast cancer included 
cell surface receptor-linked signal transduction, immune 
response, regulation of cell proliferation, regulation of cell 
activation, regulation of T cell activation, regulation of T 
cell differentiation, and negative regulation of the immune 
system process. Significance of this analysis is exemplified 
by the fact that mutations of BTLA, CD28, CD4, and 
CD8A genes in the GO term cell surface receptor-linked 
signal transduction contribute to sporadic breast cancer 

risk. More importantly, we found overlapping GO terms 
between the IgSF genes and the breast cancer driver genes, 
including phosphate metabolic process, protein amino 
acid phosphorylation, enzyme linked receptor protein 
signaling pathway, transmembrane receptor protein tyrosine 
kinase signaling pathway, cell surface receptor-linked 
signal transduction, and regulation of cell proliferation 
(Figure 2C). This indicated a close connection between 
IgSF genes and breast cancer. Additionally, the degree of the 
common genes of IgSF and the breast cancer driver genes 
derived from the IDDN was also greatest (Figure 2D).

Figure 1: The properties of the IgSF-directed neighbor network (IDNN). (A) The global IDNN. (B) Top 10 IgSF genes ranked 
by gene degree (KIT, PDGFRB, KDR, FGFR3, FGFR1, CD4, NTRK1, IGSF21, HSPG2, and PDGFRA). (C) The degree distribution of 
the nodes in IDNN.
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IgSF genes associate with driver genes in 
functional modules

To understand the communication between the 
IgSF and the breast cancer driver genes, we performed a 
module analysis in the IDDN. We found six significant 
IgSF-associated modules in which IgSF and breast 
cancer driver genes were closely associated (Figure 3). 
We conducted a GO terms enrichment analysis of the 
module genes using DAVID [19] and  identified the 
biological process terms that enriched the module genes 
using a cutoff of FDR < 0.05 (Supplementary Table S5). 
The top-ranked GO terms included immune response, 
cell adhesion, biological adhesion, regulation of alpha-

beta T cell proliferation, transmembrane receptor protein 
tyrosine kinase signaling pathway, and T cell activation. 
The GO term cell adhesion enriched by the second and 
sixth module genes is a very important biological process 
of the IgSF genes (VCAM1, ICAM1, F11R, ITGAL, 
EZR, ICAM4, ICAM5, ICAM2, ICAM3, ITGB5, 
ITGB2, and CD226) that participate in the immune 
response. Among these, the expression of members 
of the ICAM family regulates tumorigenesis and are 
potential diagnostic biomarkers and therapeutic targets 
for breast cancer [20]. Moreover, both the first and fourth 
modules enriched the common GO term phosphate 
metabolic process, which is differentially regulated in 
breast cancer [21]. 

Figure 2: The properties of the IgSF-directed driver network (IDDN). (A) The global IDDN and the size of the sphere represent 
the degree of the gene. (B) The functional sub-pathway of the T cell receptor signaling pathway (C) The overlapping GO terms between 
IgSF and breast cancer driver genes. (D) The degree distribution of nodes in IDDN.
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IgSF-related modules are enriched with cancer 
mutations

Since genetic mutations can cause cancer, we 
analyzed if IgSF genes in our modules are mutated. 
Previously, the IgSF genes in the module that includes 
well-known breast cancer genes have been shown to 
be mutated. Some SNPs in six immunological genes, 
BTLA, ITGAL, CTLA4, ICOS, PDCD1, and VTCN1 
were reported as breast cancer risk mutations in 
previous studies [22–27] (Supplementary Table S6). 
We performed gene mutation enrichment analysis and 
evaluated if these module genes were enriched in the 
top 15% of mutated genes in breast cancer. We identified 
three module genes that overlapped with the top 15% 
mutated genes in breast cancer (p = 0.001 for module 1,  
Supplementary Figure S4A; p = 0.001 for module 4, 
Supplementary Figure S4B; p = 1.28e-07 for module 5, 
Supplementary Figure S4C; Hypergeometric Test). 

Next, we identified the somatic mutations of the 
genes in the IDDN using TCGA breast cancer somatic 
mutation data and determined if they overlapped with the 

top 15% mutated genes in the IDDN using hypergeometric 
test. We found that the second module with 21 genes was 
enriched in mutated genes (Figure 4A, P < 0.001). Four 
of the six common genes (PTPN11, TRIM2, FGR and 
ZAP70) were IgSF genes (Figure 4B). PTPN11, a HER2-
inhibition up-regulated PTP (protein tyrosine and dual-
specificity phosphatase) transduces positive signals and is 
an oncogene [28]. TRIM2 is a diagnostically significant 
and conserved element of the SOX10 signature in BBC 
(breast basal-like carcinomas) cell lines [29]. FGR and 
ZAP70 have diagnostic and therapeutic potential due to 
their relationship with breast cancer development and 
progression [30, 31].

IgSF-mutated module has prognostic potential

In the TCGA gene expression data, only 20 
genes (BTLA, CD33, FCRL3, FGR, LAIR1, LEPR, 
LILRB4, MPZL1, PILRA, PILRB, PTPN11, SIGLEC11, 
SIGLEC12, SIGLEC7, SIRPA, SLAMF1, SLAMF6, 
TREML1, TRIM2, and ZAP70) had expression values. We 
created a risk-score formula according to the expression of 

Figure 3: The GO BP terms of six significantly functional modules.
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these 20 genes to generate OS (overall survival) prediction 
(see the Material and Methods section). The Cox 
regression coefficients of the total samples, ER+ samples 
and ER– samples are as listed in Supplementary Table S7. 
Using the median risk score of the test series as the cutoff 
point, we calculated the risk scores for the 20 genes for 
each patient and then ranked the patients according to their 
risk score. The patients grouped into a high-risk (N = 225) 
or a low-risk (N = 225) category by using the median 
risk score of the test series as the cutoff point. Patients in 
the high-risk group had significantly shorter median OS 
than those in the low-risk group (Figure 5A, HR = 3.82, 
P = 2.81e-05). In addition, patients with high risk in the 
ER+ series (HR = 2.78, P = 0.00507) as well as the ER– 
series (HR = 8.77, P = 0.0124) had significantly shorter 
median OS than those in the low-risk group (Figure 5A). 
Based on the distribution of gene risk score, the survival 
status and the gene expression signature of the breast 
cancer patients, patients with high risk scores expressed 
higher levels in the ten risk genes, whereas patients with 
low risk scores expressed higher levels in the remaining 
ten protective genes (Figure 5B–5D).

Validating the prognostic potential of the IgSF 
module in independent patients

To confirm the prognostic value of the IgSF module, 
we validated the 21 gene signatures in four independent 
microarray datasets (Table 1). Using the same risk score 
formula, we classified patients in GSE4922 into high-risk 
and low-risk groups using the median score of the test 
series as the cutoff point. Consistent with our previous 

findings, patients in the high-risk group had significantly 
shorter median OS than those in the low-risk group 
(Figure 6A, all samples P = 0.076; Figure 6B, ER+ 
samples P = 0.012; Figure 6C, ER– samples P = 0.021). 
Similarly, we classified the patients in GSE7390 into 
a high- and a low-risk group (Figure 6D, all patients, 
P = 0.091; Figure 6E, ER+ patients, P = 0.018 and Figure 
6F, ER– patients, P = 0.054) and obtained similar results.

After further adjusting for other markers, the 
univariate analysis indicated that the IgSF module, as 
an independent risk factor, was significantly associated 
with the overall survival of breast cancer patients from 
TCGA (HR = 2.71, 95% CI: 2.02–3.64, P = 2.75e-11), 
GSE4922 (HR = 1.69, 95% CI: 0.94–3.05, P = 0.079), 
and GSE7390 (HR = 1.58, 95% CI: 0.92–2.73, P = 0.094) 
datasets (Table 2). Further, when multivariate analysis was 
performed to investigate the independence of the module 
to other clinical factors, the high- and low-risk groups 
remained independent of other clinical factors in TCGA 
patients (HR = 2.60, 95% CI: 1.84–3.67, P = 4.32e-8),  
GSE4922 (HR = 1.86, 95% CI: 1.01–3.43, P = 0.045), 
and GSE7390 (HR = 1.70, 95% CI: 0.97–2.96, p = 0.060) 
datasets (Table 2). Data stratification analysis on TCGA 
patients also indicated that the module was independent 
of PR, age and tumor stage. It performed similarly in 
PR category (log-rank test p = 0.005 for PR+ group and 
log-rank test p = 0.002 for PR- group) as well as the age 
category older or younger than 60 (log-rank test p = 0.01 
for the older patients and log-rank test P = 9.64e-4 for the 
younger patients) and tumor stage III/IV category (log-
rank test P = 0.012) (Figure 7A–7E). Similar trend was 
observed in GSE4922 patients with G3 grade (log-rank 

Figure 4: The module with mutated IgSF genes. (A) The module includes 21 genes, with the size of the sphere depicting the degree 
of the gene and the red circles showing the six common mutated genes found in this module. (B) A Venn plot between the IgSF and the 
mutated genes.
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Figure 5: The survival analysis of the IgSF-mutated module. (A) The Kaplan–Meier curve for the overall survival of two patient 
groups with high and low risk scores in the TCGA patient set (n = 450), ER+ samples (N = 337) and ER– samples (N = 106). The difference 
between the two curves was evaluated by a two-sided log-rank test. (B) The gene-based risk score distribution of the 20 genes (C) The 
gene-based patient survival status of the 20 genes. (D) The heat map depicting expression profiles of the 20 genes. The black dotted line 
represents the cutoff value of the risk score derived from the corresponding set that separates patients into high- and low-risk groups. 

Table 1: The independent microarray datasets used in this study
Datasets Platform Number of 

patients Overall type Number of 
ER+ patients

Number of 
ER– patients

GSE4922 HG-U133A 289 OS 211 34
GSE7390 HG-U133A 198 OS&DMFS 134 64

Abbreviations: Note: OS, Overall Survival; DMFS, Distant Metastasis-Free Survival.
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test P = 6.48e-07; Figure 7F). Based on all these data, 
we conclude that the IgSF-related module is a strong 
prognostic indicator for breast cancer.

DISCUSSION

Elucidating the functional significance and 
molecular mechanism of IgSF members in breast cancer 
may provide new opportunities for the early detection and 
treatment of cancer. A variety of molecular biomarkers 
in breast cancer have been previously identified. Van de 
Vijver and others categorized breast cancer based on the 
gene expression profile of 70 genes and found that their 
classification was better than standard systems that were 
based on clinical and histological criteria [32] . Pawitan 
and others developed a 64-gene signature to predict the 
response of breast cancer patients to therapy [33]. Venet 
and others showed that many random gene expression 
signatures are significantly associated with breast 
cancer survival, although the underlying mechanism 
of the biomarkers was unclear implying the need for 

more effective biomarkers [34]. We performed a global 
analysis of the IgSF genes in breast cancer and developed 
a network-based strategy to identify the IgSF-related PPI 
network and modules. Our study shows that the IgSF 
network genes closely interact with the cancer driver 
genes in the mutations enriched module and can serve 
as a survival-associated biomarker for breast cancer. 
Also, the IgSF genes participate in the dysregulation 
of breast cancer driver genes. These results provide 
a novel understanding of the role of IgSF network in 
breast cancer progression. Our study also highlighted 
the importance of immune-related IgSF genes. Immune 
genes play a key role in cell-cell communication, and 
dysfunctional immune response cause various diseases 
in humans including cancers [9]. In breast cancer, 
the immune genes may modulate the communication 
between malignant cells and normal cells. We had 
postulated that the IgSF-related modules mediate breast 
cancer progression by regulating cancer metastasis. 
However, functional enrichment analysis showed that 
the IgSF-related modules were involved in a variety 

Table 2: Statistical analysis of the IgSF module gene signature and overall survival of breast 
cancer patients in the TCGA and GEO cohorts

Variables
Univariable model Multivariable model

HR 95% CI of HR P-value HR 95% CI of HR P-value
TCGA (N = 450)
Module risk score 2.7183 2.0252–3.6485 < 0.0001 2.6063 1.8499–3.6720 < 0.0001
ER 1.1332 0.5728–2.2418 0.7195 0.6366 0.2439–1.6615 0.3562
PR 0.7344 0.4214–1.2799 0.2761 0.3486 0.1353–0.8984 0.0291
HER2 0.9361 0.5859–1.4954 0.7823 0.7739 0.4528–1.3227 0.3486
Age 1.0275 1.0044–1.0511 0.0194 1.0529 1.0193–1.0876 0.0018
Stage
II 2.1360 0.7406–6.1609 0.1602 1.6061 0.5178–4.9821 0.4120
III/IV 3.5429 1.1950–10.5034 0.0225 3.5199 1.0733–11.5434 0.0378
GSE4922 (N = 289)
Module risk score 1.6933 0.9400–3.0505 0.0795 1.8644 1.0133–3.4306 0.0453
ER 0.8583 0.4667–1.5785 0.6230 1.1735 0.6184–2.2271 0.6245
Age 0.9971 0.9815–1.0130 0.7223 0.9999 0.9847–1.0152 0.9862
Grade
G2 1.8232 1.0336–3.2160 0.0381 1.6455 0.9269–2.9211 0.0890
G3 3.1634 1.6929–5.9113 0.0003 3.2902 1.7080–6.3381 0.0004
GSE7390 (N = 226)
Module risk score 1.5873 0.9234–2.7285 0.0946 1.7023 0.9762–2.9686 0.0608
ER 0.4755 0.2806–0.8060 0.0058 0.4239 0.2277–0.7891 0.0068
Age 1.0131 0.9771–1.0505 0.4802 1.0110 0.9752–1.0482 0.5516
Grade
G2 1.1056 0.4738–2.5799 0.8165 1.0323 0.4392–2.4266 0.9419
G3 1.3785 0.5976–3.1799 0.4516 0.9614 0.3795–2.4353 0.9338
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of biological events, including immune response, cell 
adhesion, biological adhesion and regulation of alpha-
beta T cell proliferation. This suggests that in the early 
stage of breast cancer, IgSF-related modules restrict cell 
proliferation by regulating signal transduction and the 
immune response.

In summary, our data shows that the IgSF-related 
module that is of prognostic importance. Our data also 
reveal novel functional insights for dysregulated IgSF-
related members and modules in the etiology of breast 
cancer.

MATERIALS AND METHODS

Human IgSF gene dataset

The IgSF gene data was downloaded from the 
HUGO Gene Nomenclature Committee website (HGNC, 
http://www.genenames.org/), constituting 478 IgSF genes 
from 651 records, including 42 C1-set, 40 C2-set, 245 
Immunoglobulin-like, 161 I-set and 163 V-set domain 
containing records.

Breast cancer driver gene dataset

We downloaded cancer associated genes from the 
Catalogue of Somatic Mutations in Cancer (COSMIC 

v70; Aug 2014), which is the world’s largest and most 
comprehensive resource for exploring the impact of 
somatic mutations in human cancer. Firstly, we obtained 
the breast cancer associated genes from the Cancer Gene 
Census by searching the keyword “breast” in the tumor 
types. In addition, we searched cosmic mutation data 
with the keyword “breast” in the primary site, “y” if the 
entire genome/exome is sequenced and “CANCER” if the 
mutations affected the tumor generation in pathology. In 
summary, we obtained 1,307 unique genes acting as the 
breast cancer driver genes for subsequent analyses.

Human protein-protein interaction data 

The protein-protein interaction (PPI) data was 
downloaded from the Human Protein Reference Database 
(HPRD Release9, http://www.hprd.org/) [35]. It contained 
more than 42,000 manually curated interactions between 
9,826 human genes.

Analysis of breast cancer gene expression and 
somatic mutations in clinical datasets

In this study, we focused only on invasive ductal 
carcinoma (IDC) patients with breast cancer. The breast 
cancer gene expression, somatic mutation data and the 
corresponding clinical data was downloaded from The 

Figure 6: The overall survival analysis in independent validation datasets. Kaplan–Meier survival curves were plotted for  
(A) GSE4922 all patients (n = 289), (B) GSE4922 ER+ patients (n = 211), (C) GSE4922 ER– patients (n = 34), (D) GSE7390 all patients 
(n = 198), (E) GSE7390 ER+ patients (n = 134) and (F) GSE7390 ER– patients (n = 64).
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Cancer Genome Atlas (TCGA, http://cancergenome.
nih.gov/). The gene expression profiling from 591 
breast cancer patients was generated by the UNC__
AgilentG4502A_07_3 microarray platform. The samples 
that contained only expression profiling without clinical 
data were removed from the analysis. We generated 
450 IDC samples that had both expression profiling and 
clinical data, involving 17,814 genes. Also, the patients 
were further stratified into the estrogen receptor negative 
(ER−) and positive (ER+) groups. 

Validation of microarray datasets 

The four independent microarray breast cancer 
datasets [36–39] that were used in this study were obtained 
from the Gene Expression Omnibus (GEO) database. All 
the datasets were produced by the HGU133A or HGU133-
PLUS2 platform. The datasets were chosen based on the 
criteria of no less than 100 samples and the availability 
of clinical outcome data. Raw microarray datasets were 
normalized using Robust Multichip Average [40]. The 
three main steps were as follows: background correction, 
quantile-normalization and log2-transformation. All the 

probes were mapped based on their EntrezGeneID. When 
multiple probes were mapped to the same gene ID, the 
mean value was used to represent the expression value of 
the single gene. To account for differences in systematic 
measurement between different datasets, each dataset 
was standardized independently by transforming the 
expression of each gene into a mean of 0 and a standard 
deviation of 1.

Network construction and analysis of topological 
features

We constructed a human PPI network based on the 
HPRD data. Then, we distinguished all the IgSF genes 
in this network using HGNC IgSF family data. Finally, 
using IgSF genes and their direct interacting genes in 
the network (referred to as IgSF neighbor genes), we 
constructed a sub-network of the human PPI network 
named the IgSF-directed neighbor network (IDNN). 
Furthermore, we extracted all the IgSF genes and the 
breast cancer driver genes to construct an IgSF-directed 
driver network (IDDN) for subsequent analysis. The 
Cytoscape software was used for the construction of 

Figure 7: Stratification analyses of the IgSF mutated module with available PR, age, tumor stage and grade information 
for all patients. (A) Kaplan-Meier survival curves for TCGA patients with PR+, (B) Kaplan-Meier survival curves for TCGA patients 
with PR–. (C) Kaplan-Meier survival curves for TCGA patients with age > = 60, (D) Kaplan-Meier survival curves for TCGA patients with 
age < 60. (E) Kaplan-Meier survival curves for TCGA patients with stage III/IV. (F) Kaplan-Meier survival curves for GSE4922 patients 
with G3 grade. P-values were calculated using the log-rank test.
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networks. The topological properties of the IgSF genes 
were analyzed in both IDNN and IDDN.

Identifying functional modules in the IgSF 
networks

Based on the IDDN constructed by the IgSF 
and breast cancer driver genes, we identified all the 
network modules using GraphWeb [41], a web server 
for identifying the network-based biomarkers that best 
represent the property of the network. The GraphWeb 
web server was made of three component processes: 
(i) Network datasets (to input human protein-protein 
interaction pairs; IDDN in this study), (ii) Network 
algorithm (we used the betweenness centrality clustering 
method and the default values were set) and (iii) Network 
settings (including default edge settings, node setting and 
module settings with less than 3 nodes and insignificant 
modules hidden).

Statistical analysis

Hypergeometric test was used to explore the overlap 
between the genes in the IgSF-related modules and the top 
mutated genes in the sub-network for breast cancer. We 
also studied the enrichment of breast cancer driver genes 
in IgSF by using this method. Univariate and multivariate 
analyses were performed using Cox proportional hazards 
regression model to determine whether the IgSF-related 
prognostic module was independent of other clinical 
variables, and adjusted for ER, PR, HER2, age, stage 
and grade. Hazard ratio (HR) and 95% confidence 
intervals (CI) were estimated by Cox proportional hazards 
regression model. To verify if the modules we identified 
are associated with patient survival, we determined the 
regression coefficient of every gene in the module related 
to patient survival using the gene expression data. The 
classifier was built as a linear combination of the gene 
expression values of select immune-related genes with 
the standardized Cox regression coefficient as the weight. 
A risk score formula for each patient was established by 
including the expression values of each selected gene, 
weighed by their estimated regression coefficients in the 
multivariate Cox regression analysis [42]. Finally, the 
patients were divided into high- and low-risk groups using 
the median of the risk score as the threshold. The patients 
with high-risk scores were classified as poor outcomes. 
Kaplan-Meier survival plots and log-rank tests by R 
package “survival” were used to assess the differences in 
overall survival (OS) time between the high- and low-risk 
patients. Bioinformatic analysis was performed with R 
3.0.0 statistical software.

Functional enrichment analysis

Functional enrichment analysis at the GO and KEGG 
levels were performed using DAVID bioinformatics 

resources (http://david.abcc.ncifcrf.gov/, version 6.7) [43]. 
The DAVID enrichment analysis was limited to KEGG 
pathways and GO-FAT biological process (BP) terms 
with the whole human genome as background. Functional 
categories with a p-value of < 0.05 were considered 
statistically significant.
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