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ABSTRACT

Background: Forkhead box F2 (FOXF2) is relatively limited to the adult lung, but 
its contribution to non-small cell lung cancer (NSCLC) prognosis is unclear.

Results: FOXF2 mRNA levels in NSCLC were lower than that in paired normal lung 
tissues (P = 0.012). The FOXF2low patients had shorter survival time than the FOXF2high 
patients (P = 0.024) especially in stage I (P = 0.002), chemotherapy (P = 0.018) and 
< 60 age groups (P = 0.002). Lower FOXF2 mRNA levels could independently predict 
poorer survival for patients with NSCLC (HR = 2.384, 95% CI = 1.241–4.577; P = 
0.009), especially in stage I (HR =4.367, 95% CI =1.599–11.925; P = 0.004). The 
two independent datasets confirmed our findings.

Methods: We examined FOXF2 mRNA levels in 84 primary NSCLC and 8 normal 
lung tissues using qRT-PCR. Rank-sum tests and chi-square tests were used to assess 
the differences among groups with various clinicopathological factors. Kaplan-Meier 
tests were used to compare survival status in patients with different FOXF2 mRNA 
levels. Cox proportional hazards regression model was used to evaluate the predictive 
value of FOXF2 mRNA level in NSCLC patients. Independent validation was performed 
using an independent dataset (98 samples) and an online survival analysis software 
Kaplan-Meier plotter (1928 samples).

Conclusions: Our results demonstrated that decreased FOXF2 expression is an 
independent predictive factor for poor prognosis of patients with NSCLC, especially 
in stage I NSCLC.

INTRODUCTION

Lung cancer is by far the main cause of cancer-
related death. It is the most frequently diagnosed cancer 
and the leading cause of cancer death in males and the 
second in females [1, 2]. Lung cancer is usually classified 
into two main types: small cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC) depending upon the 

microscopic appearance of the tumor cells. NSCLC is the 
most common type of lung cancer, accounting for 85% 
of all lung cancers diagnosed [3]. Currently, for NSCLC 
patients, the most accurate prognostic factors are tumor 
size, node, and tumor-node-metastasis (TNM) staging. 
However, as a heterogeneous disease, even with similar 
clinical and pathological features, and similar TNM 
stage, patients with NSCLC may have different outcomes 
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due to distinct inherent biological characteristics of the 
tumor. Therefore, new prognostic factors are needed to be 
determined to better predict the outcome of lung cancer 
and provide a potential improvement in better treatment, 
especially within a given TNM stage.

Forkhead box F2 (FOXF2) is a member of Forkhead 
box transcription factors family, which is characterized 
by a highly conserved 110 amino acid DNA binding 
domain [4] and function as an activator or inhibitor of 
gene transcription [5]. Human FOXF2 was initially 
identified in 1994 [6], and the gene is located at 6p25.3 
[7]. FOXF2 was found to have a relatively restricted high-
expression limited to the adult lung and transactivated 
pulmonary surfactant proteins A, B, and C (SPA, SPB, and 
SPC) [8]; however, later studies revealed it had a more 
widespread expression [9]. FOXF2 plays an important role 
in embryonic development [10, 11], extracellular matrix 
synthesis [11] and epithelial-mesenchymal interaction [9], 
and the knockout of foxf2 mice present with cleft palate or 
a range of defects, including megacolon, colorectal muscle 
hypoplasia and agangliosis.

In cancer, FOXF2 has been considered as a potential 
tumor suppressor. In our previous studies, decreased 
FOXF2 expression was associated with early-onset 
metastasis and poor prognosis for patients with triple-
negative breast cancer [12], and further studies showed 
that FOXF2 can inhibit epithelial-mesenchymal transition 
(EMT) and metastasis of basal-like breast cancer by 
targeting TWIST1 [13] and FOXC2 [14] directly. In 
prostate cancer, FOXF2 mRNA was decreased [15, 16] 
compared to normal prostate tissues, and it is a potential 
target genes of miR-182-5p, which promotes cell invasion 
and proliferation by down- regulating FOXF2, RECK 
and MTSS1 genes [17]. And in breast cancer FOXF2 is a 
target gene of miR-301, which acts as a crucial oncogene 
to promote metastatic tumor progression [18]. The 
evidence given above indicates FOXF2 may act as a tumor 
suppressor in tumorigenesis and metastasis.

However, the role of FOXF2 in lung cancer is 
unknown, especially in NSCLC. In this current study, our 
results showed that mRNA of FOXF2 was significantly 
decreased in NSCLC tissues compared to paired normal 
lung tissues. Additionally decreased FOXF2 mRNA 
expression was associated with poor prognosis in Stage I 
NSCLC patients, and it could predict poor prognosis for 
patients with Stage I NSCLC independently.

RESULTS

Expression level of FOXF2 mRNA in lung cancer 
tissues

First, we measured the FOXF2 mRNA levels in 
primary lung cancer and paired normal samples from 
patients with NSCLC using real-time PCR analysis. The 
mRNA level of FOXF2 ranged from 1.79E-04 to 157.47 

in primary lung cancers and the median was 5.86E-
03. The mRNA level of FOXF2 ranged from 3.20E-02 
to 2.11E-01 in normal lung tissues and the median was 
6.86E-02. Significant difference in FOXF2 mRNA levels 
was found between paired primary lung cancers and 
normal lung tissues (P = 0.012, Z = -2.521, Figure 1). All 
cancer samples were grouped into two groups: FOXF2low 
(≤ 3.75E-03) and FOXF2high (> 3.75E-03), according to 
the ROC curve analyses (AUC=0.657, P=0.021, 95% 
confidence interval:0.531-0.782). The disease-free 
survival (DFS) of FOXF2low ranged from 1 month to 54 
months, and the median was 26 months. The DFS of 
FOXF2high ranged from 1 month to 59 months, and the 
median was 46 months. Rank-sum test shown the patients 
in the FOXF2high group had a longer survival time than 
those in the FOXF2low group (Z = -2.347, P = 0.019).

Correlation between the mRNA level of FOXF2 
and clinicopathologic factors

To establish the link between FOXF2 mRNA 
levels in primary tumors and clinicopathological features 
of lung cancer, we analyzed the FOXF2 mRNA levels 
among different clinicopathologic groups. No significant 
difference of FOXF2 mRNA levels was found in patients 
with different gender, age, histology, clinical stage, family 
history, and smoking history (P > 0.05, Table 1). Although 
no significant difference was found among the three tumor 
size groups (P = 0.063, Table 1), the mRNA of FOXF2 in 
the size ≤3cm group was significantly higher than in the 
size > 7cm group (P = 0.037, Table 1).

FOXF2 mRNA levels reflected the DFS status in 
NSCLC patients

To explore the relationship between FOXF2 mRNA 
levels in primary tumors and DFS status of lung cancer 
patients, Kaplan-Meier survival analysis was used to 
compare the DFS status of lung cancer patients with 
different FOXF2 mRNA expression status. In the overall 
study population (n = 84), patients with low FOXF2 
levels had a statistically lower cumulative DFS than 
those with high FOXF2 levels (P = 0.024, Figure 2A). 
In different gender, age ≥60, tumor size, histology types, 
family, or smoking history groups, there was no difference 
in disease-free survival time between FOXF2low and 
FOXF2high patients. In the age <60 group, the patients with 
low FOXF2 levels had a statistically lower cumulative 
DFS than those with high FOXF2 levels (P = 0.002, Figure 
2B). When receiving chemotherapy, the patients with 
low FOXF2 levels had a statistically shorter cumulative 
DFS than those with high FOXF2 levels (P = 0.018, 
Figure 2C). Although there was no difference in stage II 
and III groups, in the stage I group FOXF2 expression 
significantly affected the survival time of lung cancer 
patients and the FOXF2low group had a significantly lower 
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survival time than the FOXF2high group (P =0.002, Figure 
2D). And the 7 patients in stage IV all belong to FOXF2low 
group and didn’t perform Kaplan-Meier analysis and Log-
rank test.

Prediction of disease-free survival based on the 
mRNA level of FOXF2

To evaluate the predictive value of FOXF2 mRNA 
level for DFS status in lung cancer patients, FOXF2 
mRNA and other factors were used to make the univariate 
analysis by cox proportional hazard regression model. 
Univariate analysis showed that FOXF2low and tumor size 
were significant risk factors in predicting DFS status in 
the overall study population (FOXF2, hazard ratio (HR) = 
1.927, 95% CI = 1.077–3.449, P = 0.027; ≤3 vs. >7, HR 
= 0.308, 95% CI = 0.111–0.854, P = 0.024; 3-7 vs. >7, 
HR = 0.256, 95% CI = 0.097–0.672, P = 0.006) and in 
stage I NSCLC patients (FOXF2, HR = 3.526, 95% CI = 
1.510–8.231; P = 0.004; ≤3 vs. >7, HR = 0.345, 95% CI = 
0.110–1.080, P = 0.067; 3-7 vs. >7, HR = 0.222, 95% CI 
= 0.075–0.662, P = 0.007) (Table 2).

Furthermore, multivariate analysis was carried 
out to evaluate the FOXF2 mRNA and other significant 
factors with a cox proportional hazard regression model. 
The result showed that in patients with NSCLC, FOXF2 
mRNA level was an independent prediction factor for 
survival and the FOXF2low patients had a shorter survival 
time than the FOXF2high patients (HR = 2.384, 95% CI 
= 1.241–4.577; P = 0.009) especially in stage I NSCLC 
patients (HR = 4.367, 95% CI =1.599–11.925; P = 0.004) 
(Table 3, Figure 3).

Independent validation

The prognostic value of expression of FOXF2 
mRNA was validated in an independent dataset consisting 
of 17 normal lung tissues and 98 lung cancer tissues 
from the study of Bhattacharjee [19]. In these validation 
samples, the median mRNA level of FOXF2 in primary 
lung cancers was lower than that in normal lung tissues 
(median level, -1.450945 vs 0.16391; P = 2.40E-5). 
NSCLC patients with FOXF2low had a poorer DFS 
(median months, 37.6 vs 47.2; P = 0.065) than FOXF2high 
patients. Kaplan-Meier survival analysis showed that 
FOXF2low patients had a poorer DFS than FOXF2high 
patients in the overall study population (P = 0.044; Figure 
4A) and in the stage I group (P = 0.011, Figure 4B). The 
multivariate analysis showed that FOXF2 mRNA level 
was an independent prediction factor for overall survival 
(HR =1.880, 95 % CI: 1.082–3.268, P = 0.025) and in 
stage I group (HR = 2.278, 95 % CI: 1.106-4.690, P = 
0.025) (see Supplementary Table S1 and S2).

Another validation was performed using an 
online survival analysis software, Kaplan-Meier plotter, 
consisting of 2,437 lung cancer patients with a mean 
follow-up of 49 months [20]. In the validation samples 
(n = 1928), Kaplan-Meier survival analysis showed that 
NSCLC patients with FOXF2low had a poorer 5-year DFS 
than FOXF2high patients in the overall population (HR = 
0.6 (0.53 − 0.7), log-rank P = 1.8e−12, Figure S1A) and 
in the stage I group (HR = 0.47 (0.35 − 0.65), log-rank P 
= 1.2e−06, Figure S1B). There was no difference between 
FOXF2low and FOXF2high patients in the stage II group (HR 
= 1.09 (0.74 – 1.61), log-rank P = 0.66, Figure S1C) or in 

Figure 1: Comparison of FOXF2 mRNA expression in paired lung tumor tissues and normal tissues. The mRNA of 
FOXF2 was significantly decreased in cancer tissue compared with paired normal lung tissue in all 8 cases.
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the stage III group (HR = 0.67 (0.38 − 1.21), log-rank P 
= 0.19, Figure S1D). Patients with FOXF2low had a poorer 
DFS than FOXF2high patients in the lung adenocarcinoma 
population (HR = 0.4 (0.29 − 0.54), log-rank P = 1.6e-
09, Figure S2A), in the lung squamous cell carcinoma 
population (HR = 0.66 (0.49 − 0.89), log-rank P = 0.0057, 
Figure S2B), and in the never smoked group (HR = 0.39 
(0.2 − 0.74), log-rank P = 0.0027, Figure S2C) and in the 
smoked group respectively (HR = 0.54 (0.41 − 0.69), log-
rank P = 1.8e−06, Figure S2D).

DISCUSSION

Forkhead proteins are a large family of transcription 
factors and are commonly associated with development. 
Recent studies have shown that the FOX transcription 
factors play important roles in tumor progression in several 
types of cancers [21–32]. In our present study, the mRNA 
level of FOXF2 was found to be decreased in primary 
lung cancer compared with paired normal lung tissue, 
and it negatively correlated with the size of lung cancer. 

Table 1: Association of FOXF2 mRNA levels with clinicopathological factors in patients with NSCLC

Variables Cases Median levels of 
FOXF2 (1×10-3) Rank sum tests FOXF2 mRNA level Chi-square test

Z/χ2 P Low (%) High (%) χ2 P

Age (years)         

 <60 34 7.16(0.18-157477) -1.394 0.163 10 (29.4%)  24(70.6%) 1.377 0.241

 ≥60 50 4.69(0.27-622.01)   21 (42.0%)  29 (58.0%)   

Gender         

 Female 22 9.09(0.27-217.19) -1.312 0.189 6(27.3%) 16(72.7%) 1.188 0.276

 Male 62 4.87(0.18-157477)   25 (40.3%) 37(59.7%)   

Family history         

 Yes 9 7.15(1.72-29.18) -0.108 0.914 4 (44.4%)  5 (55.6%) 0.246 0.620

 No 75 5.22(0.18-157477)   27 (36.0%)  48 (64.0%)   

Smoking history         

 Current 68 4.96(0.18-157477) -1.367 0.172 25 (36.8%)  43 (63.2%) 0.003 0.956

 Never 16 10.61(0.51-217.19)   6 (37.5%) 10 (62.5%)   

Tumor size (cm)         

 ≤3 27 7.15 (0.51-49.65) 1.648 0.439 7 (25.9%) 20 (74.1%) 5.440 0.063

 3-7 52 5.86 (0.18-157477)   20 (38.5%)  32 (61.5%)  0.265*

 >7 5 2.40 (1.18-261.88)   4 (80.0%) 1 (20.0%)  0.037**

        0.151***

Clinical stage         

 I 42 4.96 (0.64-65.56) 1.118 0.572 18 (42.9%)  24 (57.1%) 1.859 0.395

 II 22 7.08 (0.27-261.88)   8 (36.4%) 14 (63.6%)   

 III-IV 20 6.00 (0.18-157477)   5 (25.0%) 15(75.0%)   

Histology type         

 Squamous cell 
carcinoma 62 4.87 (0.18-157477) -1.628 0.104 25 (40.3%) 37(59.7%) 1.188 0.276

 Adenocarcinoma 22 7.74(0.27-217.19)   6(27.3%) 16(72.7%)   

* ≤3 vs 3-7; ** ≤3 vs >7; *** 3-7 vs >7.



Oncotarget55605www.impactjournals.com/oncotarget

Furthermore, low expression of FOXF2 was associated 
with the worst outcome of NSCLC patients with clinical 
stage I. And two independent validation studies (n = 98 
and n = 1928 respectively) confirmed our findings. So we 
suppose FOXF2 is a predictor of NSCLC prognosis.

It has been reported that FOXF2 plays an important 
role in epithelial-mesenchymal interactions [9] and 
inhibition of Foxf2 leads to loss of collagen synthesis 
[11]. This indicates FOXF2 is an important regulator in 
extracellular matrix (ECM) production and remodeling 
[11]. FOXF2 modulates ECM balance and remodeling 
through regulating the balance between MMPs and 

TIMPs [15, 16]. In prostate cancer, MMP1 was down-
regulated by FOXF2 whereas TIMP3, one of MMPs 
inhibitors, was up-regulated by FOXF2. Additionally, 
in prostate cancer, FOXF2 has an opposite regulatory 
effect with TGFβ3 pathways [15, 16], which is described 
as triggering EMT via MMP-dependent mechanisms 
[33, 34]. In our previous study, we found that FOXF2 
is a novel EMT-suppressor [13] and decreased FOXF2 
is associated with poor prognosis of patients with basal-
like breast cancer [12]. Our current results show FOXF2 
levels were decreased in lung cancer tissue and its down-
regulation is associated with the increased tumor size. It is 

Figure 2: Kaplan-Meier survival curves of patients with different FOXF2 mRNA expression. A. Cumulative DFS in the 
overall study population. B. Cumulative DFS of patients in the age <60 group and in the age ≥60 group. C. Cumulative DFS in patients 
accepting chemotherapy or no chemotherapy. D. Cumulative DFS in stage I, II, III NSCLC.
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possible that the decreased FOXF2 leads to an imbalance 
in matrix synthesis/degradation and provides a suitable 
environment for the growth and metastasis of cancer cells 
and leads to a worse outcome at last. So FOXF2 might be 
a tumor suppressor and work by maintaining the balance 
of ECM and inhibition of EMT. However, recent studies 
showed Foxf2 induced robust EMT, migration, invasion 
and metastasis in lung cancer cells [35], and inhibition 
of miR301 enhances Akt-mediated cell proliferation and 
FoxF2 is a regulatory target for miR301 [36]. Thus, further 
investigations are required to identify the role of FOXF2 
in lung cancer and other cancer types.

The most common cause of lung cancer is long-term 
exposure to tobacco smoke [37, 38]. Tharappel et al. have 

shown that cigarette smoke exposure leads to quantitative 
increases in DNA binding activities of Foxf2 after only 
10 days in mice [39]. In the present study, although there 
is no statistical significance, the expression of FOXF2 
mRNA in the non-smoking group is higher than in the 
smoking group. However, the effect of smoke on FOXF2 
in lung cancer needs to be investigated furtherly.

Another interesting thing is that in age < 60 group 
decreased FOXF2 mRNA levels may be a marker of 
lower survival of NSCLC. It has been reported that 
age is an important predictor of prognosis in lung 
cancer patients [40–42] and older patients have a worse 
outcome compared with younger patients. However, 
in younger patients with the same TNM stage, tumors 

Table 2: Univariate and multivariate Cox models for the association between survival and clinicopathological factors 
in patients with NSCLC

Variables
Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Age <60 vs. ≥60 1.127 0.629-2.021 0.688 1.194 0.612-2.331 0.603

Gender Female vs Male 0.472 0.220-1.013 0.054 0.520 0.214-1.263 0.149

Histology Sq. vs. Ade. 1.094 0.566–2.113 0.789 0.840 0.382-1.850 0.666

Smoking history no vs yes 0.679 0.303-1.518 0.345 0.563 0.197-1.612 0.285

Family history no vs yes 0.761 0.300-1.927 0.564 0.864 0.323-2.314 0.772

Tumor size (cm) ≤3 vs. >7
3-7 vs. >7

0.308
0.256

0.111–0.854
0.097-0.672

0.024
0.006

0.345
0.222

0.110-1.080
0.075-0.662

0.067
0.007

Clinical stage II vs. I
III-IV vs. I

0.898
1.277

0.437–1.843
0.635-2.571

0.769
0.492

0.674
1.862

0.310-1.465
0.859-4.035

0.320
0.115

FOXF2 mRNA Low vs. High 1.927 1.077–3.449 0.027 2.384 1.241-4.577 0.009

Sq. means Squamous cell carcinoma.
Ade. means Adenocarcinoma

Table 3: Univariate and multivariate Cox models for the association between survival and clinicopathological factors 
in patients with stage I NSCLC

Variables
Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Age <60 vs. ≥60 1.350 0.570-3.196 0.494 1.407 0.526-3.758 0.496

Gender Female vs Male 0.535 0.182-1.575 0.256 0.458 0.109-1.917 0.285

Histology Sq. vs. ade. 0.710 0.300–1.678 0.435 0.619 0.186-2.058 0.434

Smoking history no vs. yes 1.375 0.542-3.493 0.503 1.594 0.399-6.370 0.510

Family history no vs. yes 0.869 0.117-6.464 0.891 0.503 0.054-4.653 0.545

Tumor size (cm) ≤3 vs. 3-7 1.621 0.601–4.371 0.340 1.149 0.315-4.188 0.834

FOXF2 mRNA Low vs. High 3.526 1.510–8.231 0.004 4.367 1.599-11.925 0.004

Sq. means Squamous cell carcinoma.
Ade. means Adenocarcinoma
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Figure 3: Predictive value of FOXF2 mRNA level in primary cancer tissues for prognosis of patients with stage I 
NSCLC. Multivariate analysis by cox proportional hazards regression model showed FOXF2 mRNA level was an independent prediction 
factor for survival of patients with stage I NSCLC.

Figure 4: Kaplan-Meier survival curves of patients with different FOXF2 mRNA expression of the independent 
validation. A. Cumulative DFS in overall independent validation population. B. Cumulative DFS in stage I group of the validation.
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may have different metastatic potential or even form a 
different metastatic phenotype and lead to a different 
prognosis. Our investigation revealed that in age < 60 
group, patients with decreased FOXF2 mRNA levels had 
a lower survival rate than patients with the high FOXF2 
mRNA level. FOXF2 mRNA levels might be a potential 
molecular predictor of prognosis in young patients with 
NSCLC.

In conclusion, our results demonstrate the 
prognostic value of FOXF2 mRNA expression in patients 
with NSCLC. FOXF2 mRNA expression negatively 
correlates with the size of NSCLC, and patients with 
high-expressing FOXF2 mRNA have significantly better 
survival than patients with low-expressing FOXF2. 
FOXF2 may inhibit growth and metastasis of cancer 
cells by regulating ECM remodeling and EMT process 
or other mechanisms. Decreased FOXF2 is a promising 
candidate for predicting poor prognosis in Stage I 
NSCLC.

MATERIALS AND METHODS

Clinical samples

All 92 lung tissues, including 84 lung cancer 
and 8 paired normal lung tissues, were collected from 
lung cancer patients (age range: 40-79; mean age: 62) 
without preoperative chemotherapy. Patients underwent 
complete resection of cancer followed by radiotherapy 
(6 cases), paclitaxel plus cisplatin chemotherapy (43 
cases), combined radiation and chemotherapy (13 cases), 
or supportive care only from June 1995 to January 
2005 at Tianjin Cancer Hospital, China. Of these cases, 
primary cancers and paired normal lung tissues were 
collected in 8 cases, and only primary cancer samples 
were obtained in the other 76 cases. Tissue samples 
were diagnosed as NSCLC using hematoxylin and 
eosin (H&E) staining, and only samples with 75% or 
more tumor cells in primary tumors were selected for 
quantitative real-time RT-PCR. Clinical staging of 
cancer was determined according to American Joint 
Commission for Cancer (AJCC)/International Union 
Against Cancer (UICC) TNM staging system and 42, 
22, 13, and 7 patients present with stage I, II, III, and 
IV, respectively. The use of these tissues was approved 
by the Institutional Reviewing Board and the Research 
Committee, and written consent was obtained from 
all participants. Disease-free survival (DFS) time was 
defined as the time from primary surgery to any relapse 
(local-regional, contra-lateral and/or distant), death or 
terminal time of follow-up without any relapse events. 
Another dataset including 17 normal lung tissues and 98 
lung cancer tissues from patients with complete follow-
up data according to the study of Bhattacharjee [19] acts 
as an independent validation. A large cohort including 
2,437 samples of ten independent datasets was used by 
the online survival analysis software [20].

RNA extraction and cDNA preparation

Tissue specimens from cancer were snap-frozen in 
liquid nitrogen within 30 minutes after dissection and then 
stored at –80°C. RNA was extracted with TRIZOL reagent 
(Life technologies, Gaithersburg, MD, USA) according to 
the manufacturer’s instructions. Five μg of total RNA were 
used to perform RT for the first-strand cDNA synthesis. In 
brief, RNA was denatured for 5 minutes at 65°C and snap-
cooled on ice in the presence of 0.5 μg Oligo (dT) and 
10 mmol dNTP mix, followed by incubation at 4°C for 
50 minutes with First-Strand Buffer, 0.2 μmol DTT, 40 U 
RNaseOUT ribonuclease inhibitor and 200 U SuperScript 
II in total volume 20 μL reaction system. Reactions were 
stopped by incubation at 70°C for 15 minutes.

Real-time PCR

Real-time PCR analysis was performed using 
the Platinum® Quantitative PCR SuperMix-UDG 
(Life Technologies) according to the manufacturer’s 
instructions. Primers and Taqman probes of FOXF2 and 
the housekeeping gene, glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), were used as previously 
described [12]. Assays were performed with the ABI 
7500 TaqMan system (Applied Biosystems, Foster City, 
CA, USA). PCR was carried out after incubation at 50°C 
for 2 minutes and pre-denaturing at 95°C for 3 minutes 
followed by 40 cycles at 95°C for 30 s and 58°C for 1 
minute. Quantitation of the expression of the target gene 
in samples was accomplished by measuring the fractional 
cycle number at which the amount of expression reaches a 
fixed threshold (CT). The relative quantitation was given 
by the CT values, determined by triplicate reactions for test 
and reference samples for the target gene and for GAPDH. 
Triplicate CT values were averaged and the GAPDH CT 
was subtracted to obtain ∆CT. The relative expression level 
of the target gene was determined to be 2–∆CT.

Statistical analysis

The Receiver Operating Characteristic (ROC) 
curve was used to identify the optimized cut-off value of 
FOXF2 mRNA level which separated the participants into 
two groups: the FOXF2high group and FOXF2low group, 
respectively. A paired rank-sum test was used to analyze 
the mRNA expression differences between primary lung 
cancers and paired normal lung tissue. Wilcoxon rank-
sum tests or Kruskal-Wallis H tests were used to compare 
mRNA expression differences between/among different 
clinicopathologic groups. Survival analysis was carried 
out according to Kaplan–Meier analysis and Log-rank 
test. Univariate and multivariate survival analyses were 
performed by a Cox proportional hazards regression 
model. All calculations were performed with SPSS for 
Windows statistical software package (SPSS Inc, Chicago, 
IL, USA). P-values of less than 0.05 were considered 
statistically significant.
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