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Identification of differentially expressed genes in the 
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ABSTRACT
Objective: Osteosarcoma (OS) is a malignant bone tumor with high morbidity in 

young adults and adolescents. This study aimed  to discover potential early diagnosis 
biomarkers in OS. 

Results: In total, 111 differentially expressed genes (DEGs) were identified 
in primary OS compared with normal controls and 235 DEGs were identified in 
metastatic OS compared with primary OS. AURKB and PPP2R2B were the significantly  
up-regulated and down-regulated hub proteins, respectively, in the PPI protein-
protein network (PPI) network of primary OS. ISG15 and BTRC were the significantly  
up-regulated and down-regulated hub proteins, respectively, in the network 
of metastatic OS. The DEGs in metastatic OS compared with primary OS were 
significantly enriched in the arachidonic acid metabolism, malaria, and chemokine 
signaling pathways. Finally, we employed quantitative real-time polymerase chain 
reaction (qRT-PCR) to validate the expression levels of candidate DEGs and the results 
indicated that our bioinformatics approach was acceptable.

Materials and Methods: The mRNA expression profiling of 20 subjects was 
obtained through high-throughput RNA-sequencing. DEGs were identified between 
primary OS and normal Control, and between primary OS and metastatic OS, 
respectively. Functional annotation and PPI networks were used to obtain insights 
into the functions of DEGs. qRT-PCR was performed to detect the expression levels 
of dysregulated genes in OS. 

Conclusions: Our work might provide groundwork for the further exploration of 
tumorigenesis and metastasis mechanisms of OS.

INTRODUCTION

Osteosarcoma (OS) is a common primary malignant 
bone tumor with high morbidity in young adults and 
adolescents [1]. The most prevalent locations for OS are 
the distal femur and proximal tibial metaphyses [2]. OS 
is characterized by high local aggressiveness and rapid-
metastasizing potential to the lungs and results in poor 
survival for patients with OS.

The therapeutic strategies for OS include wide tumor 
resection, adjuvant chemotherapy, and radiotherapy, which 
have significantly improved the prognosis of patients with 

malignancy [3]. Despite extensive advancements in surgical 
techniques, the 5-year survival rate of OS patients remains 
at 60–70% [4]. Lung metastasis contributes to the primary 
cause of mortality in OS patients, and the 5-year survival 
rate of patients with metastatic OS is only 10 to 20% [5].

To date, the pathogenesis of OS is not elucidated. 
It is reported that miRNAs, cytokines, dysregulated 
genes, and gene polymorphisms are associated with OS 
tumorigenesis and metastasis. miR-542-5p plays a critical 
role in cell proliferation and promotes OS tumorigenesis 
by targeting HUWE1, which predicts a poor prognosis 
for OS patients [6]. Decreased IL-6 expression inhibits 
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OS growth and metastasis via activation of the STAT3 
and ERK pathways in vitro and in the nude mouse 
model. In addition, IL-6 suppression reduces tumor 
self-seeding by circulating tumor cells in OS [7]. High 
expression of Gelsolin (GSN) correlates with tumor 
size, advanced Enneking stage, and poor prognosis in 
OS patients. Knockdown of GSN significantly inhibits 
cell proliferation and invasiveness through the down-
regulation of p-AKT and the p-P38 pathway [8] . In 
the Chinese Han population, IL-10 -1082A/G and 
IL-8 -251 A/T genotypes are associated with increased 
susceptibility of OS, and the IL-8 -251 A/T genotype 
increases risk for development and metastasis in patients 
with OS [9, 10]. 

OS, with high malignancy and metastasizing potential 
to the lungs frequently results in poor survival. Therefore, 
the study of biomarkers for OS development and metastasis 
is important for improving the survival of patients.

In this study, we used high-throughput RNA-
sequencing to obtain mRNA expression data from 
peripheral blood of normal controls, primary OS and 
metastatic OS patients and to identify differentially 
expressed genes between primary OS and normal control 
and between metastatic OS and primary OS. Our aim was to 
provide valuable information for the identification of early 
diagnosis biomarker for OS development and metastasis.  

RESULTS 

Transcriptome sequencing of subjects

High throughput RNA-sequencing was performed 
on the blood samples of 10 subjects with OS (5 primary 
OS patients and 5 metastatic OS patients) and 10 healthy 
controls. Control samples were pooled for RNA-seq. 
Approximately, 1.7 × 107, 1.7 × 107, 1.8× 107, 2.8 × 107, 
and 3.1 × 107 sequencing reads were generated from 
metastatic OS specimens; 2.7× 107, 1.4× 107, 2.5× 107, 
1.5× 107, and 2.9× 107 reads were generated from primary 
OS specimens; and 1.4 × 107 reads were generated from 
pooled normal specimens, as Table 1 shows. All of the 
sequencing reads were aligned to the UCSC human 
reference genome (hg.19). Basic information about the 
patients is shown in Supplementary Table S1.

DEGs between primary osteosarcoma and 
healthy control 

The mRNA expression data of the 5 primary OS 
blood samples and 1 pooled normal blood sample was 
obtained using RNA-seq. In total, 111 significantly DEGs 
were identified in primary OS compared with normal 
control, which consisted of 68 up- and 43 down-regulated 
genes. CD177 was the most significantly up-regulated 
gene and CMKT2 was the most significantly down-
regulated gene. The top 15 genes exhibiting significant 

up- and down-regulation are listed in Table 2. The full list 
of DEGs is shown in Supplementary Table S2.  

Functional annotation of DEGs between primary 
osteosarcoma and healthy control 

GO annotation was performed using the 111 DEGs 
in primary OS to obtain insights into their biological roles. 
The threshold for GO terms was P < 0.05. Regulation of 
microtubule polymerization or depolymerization (GO: 
0031110), post-embryonic development (GO:0009791), 
and regulation of ossification (GO: 0030278) were the 
most enriched biological processes. Protein binding (GO: 
0005515), microtubule plus-end binding (GO: 0051010), 
and voltage-gated calcium channel activity (GO: 0005245) 
were the most enriched molecular functions. Cytoplasm (GO: 
0005737), plasma membrane (GO: 0005886), and cytosol 
(GO: 00058293) were the most enriched cellular components. 
These data are shown in Supplementary Table S3. The 
signaling pathways of DEGs between primary OS and normal 
controls were not available in the KEGG database. 

PPI networks of DEGs between primary OS and 
healthy control 

PPI networks of 68 up- and 43 down-regulated 
DEGs in primary OS were constructed by Cytoscape. Hub 
proteins indicated that the nodes had high connectivity 
with other nodes. In the up-regulated DEGs network, 
835 nodes and 964 edges were available and the most 
significantly up-regulated hub protein was AURKB 
(Figure 1). In the down-regulated DEGs network, 
579 nodes and 597 edges were available and the most 
significantly down-regulated hub protein was SMN1 
(Supplementary Figure S1). 

DEGs between primary OS and metastatic OS 

RNA-seq was also used to obtain mRNA expression 
data of the 5 metastatic OS patients. In total, 235 significant 
DEGs were identified in metastatic OS compared with 
primary OS, which  consisted of 109 up- and 126 down-
regulated genes. ALAS2 was the most significantly up-
regulated gene and ZDHHC19 was the most significant 
down-regulated gene. The top 15 genes exhibiting 
significant up- and down-regulation are listed in Table 3. 
The full list of DEGs is shown in Supplementary Table S4.

Functional analysis of DEGs between primary 
OS and metastatic OS

GO annotation was performed using the 235 DEGs 
between primary OS and metastatic OS. The threshold 
for GO terms was FDR < 0.05. Cytokine-mediated 
signaling pathway (GO: 0019221), type I interferon-
mediated signaling pathway (GO: 0060337), and immune 
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response (GO: 0006955) were the most enriched biological 
processes. Cytoplasm (GO: 0005737), plasma membrane 
(GO: 0005886), and membrane (GO: 0016020) were the 
most enriched cellular components. Protein binding (GO: 
0005515), metal ion binding (GO: 0046872) and receptor 
activity (GO: 0004872) were the most enriched molecular 
functions. These data are shown in Supplementary Table S5. 

We performed the KEGG pathway enrichment 
analysis for DEGs with a threshold FDR value < 0.05. 
Pathways with the greatest enrichment were arachidonic 
acid metabolism (hsa00590), malaria (hsa05144) 
and chemokine signaling pathway (hsa04062), as 
Supplementary Table S6 shows.

PPI networks of DEGs between primary OS and 
metastatic OS 

PPI networks of the top 50 up-regulated and top 50 
down-regulated DEGs between primary OS and metastatic 
OS were constructed by Cytoscape. In the up-regulated 
DEGs network, 617 nodes and 629 edges were available 
and the most significantly up-regulated hub protein was 
ISG15 (Figure 2). In the down-regulated DEGs network, 
505 nodes and 511 edges were available and the most 
significantly down-regulated hub protein was BTRC 
(Supplementary Figure S2). 

Verification of the expression level of DEGs 
between primary OS and healthy control

To verify the RNA-seq analysis data, the expression 
levels of DEGs of 14 normal tissues and 19 OS samples 
without metastasis (named as primary group) were 

quantified by qRT-PCR. As Figure 3A, 3B and 3C shown, 
AURKB, CD177 and ZDHHC19 were significantly up-
regulated in primary OS compared with normal controls  
(P < 0.05). In Figure 3D, 3F and 3G, PPP2R2B, 
CEACAM8 and SMN1 were significantly down-regulated 
in primary OS compared with normal controls (P < 0.05). 
The expression level of CMKT2 had no significant 
difference between primary OS and normal controls but 
showed a tendency for down-regulation in primary OS. 
The qRT-PCR results between primary OS and healthy 
controls verified our RNA-seq data.

Verification of the expression level of DEGs 
between primary OS and metastatic OS

The expression levels of DEGs between 19 
tumor samples of primary OS and 19 tumor samples 
of metastatic OS were verified by qRT-PCR. As shown 
in Figure 4A, the expression level of ALAS2 had no 
significant difference between metastatic OS and primary 
OS but showed a tendency for up-regulation in metastatic 
OS. In Figure 4B and 4C, ISG15 and PPP2R2B were 
significantly up-regulated in metastatic OS compared with 
primary OS (P < 0.05). In Figure 4D, 4E and 4F, BTRC, 
CD177 and ZDHHC19 were significantly down-regulated 
in metastatic OS compared with primary OS (P < 0.05). 
The qRT-PCR results between primary OS and metastatic 
OS verified our RNA-seq data.

DISCUSSION

AURKB is overexpressed in OS tissues and cells and 
functions as an oncogene in OS cells [11]. Up-regulation 

Table 1: Transcriptome sequencing of subjects
Sample_ID Total_Reads Total_Bases Error%

M1 16968330 2562217830 0.0164

M2 16945590 2558784090 0.0147

M3 18392754 2777305854 0.0149

M4 27963602 4222503902 0.0200

M5 31299610 4726241110 0.0150

P1 27065992 4086964792 0.0155

P2 14319834 2162294934 0.0169

P3 24920680 3763022680 0.0187

P4 15312548 2312194748 0.0154

P5 28589860 4317068860 0.0149

HC 14359676 2020949388 0.0131

M: metastatic OS; P: primary OS; HC: healthy control
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of AURKB in Epstein-Barr virus- (EBV)-transformed 
lymphoblasts is correlated with EBV immortalization 
and tumorigenic ability in vitro [12]. A number of studies 
discover that high expression of AURKB is associated 
with unfavorable prognosis of cancers such as acute 
myeloid leukemia, nasopharyngeal carcinoma, colorectal 
adenocarcinoma and gastric cancer [13–16]. Suppression 
of AURKB down-regulates phosphorylation of VCP 
and activates the NF-κB signaling pathway in OS cells, 
resulting in inhibition of cell proliferation, migration 
and invasion [17]. In addition, inhibition of Aurora-B 
suppresses the migratory and invasive abilities of OS 

cells through modulating the PI3K/Akt/NF-κB signaling 
pathway in vitro [18, 19]. 

Protein phosphatase 2 is a member of four major 
Ser/Thr phosphatases and functions as negative control 
of cell growth and division [20]. In nasopharyngeal 
carcinoma, reduced PPP2R2B expression activates 
PDK1/MYC pathways to induce BEZ235 resistance 
[21]. In breast cancer patients, a variant of the rs319217 
SNP in PPP2R2B is associated with a better response to 
chemotherapy treatment and lower risk of breast cancer 
recurrence [22]. In addition, up-regulated PPP2RPR is 
involved in the promotion of T-cell apoptosis triggered 

Table 2: The DEGs in primary osteosarcoma compared to the normal control
Gene ID Gene Symbol P-value log2FC

Up-regulation genes (top 15)
57126 CD177 0.00365 7.28443
131540 ZDHHC19 0.0185 6.988027
10926 DBF4 0.0307 5.21743
387755 INSC 0.02145 4.575003
101928079 LINC01057 0.0209 3.910375
56729 RETN 0.04225 3.466679
6507 SLC1A3 0.0346 3.424351
1958 EGR1 0.00105 3.334501
202051 SPATA24 0.0277 3.273086
84418 CYSTM1 0.0357 3.258481
4651 MYO10 0.0489 3.058558
79623 GALNT14 0.0489 3.024365
6129 RPL7 0.00315 2.909688
50486 G0S2 0.0291 2.894525
3622 ING2 0.04375 2.81313
Down-regulation genes (top 15)
1160 CKMT2 0.01115 −4.28207
1088 CEACAM8 0.01075 −3.24111
10964 IFI44L 0.00465 −3.14574
140462 ASB9 0.0327 −2.73412
91543 RSAD2 0.0133 −2.60049
653519 GPR89A 0.0213 −2.5051
55183 RIF1 0.04975 −2.49066
7813 EVI5 0.02925 −2.41565
84725 PLEKHA8 0.02415 −2.39095
4057 LTF 0.0033 −2.30934
79828 METTL8 0.02985 −2.28365
79750 ZNF385D 0.02565 −2.19376
653464 SRGAP2C 0.0349 −2.10654
643699 GOLGA8N 0.04365 −2.10211
23230 VPS13A 0.0419 −2.07423

FC: fold change.
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by IL-2 deficiency in systemic lupus erythematosus, an 
autoimmune disease [23]. The biological function of 
PPP2R2B in OS is unknown and further work is needed 
to elucidate it. 

The expression of ISG15 has been implicated in 
the induction of type I IFN expression and the activation 
of NK cells, which are important mediators of tumor 
immunity [24]. Over-expression of ISG15 is involved in 
tumorigenesis and metastasis of various cancers, such as 
hepatocellular carcinoma, ovarian serous carcinoma, and 
breast cancer [25–27]. The high expression level of ISG15 

has a significant correlation with unfavorable prognosis 
in esophageal squamous cell cancers and breast cancer 
[25, 28]. ISG15 is highly expressed in hepatocellular 
carcinoma (HCC) tumor specimens and triggers 
tumorigenesis and metastasis of HCC [26]. Knocking 
down ISG15 inhibits HCC cell proliferation and migration, 
arrests the cell cycle at the G2/M phase in vitro, and inhibits 
tumor growth in vivo [26]. Moreover, ISG15 suppresses 
RANKL-induced osteoclastogenic differentiation of 
murine RAW264 cells [29]. This is the first study to report 
that ISG15 is dysregulated in OS; however, the biological 

Table 3: The DEGs between primary osteosarcoma and metastatic osteosarcoma
Gene ID Gene Symbol P-value log2FC

Up-regulation genes (top 15)

212 ALAS2 0.00135 4.412527
759 CA1 5.00E–05 4.367439
3045 HBD 0.0238 3.778141
3048 HBG2 0.0045 3.703257
8991 SELENBP1 0.0145 3.531732
7262 PHLDA2 0.00505 3.492722
1991 ELANE 5.00E–05 3.1807
4353 MPO 5.00E–05 3.001248
4680 CEACAM6 6.00E–04 2.974953
27285 TEKT2 0.0261 2.965083
3397 ID1 4.00E–04 2.955801
116028 RMI2 0.0043 2.895913
105 ADARB2 0.0061 2.891606
1669 DEFA4 5.00E–05 2.888638
1088 CEACAM8 1.00E–04 2.82414
Down-regulation genes (top 15)
131540 ZDHHC19 5.00E–05 –5.74283
57126 CD177 5.00E–05 –5.31558
79071 ELOVL6 0.0075 –3.58835
6507 SLC1A3 1.00E–04 –3.28638
2829 XCR1 0.0041 –2.88172
84976 DISP1 1.00E–04 –2.71269
1.02E+08 LINC01057 0.00265 –2.58354
3248 HPGD 0.00455 –2.47742
125965 COX6B2 0.01395 –2.40323
2258 FGF13 0.01515 –2.39481
7060 THBS4 0.01375 –2.39479
8945 BTRC 1.00E–04 –2.3576
146433 IL34 0.0235 –2.30004
122402 TDRD9 0.0024 –2.28361
10079 ATP9A 0.0023 –2.17761

FC: fold change.
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function of ISG15 in OS is still unclear and needs to be 
further elucidated through in vivo and in vitro studies.

BTRC targets NFKBIA (nuclear factor of kappa 
light polypeptide gene enhancer in B-cells inhibitor, alpha) 
for degradation and activates nuclear factor kappa-B, 
which is involved in innate immunity. Suppressed BTRC/ 
FBXW11 markedly reduces IL-17 induced degradation 
of ACT1, which contributes to persistent immune 

response in inflammatory diseases [30]. Down-regulated 
BTRC is associated with poor prognosis in patients 
with nasopharyngeal carcinoma (NPC) [31]. EBV-miR-
BART10-3p negatively targets BTRC to promote cell 
invasion and cell migration and to facilitate the epithelial-
mesenchymal transition of NPC [31]. 

Arachidonic acid metabolism, malaria, and 
chemokine signaling pathways showed the highest 

Figure 1: The constructed PPI network of up-regulated DEGs between primary OS and normal control. The red nodes 
represent up-regulated DEGs and the blue nodes denote gene products predicted to interact with the DEGs. 

Figure 2: The constructed PPI network of the top 50 up-regulated DEGs between metastatic OS and primary OS. The 
red nodes represent up-regulated DEGs and the blue nodes denote gene products predicted to interact with the DEGs. 
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Figure 3: The expression levels of DEGs between primary OS and healthy controls were verified by qRT-PCR.  
(A): AURKB; (B): CD177; (C): ZDHHC19; (D): PPP2R2B; (E): CKMT2; (F): CEACAM8; (G): SMN1. NC represents tissues of normal 
control and OS represents osteosarcoma. At least three independent experiments were performed for statistical evaluation.

Figure 4: The expression levels of DEGs between primary OS and metastatic OS were verified by qRT-PCR.  
(A): ALAS2; (B): ISG15; (C): PPP2R2B; (D): BTRC; (E): CD177; (F) ZDHHC19. Primary OS represents primary osteosarcoma and 
metastatic OS represents metastatic osteosarcoma. At least three independent experiments were performed for statistical evaluation.
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enrichment of DEG in metastatic OS compared to primary 
OS. Arachidonic acid metabolism, a key inflammatory 
pathway, generates peroxides, free organic radicals, and 
aldehydes that promote tumorigenesis in diverse cancers, 
such as pancreatic cancer, prostate cancer, and head and 
neck cancer [32–34]. Cyclooxygenase-2 (COX-2) and 
5-lipoxygenase (5-LOX) form eicosanoids, which are the 
substrates for arachidonic acid metabolism. When COX-
2 and 5-LOX are blocked, cancer cell proliferation is 
abrogated in non-small cell lung cancer [35]. Both COX-2 
and 5-LOX are up-regulated in pancreatic cancer cell lines 
at the mRNA and protein levels [32]. Somatic mutations 
in arachidonic acid metabolism pathway genes, such as 
PLA2G3, PTGIS and GGT7, prolong post-treatment 
disease-free survival of patients with oral cancer [33]. 
It is reported that the change of chemokine signaling 
pathway is implicated in diverse cancers such as breast, 
lung, and colorectal cancer [36–38]. XCR1, enriched in 
chemokine signaling pathway, was significantly down-
regulated in primary OS compared with metastasis OS 
(Table 3). XCR1 enhances cell growth and migration 
and is involved in bone metastasis in non-small cell lung 
cancer [39]. Based on the aforementioned information, 
abnormally expressed mRNAs might play vital roles in 
OS tumorigenesis through regulating enriched KEGG 
pathways.

In conclusion, we identified 111 DEGs and 235 
DEGs between primary OS and normal controls and 
between metastatic OS and primary OS, respectively. 
The potential functions of dysregulated genes in 
primary OS and metastasis OS were predicted through 
GO and KEGG enrichment. The expression levels of 
dysregulated candidate genes were detected in OS 
tissues through qRT-PCR. There are limitations in our 
study. The biological functions of key DEGs, including 
AURKB, CD177, ZDHHC19, PPP2R2B, ISG15, 
and BTRC, in the pathophysiology of OS is unclear 
and might be explored through in vitro and in vivo 
experiments in future work. Our findings might provide 
a foundation for the further elucidation of tumorigenic 
and metastatic mechanisms of OS.

MATERIALS AND METHODS

Sample isolation and characterization

Twenty subjects were enrolled into our study 
from the Third Affiliated Hospital of Kunming Medical 
University, which consisted of 5 subjects with primary OS 
(without metastasis), 5 subjects with metastatic OS and 10 
healthy controls. The human subject study was approved 
by the Third Affiliated Hospital of Kunming Medical 
University and informed written consent was obtained 
from all patients. 10 ml peripheral blood was obtained 
from each of the subjects, peripheral blood mononuclear 
cells (PBMCs) were isolated and total RNA was extracted 

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. 

Library preparation and RNA-seq 

The Illumina Truseq RNA sample Prep Kit 
(Illumina, Inc., San Diego, CA, USA) was used for cDNA 
library preparation of PBMC samples according to the 
manufacturer’s protocol. PolyA mRNA was extracted 
from the total mRNA sample and purified with polyT 
oligo-conjugated magnetic beads, followed by mRNA 
fragmentation. First-strand cDNA were transcribed 
using random primers, followed by second strand cDNA 
synthesis and end repair. The product was ligated to 
Illumina Truseq adaptors. After PCR amplification, the 
enriched cDNA libraries were sequenced using Illumina 
HiSeq 2500 (Illumina, Inc., San Diego, CA, USA). 

Primary analysis

Libraries from samples were developed using high-
throughput RNA-sequencing. The raw image data were 
translated into raw FASTQ sequence data by Base Calling. 

Raw RNA-Seq data were filtered using FASTxtool 
SeqPrep (https://github.com/jstjohn/SeqPrep) and Sickle 
(https://github.com/najoshi/sickle) 

according to the following 3 criteria: firstly, only 
reads containing sequencing adaptors were used; secondly, 
nucleotides with a quality score < 20 were trimmed from 
the end of the sequence; and thirdly, reads with N rate  
> 10% were removed. 

Reads mapping

Clean and trimmed reads were aligned with the 
UCSC human reference genome (hg19) using TopHat 
v1.3.1 [40]. TopHat allows a maximum of two mismatches 
when mapping the reads to the reference genome. Aligned 
read files were then processed by Cufflinks v1.2.1 [41], 
which measures the relative expression of the genes with 
the normalized RNA-Seq fragment counts. 

Analysis of differential expression of genes 
fragments per kilobase of exon per million mapped reads 
(FPKM) was used to determine the transcription abundance 
of each gene. The reference GTF annotation file used in 
Cufflinks was downloaded from the Ensembl database 
(Homo_sapiens.GRCh37.63.gtf) [42]. The expression 
testing was performed using paired t-tests. After applying 
Benjamini-Hochberg correction for multiple tests, the 
P-value < 0.05 and abs(log2fold change > 1) was selected 
as the criteria for significant differential expression. 

Functional annotation of differentially expressed 
genes

Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
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analyses were used to predict the biological function of 
differentially expressed genes [43, 44]. FDR < 0.05 was 
set as the cut-off for selecting significantly enriched 
functional GO terms and KEGG pathway enrichment. 

Network construction of protein-protein 
interaction

BioGRID, a database of predicted protein 
interactions [45], was used to screen interacting protein 
pairs based on differentially expressed genes. PPI 
networks of up- and down-regulated differentially 
expressed genes were visualized using Cytoscape 
software (http://cytoscape.org/) [46]. In the networks, 
nodes represent proteins and edges represent interactions 
between two proteins. 

Quantitative real-time polymerase chain reaction 
(qRT-PCR)

Total RNA of 14 OS samples of normal tissues, 19 
OS samples without metastasis and 19 

OS samples with lymph node or distant metastasis 
were extracted using TRIzol reagent (Invitrogen, 
Carlsbad,CA, USA) according to the manufacturer’s 
instructions. The ReverTra Ace qPCR RT Master Mix 
Kit (TOYOBO, Shanghai, China) was used to synthesize 

the cDNA. qRT-PCR reactions were performed using 
SYBR® FAST qPCR Kits (KAPA bio, Boston, MA, USA) 
on the LightCycler 480 (Roche Indianapolis, IN, USA). 
GAPDH was used as internal control for mRNA detection. 
The relative expression of target genes was calculated 
using the 2-ΔΔCT equation [47]. The PCR primers used 
are shown in Table 4. The GraphPad Prism version 6.0 
software package (GraphPad Software, San Diego, CA, 
USA) was used to output figures. The mean ± standard 
deviation and independent-samples t-test were used in the 
statistical analyses. P < 0.05 was considered statistically 
significant. 
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