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INTRODUCTION

The basic-helix-loop-helix (bHLH) family of transcrip-
tion factors has been shown to play a key role in the dif-
ferentiation processes of a number of cell lineages. These 
proteins contain an HLH domain, which mediates homo- 
and hetero-dimerization, plus an adjacent DNA-binding 
region rich in basic amino acids. The bHLH proteins bind 
to a DNA sequence known as E-box (CANNTG). There are 
two major categories of bHLH. Class A are ubiquitously 
expressed proteins such as those encoded by the differently 
spliced transcripts of E2A (E12, E47, E2-5), E2-2 and HEB 
genes [1]. Class B comprises tissue-specific bHLH proteins 
that form heterodimers with a partner from the ubiquitously 
expressed class A family [2].

A sub-class of HLH genes, which lacks the basic DNA-

binding domain, is known as Inhibitors of DNA binding 
(Id) genes. The proteins encoded by these genes act as 
dominant-negative regulators of bHLH proteins by form-
ing inactive heterodimeric complexes. In mammals there 
are four known Id gene family members known as Id1, Id2, 
Id3 and Id4. The best characterized Id protein interaction 
is with the ubiquitously expressed bHLH E proteins (E2-2, 
E12, E47), which heterodimerize with tissue-specific 
bHLH proteins, such as MyoD (in muscle) and NeuroD (in 
nerves). 

The identity between the HLH regions of Id proteins 
is very high, while the remaining regions of the proteins 
are not conserved. A study from Kieviz and Cabrele [3] 
reported that the N- and C-terminal fragments of Id pro-
teins do not adopt a helical conformation, with the excep-
tion of Id4 fragment 27-64. This helix propensity is dictated 
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ABSTRACT:
Id proteins (Id-1 to 4) are dominant negative regulators of basic helix-loop-helix 
transcription factors. They play a key role during development, preventing cell 
differentiation while inducing cell proliferation. They are poorly expressed in adult life 
but can be reactivated in tumorigenesis. Several evidences indicate that Id proteins are 
associated with loss of differentiation, unrestricted proliferation and neoangiogenesis 
in diverse human cancers. Recently, we identified Id4 as a transcriptional target of the 
protein complex mutant p53/E2F1/p300 in breast cancer. Id4 protein binds, stabilizes 
and enhances the translation of mRNAs encoding proangiogenic cytokines, such as 
IL8 and GRO-alpha, increasing the angiogenic potential of cancer cells. We present 
here an overview of the current experimental data that links Id4 to cancer. We provide 
evidence also of the induction of Id4 following anticancer treatments in mutant p53-
carrying cells. Indeed, mutant p53 is recruited to a specific region of the Id4 promoter 
upon DNA damage. Our findings indicate that Id4, besides its proangiogenic role, might 
also participate in the chemoresistance associated to mutant p53 proteins exerting 
gain of function activities.
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by the presence of an Ala-rich motif between residues 39 
and 57. It can be hypothesized that Id4 might exert unique 
functions through this structural feature. Despite the high 
similarity in the HLH domain, the Id proteins bind differ-
ent targets with different affinities; for example Id2 is the 
only Id family member that recognizes the retinoblastoma 
protein [4, 5].

Id proteins were described initially as inhibitors of dif-
ferentiation and more recently as regulators of cell cycle 
progression, senescence, apoptosis and tumorigenesis 
[6-9]. Id proteins play a critical role in promoting the pro-
gression through the S-phase of the cell cycle in cell culture 

cells. Id1, Id2 and Id3 have been shown to interact with 
cell cycle regulatory molecules [10]. Indeed, they nega-
tively regulate the expression of cyclin D1, p16Ink4a and 
p21CIP1/WAF1 [11, 12, 13]. The expression and function of 
Id proteins need to be strictly controlled to ensure the cor-
rect timing of cell cycle exit and differentiation. The role 
of Id2 has been well characterized in this regard. Indeed 
Id2 physically interacts with the tumor suppressor protein 
Retinoblastoma (pRb). Genetic analyses have shown that 
pRb restrains Id2 activity during development to prevent 
ectopic proliferation and apoptosis and to promote differ-
entiation. The absence of functional pRb leads to a gain of 

Fig. 1.   Deregulated Id signaling may promote multiple attributes of malignancy. (A) Increased levels 
of Id proteins have been reported in cancer cells and their expression is frequently governed by acti-
vated oncogenes (such as Myc and beta-catenin that control Id2 expression). In non transformed cells 
Rb restrains Id2 function by direct interaction [4, 5]; during tumorigenesis Id2 protein levels increase 
and overcome Rb control resulting in unresctriced proliferation. Id proteins accumulation also leads to 
inhibition of the bHLH factors (E-proteins and ETS) responsible for cell cycle exit, differentiation and 
senescence [11, 13, 46-50], causing anaplasia. (B) Id1 expression in breast cancer cells is induced 
by cyclooxygenase-2-derived prostaglandin E2 (promoting metastasis) while is repressed by KLF17 (a 
metastatic suppressor) [51, 52]. Id1 expression may negatively regulate PTEN, leading to Akt activation, 
and drives tumor reinitiation during breast cancer metastasis [53-56]. (C) In endothelial progenitor cells 
Id1 and Id3 maintain the expression of FGFR1, MMP2, laminin 5 and alpha 6-beta 4 integrin [57], thereby 
enabling the mobilization of EPC from the bone marrow to the site of the tumor in response to circulating 
cytokines [17, 18].
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Id2 activity and inappropriate sequestration of E proteins, 
causing a block in the cell cycle exit and differentiation. 
Loss of Id2 partially compensates loss of function of pRb. 
This results in the block of differentiation of the nervous 
system and hematopoietic compartments [5].

As outlined above, Id proteins are required for proper 
development and differentiation. However, the expression 
of Id proteins, which is very low in adult tissues, can be 
reactivated in human cancers. It has been proposed that 
deregulated Id signaling may promote multiple attributes 
of malignancy (summarized in Figure 1), like unrestricted 
proliferation, loss of differentiation (anaplasia), invasive-
ness and neoangiogenesis [9, 14]. Elevated levels of Id 
proteins have been reported in several malignancies (car-
cinoma, squamous cell carcinoma, adenocarcinoma, neural 
tumors, melanoma, sarcoma, seminoma and leukemia) [9]. 
In some cases, high levels are associated with tumor stage/
grade and with prognosis. Analysis of genetic alterations 
of Id genes in human tumors has found no mutations. This 
may indicate that Id genes are not common oncogenes. 
Nevertheless, the overexpression of Id genes in cancer is 
frequently governed by bona fide oncogenes, such as MYC 
driven Id2 expression in neuroblastoma cells [5, 15] and 
beta-catenin driven Id2 expresion in colon cancer cells 
[16]. The role of Id proteins in cancer seems to rely on 
activity carried out in different cell compartments. Id pro-
tein expression is upregulated in the tumor itself, leading 
to enhanced cell proliferation and inhibition of senescence 
[9]. Genetic studies on Id1 and Id3 knock-out mice have 
shown that Ids are expressed in endothelial progenitor cells 
(EPC) and are required for EPC mobilization from the bone 
marrow during pathological tumor-induced neoangiogene-
sis [8]. The expression of Ids remains high in tumor neovas-
culature [17] and drives the “angiogenic switch” required 
for the progression from micro- to macro-metastases [18]. 

Id4 in neural development and cancer

Id4 is the least studied member of the Id family of pro-
teins. Several lines of evidence suggest that Id4 plays an 
important role in the nervous system, and in particular in 
oligodendrocyte development. Id4 is expressed in oligo-
dendrocyte precursor cells and may control the timing of 
oligodendrocyte differentiation. Enforced expression of Id4 
in vitro stimulates proliferation and blocks differentiation 
of oligodendrocyte precursor cells [19]. Id4 was recently 
found to directly interact with bHLH, OLIG1 and OLIG2 
in neural progenitor cells. It also mediates the inhibitory 
effects of bone morphogenetic protein-4 (BMP-4) on oli-
godendroglial differentiation that leads to astrocytic differ-
entiation [20]. Studies on knock-out mice revealed that Id4 
is required for normal brain size and regulates neural stem 
cells proliferation and differentiation [21]. In particular, Id4 
regulates lateral expansion of the proliferative zone in the 
developing cortex and hippocampus. Since Id4 is required 

for the normal G1/S transition in early cortical progenitors, 
the absence of its expression compromises the proliferation 
of stem cells in the ventricular zone [21].

It has been established that developmental regulators 
play a direct role in driving aspiring cancer cells towards 
a malignant phenotype, and contribute to the conferring of 
stem-like cell properties, including robust renewal potential 
[22]. Enforced Id4 expression can drive malignant transfor-
mation of primary murine Ink4a/Arf−/− astrocytes, thereby 
highlighting the role of Id4 in controlling the “stemness” 
of neural cells during development of the central nervous 
system [23].  Id4 increases the levels of both cyclin E (that 
leads to a hyperproliferative state) and Jagged1 to drive 
astrocytes into a neural stem-like cell state. Id4 mRNA 
levels were found to have increased in human glioblas-
toma multiforme (GBM) when compared to normal brain 
tissue. Interestingly, the analysis of Id4 protein expression 
in human GBM specimens evidenced that the majority of 
Id4-positive cells resides near the vasculature, a location 
postulated to be the niche for brain tumor stem cells [24].
Conversely to that observed in brain tumors, reduced 
Id4 expression due to promoter hypermethylation was 
observed in gastric and colorectal carcinomas, indicating a 
possible role of Id4 in tumor suppression (see Table 1). Id4 
promoter was also found hypermethylated in a variety of 
other malignancies, such as leukemia, prostate cancer and 
breast cancer (summarized in Table 1).

Id4 in breast cancer

The analysis of Id4 expression in breast cancer has lead 
to seemingly controversial findings. This might be due to 
the scarcity of available information regarding the role 
of Id4 in tumorigenesis. Furthermore, each breast cancer 
subtype represents a distinct pathology characterized by 
specific cytogenetic and molecular alterations, prolifera-
tion rate, metastatic potential and response to conventional 
anticancer treatments.

In situ hybridization analysis of normal breast epithe-
lium and carcinoma has shown that Id4 is expressed only in 
estrogen receptor negative (ER-) tissues [25]. ER-positive 
(ER+) cells are negative for Id4 expression both in normal 
epithelium and carcinoma. Following these findings a 
tumor suppressor role for Id4 in human breast has been 
proposed. Analysis of the methylation status of Id4 pro-
moter in breast cancer cell lines and tissues has indicated 
that hypermethylation is a frequent event and is associated 
with an increased risk of lymph node metastasis [26, 27]. 
To date the molecular mechanisms underlying the tumor 
suppressor activity of Id4 have not been characterized.
On the contrary, Beger and colleagues [28] have proposed a 
positive role for Id4 in mammary and ovarian tumorigene-
sis. The modulation of Id4 expression in breast and ovarian 
cancer cell lines resulted in inversely regulated expression 
of BRCA1. An increase of Id4 expression was associated 
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with the ability of ovarian (PA-1) and breast (SKBr3) 
cancer cells to exhibit anchorage-independent growth, 
while its depletion determined morphological change to a 
large and flat epithelial phenotype. The expression of ID4 
and BRCA1/ER inversely correlated in sporadic breast 
cancers [29]. Turner et al. [30] have reported that high 
expression of Id4 mRNA is present in basal-like breast 
cancer (expressing cytokeratines 5/6) when compared to 
matched non-basal controls, and Id4 expression correlates 
to low levels of BRCA1 mRNA. Additional proof of the 
active role of Id4 in breast tumorigenesis has been provided 
by Shan et al. [31] who found elevated nuclear expression 
of Id4 protein in mammary rat carcinoma compared to 
adenoma and normal tissue. Id4 protein nuclear staining in 
carcinomas was also positively correlated with prolifera-
tion, invasiveness and tumor weight. Enforced Id4 expres-
sion caused an increase in colony growth in soft agar [31].

Id4 and p53 mutations

Half of all human cancers bear TP53 mutations. Most 
of the p53 alterations are missense mutations, often within 
the conserved DNA binding core domain of the protein. 
The resulting proteins display a marked heterogeneity in 
terms of loss of structure and function. Several evidences 

demonstrate that a subset of p53 mutant proteins exert 
gain of function activity, thereby actively participating in 
tumorigenesis [32]. Mutant p53 has been shown to increase 
cellular resistance to anticancer treatments and to contrib-
ute to genomic instability by abrogating the mitotic spindle 
checkpoint, consequently facilitating the generation of 
aneuploid cells [33, 34]. Mutant p53 knock-in mice have 
a higher frequency of solid tumours with a high potential 
for metastasis, a feature not seen in p53 knock-out animals 
[35, 36]. 

We have recently shown that mutant p53 proteins spe-
cifically induce Id4 expression in experimental cell sys-
tems [37]. Moreover, Id4 protein expression is enriched in 
breast cancer tissues showing p53 overexpression, often 
correlated to a mutation in the coding sequence of TP53 
gene that confers a high level of stability to the protein. 
We found that Id4 is expressed in 44% of the breast cancer 
specimens analyzed (186 patients). As already mentioned, 
Id4 positivity is increased in the p53 overexpressing popu-
lation (p53+), where it reaches 60%, compared to the p53-
negative population (38%); this phenomenon is even more 
marked in the HER2 subtype (54 specimens), where Id4 is 
expressed in nearly 80% of p53+ cases, compared to 40% 
of the p53- cases [37]. HER2 overexpressing breast cancer 
subtype presents very high frequency of TP53 mutations, 

Kind of modulation Kind of analysis Tumor type Reference

Nuclear localization in cancer vs cytoplasmic localization in 
spermatogonia 

protein Seminoma [59]

Upregulation associated to amplification at 6p22.3 mRNA Bladder [60]

Hypermethylation promoter DNA Gastric adenocarcinoma [61]

Hypermethylation 
Downregulation 

promoter DNA
protein

Colorectal carcinoma [62]

Hypermethylation promoter DNA Colorectal adenocarcinoma [63]

Downregulated in low grade cancer vs hyperplasia Upregulated 
in high grade vs low grade cancer

protein Prostate [64]

Downregulated mRNA Prostate [65]

Hypermethylation promoter DNA Leukemia [66]

Hypermethylation promoter DNA Lymphoma [67]

Downregulated protein Breast [68]

Upregulated protein Breast (rat) [31]

Hypermethylation promoter DNA Breast [27]

Upregulated in basal-like cancer vs non-basal-like cancer mRNA Breast [30]

Hypermethylation promoter DNA Breast [26]

Upregulated in p53-expressing cancer protein Breast [37]

Upregulated in cancer vs normal brain mRNA Glioblastoma multiforme (GBM) [23]

Upregulated in cancer vs adjacent normal tissue protein Small cell lung cancer [69]

Hypermethylation promoter DNA Cholangiocarcinoma [70]

Table 1. Id4 modulation in cancer
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like also cancers presenting a basal phenotype [38]. The 
small number of basal-like tissues examined in our study 
did not permit obtaining significant information about the 
potential correlations existing between Id4 and p53 expres-
sions in this BC subtype. The interrogation of public gene 
expression data repositories (www.oncomine.org) [39] for 
Id4 mRNA expression in breast cancers revealed that high 
levels of Id4 transcript are present in basal-like versus non-
basal breast cancers in various studies (data not shown).  
 

Further characterization performed in breast cancer cell 
lines enabled us to show that the transcriptional transacti-
vation of Id4 promoter is exerted by the complex mutant 
p53/E2F1/p300 [37]. The net biological output of the tran-
scriptional activation of Id4 gene by mutant p53 is the 
increase of the angiogenic potential of mutant p53-carrying 
tumor cells (see Figure 5). The binding of Id4 protein to 
the mRNAs of pro-angiogenic factors like IL8 (CXCL8) 
and GRO-alpha (CXCL1), that results in an increased sta-
bility and a higher rate of translation of these transcripts, 
explains the proangiogenic effects of Id4 transactivation. In 
parallel to these findings, obtained in cell lines, the staining 
of 110 breast cancers for the CD31 blood vessels marker 

revealed higher microvessel density in the Id4-positive 
population than that in Id4-negative [37]. Significantly, 
the most expressed cytokines in HER2 tumors are IL8 and 
GRO-alpha [40], cytokines which are also induced by the 
transcriptional axis mutant p53 and Id4.

We hypothesize that Id4 displays tumor suppressor 
functions in ER+ breast tumors where it is frequently inac-
tivated by promoter hypermethylation. However, Id4 dis-
plays oncogenic activities in the context of breast cancer 
cells expressing mutant p53, which are mainly ER- [41, 
42]. Thus, mutant p53-carrying cells express proteins 
required for the pro-tumorigenic function of Id4, such as 
factors that enable Id4 binding to proangiogenic target 
mRNAs. The expression profiling of breast cancer tissues 
with known p53 status has revealed that tumors with wild-
type or mutated p53 are distinguished by pervasive molec-
ular differences [42]. It is therefore likely that many unique 
players are present in mutant p53-carrying tissues.

Id4 expression is induced by mutant p53 in response to 
DNA damage

While studying the dependency of Id4 on mutant p53 

Fig. 2.  ID4 mRNA is increased in response to DNA damage. (A) qRT-PCR analysis of  ID4 expres-
sion was performed in parallel on SKBr3, MCF7, SW480 and HT29 cells. Relative ID4 mRNA levels 
were calculated by normalization for the amount of  GAPDH transcript present in the RNA prepara-
tions. ID4 and GAPDH expressions were measured by real-time PCR using TaqMan assays (Applied 
Biosystems). (B-C) qRT-PCR analysis of  ID4 expression in SKBr3 and SW480 following treatment 
with cisplatin (1μg/mL) or adriamycin (1μM) for 36 hours. ID4 protein expression in SKBr3 cells was 
evaluated by western blotting after 36h treatment with cisplatin (1μg/mL) using rabbit polyclonal anti-
ID4 (Santa Cruz). (D-E) qRT-PCR analysis of  ID4 expression in HT29 and MCF7 cells treated or not 
with the indicated amounts of  adriamycin or cisplatin for 36h.
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we sought to investigate whether Id4 expression is modu-
lated by mutant p53 in response to commonly used antican-
cer drugs, such as adriamycin and cisplatin. The majority 
of the mutant p53 target genes so far identified are indeed 
modulated in response to anticancer agents, thereby pro-
viding a molecular basis for increased chemoresistance of 
tumors carrying TP53 mutations. Recent findings by Di 
Agostino et al. [43] have shown that mutant p53 transac-
tivates cell cycle regulatory genes in response to treatment 
with chemotherapeutic agents, thereby providing molecu-
lar-based insights into the aberrant regulation of cell cycle 
in tumor cells. 

We first analyzed Id4 expression of SKBr3 and MCF7 
breast cancer cells, carrying mutant p53R175H and wt-p53, 
respectively, and of SW480 (colon) and HT29 (colorectal) 
adenocarcinoma cells, carrying mutant p53R273H/P309S 
and p53R273H, respectively. SKBr3 (ER-) cells express 
high levels of Id4 while MCF7 (ER+) cells display 60-folds 
lower Id4 levels than SKBr3 (Fig. 2A). These findings cor-
respond with the previously reported observation that Id4 
expression is inversely correlated to ER expression [25]. 
Id4 expression is rather low in colorectal cancer cells (Fig. 
2A). This parallels with Id4 promoter methylation as previ-
ously shown by Umetani et al. [27].

Next, we assessed Id4 expression upon cisplatin or 

adriamycin treatment. Id4 transcript is strongly induced 
upon DNA damage in SW480 and HT29 cells (Fig. 2C-D), 
while its induction is less pronounced in SKBr3 cells (Fig. 
2B). Id4 expression is not induced in wt-p53 MCF7 breast 
cancer cells in response to cisplatin or adryamicin (Fig. 
2E). 

To verify whether DNA damage-induced Id4 upregula-
tion is dependent on endogenous mutant p53 protein, we 
analyzed Id4 mRNA levels in SKBr3 and SW480 cells 
stably transfected with a vector carrying sh-p53 interfer-
ence. Id4 transcript was strongly compromised in the p53-
silenced cells (Fig. 3A-B). These findings indicate that 
Id4 can be transcriptionally modulated by mutant p53 in 
response to DNA damaging agents. 

To further evaluate the role of mutant p53 on the tran-
scriptional control of Id4 gene expression in response to 
DNA damaging agents, we analyzed the in vivo occupancy 
of mutant p53 on Id4 promoter by chromatin immunopre-
cipitation experiments. As previously reported, we observed 
the recruitment of p53R175H to the A, C and D regions of 
Id4 promoter in untreated SKBr3 cells (Fig. 4A). In agree-
ment with the hypermethylated status of Id4 promoter and 
its silenced expression, mutant p53 did not bind any of the 
analyzed regions of Id4 promoter in untreated SW480 cells 
(Fig. 4C). Upon adriamycin treatment we found that mutant 

Fig. 3.  Mutant p53 mediates Id4 mRNA induction after DNA damage. qRT-PCR analysis of  
ID4 expression was performed in SKBr3 (A) and SW480 (B) cells whose p53 expression was 
depleted (sh-p53) and control cells (sh-scramble) upon treatment with adriamycin (1μM) for 
36h. For p53 interference cells were transfected with pRS-p53-scramble and pRS-p53 plasmids 
and transfected cells were selected with puromycin. Mutant p53 protein expression of  stably 
interfered SKBr3 and SW480 polyclonal populations was evaluated by western blotting using 
DO1 antibody (Santa Cruz) and is shown in the lower panels.
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p53 is recruited only to the D region of Id4 promoter in 
both cell lines (Fig. 4A, 4C) and this recruitment parallels 
a slight increase in histone H4 acetylation in that region. 
Since region D of Id4 promoter contains a CDE consensus 
where mutant p53 and E2F1 are concomitantly bound in 
proliferating SKBr3 cells [27], we analyzed E2F1 occu-
pancy in that region in response to adriamycin. As shown 

in Fig. 4B-D E2F1 is strongly recruited to the region D of 
Id4 promoter in both cell lines and its binding is enhanced 
in SW480 cells upon adriamycin treatment, thereby sug-
gesting a transcriptional cross-talk between mutant p53 and 
E2F1 in the control of Id4 expression in response to DNA 
damage.

 Fig. 4.   Mutant p53 associates with ID4 promoter in response to DNA damage. (A), (C) Cross-linked chromatin 
derived from SKBr3 and SW480 cells treated (T) or not (NT) with adriamycin (1μM) for 36h was subjected to 
ChIP as previously described [58], using antibodies directed against mutant p53 (sheep anti-p53 serum Ab7, 
Calbiochem) or acetylated histone H4 (Upstate Biotechnology, Inc.). Enrichment of the region A was analyzed by 
PCR (left panels) while regions B, C and D were analyzed by qPCR. The results are presented as folds over the 
No Ab sample (negative control). (B), (D) Cross-linked chromatin derived from SKBr3 and SW480 cells treated 
with adriamycin (1μM) or cisplatin (1μg/mL) for 36h was subjected to ChIP using antibodies directed against p65 
(Santa Cruz, sc-372) and E2F-1 (Santa Cruz, sc-193). The enrichment of region D was analyzed by qPCR and 
results are presented as folds over the No Ab. Dashed lines indicate the threshold for binding positivity.
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DISCUSSION

Id4 expression is upregulated in tumor cells carry-
ing endogenous mutant p53 proteins upon treatment with 
diverse anticancer drugs. This induction is dependent on 
mutant p53 expression. It has recently been shown that Id1 
expression is inhibited by DNA-damaging agents (camp-
tothecin and adriamycin) in a wild-type p53-dependent 
manner (wt-p53) [44]. Indeed, wild-type p53 induces the 
transcriptional repressor DEC1, which in turn binds to Id1 
promoter and represses its transcription. It appears that 
the impact of DNA damage on the expression of Id family 
members might be closely linked to the status of p53 pro-
tein. Further experimental work is needed to decipher the 
underlying molecular mechanisms of these events. 
We found that mutant p53 is selectively recruited onto the 
region D of Id4 promoter in cells treated with DNA damag-
ing agents. These findings indicate that the recruitment of 
mutant p53 to Id4 promoter depends on the status of the 
cell (proliferating or treated with DNA-damaging agents). 
While mutant p53 is recruited to three regions (NF-kB 
binding site and two CDE elements) of Id4 promoter in 
untreated cells [27], it binds to the downstream CDE con-
sensus (region D) in presence of DNA-damaging agents. In 
cells whose Id4 expression is very low or in the presence 
of hypermethylation of Id4 promoter, mutant p53 does not 

display any binding to Id4 promoter regions in proliferating 
cells, while it binds to region D upon treatment with DNA-
damaging agents. This suggests that reactivation of Id4 by 
mutant p53 in response to DNA damage agents occurs irre-
spective of the amount of basal Id4 and might share identi-
cal molecular events that remain to be identified. 
Our data indicate that Id4 plays different roles in cancer 
cells carrying mutated p53 proteins. In proliferating cells 
Id4 plays a role in the recruitment of new blood vessels, 
thereby ensuring the survival and the spreading of tumor 
cells. Id4 might also contribute to the chemoresistance of 
mutant p53 tumor cells. The amounts of drugs used in the 
reported experiments are sub-lethal doses for SKBr3 and 
SW480 cells but became highly apoptotic upon depletion 
of mutant p53 protein  [45]. 

Future research will be devoted to the identification of 
the subsets of target mRNAs that are bound by Id4 in breast 
cancer cells presenting wt-p53 (where Id4 is probably anti-
tumorigenic) or mutant p53 (where Id4 is probably pro-
tumorigenic).
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 Fig. 5.  Role of mutant p53 and Id4 in breast tumor neoangiogenesis. (A) In proliferating breast cancer cells 
carrying mutant p53 the protein complex mutp53/E2F1/p300 assembles on specific regions of Id4 promoter 
(NF-kB and CDE elements), and positively controls Id4 expression. The newly synthesized Id4 protein binds to 
the 3’UTR of mRNAs encoding pro-angiogenic factors, like IL8 and GRO-alpha, which contain AU-rich elements 
(ARE), causing their stabilization and enhancement of translation. This results in an increase of the angiogenic 
potential of cancer cells expressing mutant p53. (B) In response to DNA-damaging agents mutant p53 is specifi-
cally recruited to the downstream CDE element of Id4 promoter and transactivates its transcription in breast and 
colon cancer cells. The increased levels of Id4 protein probably participate to the chemoresistance of mutant 
p53-carrying cells.
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