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ABSTRACT
High-throughput next-generation sequencing methods have recently provided a 

detailed picture of the genetic landscape of neuroendocrine tumors (NETs), revealing 
recurrent mutations of chromatin-remodeling genes and little-to-no pathogenetic 
role for oncogenes commonly mutated in cancer. Concurrently, multiple epigenetic 
modifications have been described across the whole spectrum of NETs, and their 
putative function as tumorigenic drivers has been envisaged. As result, it is still 
unclear whether or not NETs are epigenetically-driven, rather than genetically-induced 
malignancies. Although the NET epigenome profiling has led to the identification of 
molecularly-distinct tumor subsets, validation studies in larger cohorts of patients 
are needed to translate the use of NET epitypes in clinical practice. In the precision 
medicine era, recognition of subpopulations of patients more likely to respond to 
therapeutic agents is critical, and future studies testing epigenetic biomarkers are 
therefore awaited. Restoration of the aberrant chromatin remodeling machinery is 
an attractive approach for future treatment of cancer and in several hematological 
malignancies a few epigenetic agents have been already approved. Although 
clinical outcomes of epigenetic therapies in NETs have been disappointing so far, 
further clinical trials are required to investigate the efficacy of these drugs. In this 
context, given the immune-stimulating effects of epidrugs, combination therapies 
with immune checkpoint inhibitors should be tested. In this review, we provide an 
overview of the epigenetic changes in both hereditary and sporadic NETs of the 
gastroenteropancreatic and bronchial tract, focusing on their diagnostic, prognostic 
and therapeutic implications.

INTRODUCTION

Neuroendocrine tumors (NETs) include a 
heterogeneous group of malignancies characterized by 
a relatively indolent rate of growth and a propensity to 
secrete a variety of hormones and biogenic amines. They 
arise from neuroendocrine cells, which are mainly located 
throughout the length of the gastroenteropancreatic 
(GEP) tract and the bronchopulmonary tree. The majority 
of NETs are sporadic, but they can also occur in the 
context of inherited familial syndromes, such as multiple 
endocrine neoplasia type 1 (MEN1), Von-Hippel Lindau 
syndrome, tuberous sclerosis and neurofibromatosis type 
1, thus suggesting a causal role for genetic alterations 
during the tumorigenic process [1].

In recent years, a very heterogeneous picture of 
the genetic landscape of well-differentiated foregut, 
midgut and hindgut NETs has been depicted. Mutations 
of covalent histone modifiers including MEN1, PSIP1, 
SETD1B and members of the Polycomb complex 
have been observed in 40% of pulmonary carcinoids, 
and alterations in chromatin-remodeling genes have 
been described as sufficient to drive early steps in lung 
NET tumorigenesis [2]. In pancreatic NETs (pNETs), 
mutations of the epigenetic regulators MEN1 and DAXX/
ATRX have been described in 44% and 43% of tumors 
respectively, while alterations of the mammalian target 
of rapamycin (mTOR) pathway have been found in 
14% of the specimens [3]. Whole-genome and -exome 
sequencing has demonstrated that small bowel NETs 
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are mutationally quiet, with a mutational burden of 0.1 
somatic single nucleotide variants (SSNVs) per 105 
nucleotides. Accordingly, recurrent mutations in the 
cyclin-dependent kinase inhibitor gene CDKN1B have 
been identified in only ~8% of tumors, in the absence 
of other obvious pathogenetic genomic alterations [4]. 
However, multiple epigenetic aberrations have been 
recently demonstrated in small bowel NETs, and their 
involvement in disease pathogenesis has been postulated 
[5]. Although patterns of gene mutations are highly diverse 
in NETs of different primary sites, classical oncogenes or 
tumor suppressors implicated in the development of many 
solid tumors (such as P53, RB or KRAS) do not appear to 
play a major role in the pathogenesis of any NETs [6]. In 
contrast, epigenetic dysregulation and/or alterations of the 
chromatin remodeling machinery seem to be a common 
element across different histologies. Thus, whether low-to-
intermediate grade NETs are genetically-driven neoplasms 
or epigenetically-induced malignancies remains a 
legitimate though unanswered question.

Epigenetic modifications such as DNA methylation 
or histone acetylation, methylation and phosphorylation 
can cause heritable changes in gene expression without 

concomitant alterations in the genome of a cell. DNA 
methylation occurs primarily within the CpG islands 
located in the promoter regions and dictates the 
transcriptional potential of downstream target genes. 
Concomitantly, covalent histone modifications determine 
how DNA is packaged in nucleosomes, thus modulating 
the accessibility of underlying genes to transcription 
factors [7]. In addition, microRNAs (miRNAs), small 
single-stranded RNA molecules of ~19-22 nucleotides, 
regulate the gene expression at the post-transcriptional 
level, and have recently emerged as prominent epigenetic 
regulators [8]. Acting combinatorially, these mechanisms 
concur to determine the cellular phenotype, and there is 
increasing evidence that epigenetic aberrations are as 
relevant as gene mutations in the cancer pathogenesis 
(Figure 1) [9].

In this review, we provide an overview of the current 
knowledge on epigenetic changes in both hereditary 
and sporadic NETs of the GEP and bronchial tract, and 
focus on both diagnostic, prognostic and therapeutic 
implications that the NET epigenome profiling carries in 
the precision medicine era.

Figure 1: Epigenetic regulation of gene expression. Epigenetic alterations such as DNA methylation and/or histone modifications 
modulate the accessibility of genes to the transcriptional machinery by inducing either a relaxed/open or condensed/closed chromatin 
configuration. miRNAs concur to regulate the cell phenotype by repressing the expression of gene transcripts.
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THE EPIGENETIC LANDSCAPE OF 
NETS

During the past decade, next-generation DNA 
and RNA sequencing methods have provided a more 
detailed picture of the epigenetic landscape of NETs. In 
particular, genome-wide approaches have contributed to 
define a molecular classification of these malignancies, 
thus paving the road for new diagnostic tools and 
innovative personalized therapies. Neuroendocrine lineage 
allocation is partly caused by progressive accumulation 
of complex layers of epigenetic modifications during the 
differentiation process from pluripotent endodermal cells 
[10, 11]. Although phenotypic stability of the differentiated 
cell state is secured by the so called “epigenetic memory” 
(reviewed in [12]), heterogeneous epigenetic profiles 
have been shown in NETs of different primary sites, 
thus suggesting underlying difference in the tumorigenic 
process, microenvironment-driven modulation of 
epigenetic states, and/or their possible correlation with 
the biological aggressiveness of these diverse neoplasms.

Familial neuroendocrine syndromes

Genetic and clinical features of familial 
neuroendocrine syndromes are summarized in Table 1. 
MEN1 is an autosomal-dominant syndrome characterized 
by tumors of the anterior pituitary, parathyroid glands 
and pancreaticoduodenal neuroendocrine cells, most 
commonly gastrinomas. It is caused by an inactivating 
mutation of the MEN1 gene, which encodes for menin, 
a nuclear protein implicated in cell division, genome 
stability, and transcription regulation via histone 
methylation. Up to 10% of patients with MEN1 syndrome 
may not harbor mutations in the coding regions of the 
MEN1 gene, but in the gene promoter or untranslated 
regions, challenging the genetic diagnosis [13]. As a 
constituent of a multiple protein complex displaying a 
histone H3 lysine 4 methyltransferase activity, MEN1 
has a critical role in chromatin remodeling. In particular, 
MEN1 acts as either repressor or activator of gene 
transcription through interaction with a plethora of histone 

deacethylases (HDACs) and histone methyltransferases 
including PRMT5 and SUV39H1. Epigenetic silencing 
of the Hedgehog pathway, of the homeobox gene GBX2 
as well as of the gastrin-encoding gene GAST has been 
reported downstream of MEN1 [14-16]. On the other 
hand, transcriptional activation of the HOX cluster 
(HOXA9, HOXC6, and HOXC8) and cyclin-dependent 
kinase inhibitor (CDKN1B, CDKN2C) genes has been 
documented, but the biologic consequences on pNET 
tumorigenesis need to be clarified [17-19]. To elucidate 
the genome-wide transcriptional modifications induced 
by MEN1 through epigenetic remodeling in pancreatic 
islets, a recent study integrated gene expression 
profile analysis and histone H3 lysine 4 trimethylation 
(H3K4me3) mapping, and identified insulin-like growth 
factor 2 mRNA binding protein 2 (IGF2BP2) gene as a 
target subjected to MEN1 dynamic regulation. IGF2BP2 
interferes with IGF2 translation during the embryonic 
development, and its dysregulation upon MEN1 loss might 
play a role in pNET pathogenesis [20].

In neurofibromatosis type 1 and tuberous sclerosis 
syndrome, epigenetic silencing of the wild-type NF1 or 
TSC2 genes has been proposed as a possible tumorigenic 
event, in accordance with the Knudson’s two-hit 
hypothesis [21, 22]. Although data in lung and GEP-NETs 
arising in the context of Von-Hippel Lindau syndrome 
(VHL) are lacking, there is evidence that mutations of 
multiple chromatin remodelers including the histone 
methyltransferase SETD2 and the histone demethylases 
UTX and JARID1C may contribute to the progression of 
VHL-associated clear renal cell carcinoma [23].

Pancreatic NETs

A number of studies have investigated the epigenetic 
changes possibly related to pNET pathogenesis and 
progression, and hypermethylation of the promoters of 
RASSF1, CDKN2A, TIMP3, MGMT, MLH1 and IGF2 
genes has been reported (Table 2). Ras association 
domain family 1 (RASSF1) is a tumor suppressor gene 
consisting of eight exons alternatively spliced to encode 
8 protein isoforms, RASSF1A-H. RASSF1A is involved 

Table 1: Familial neuroendocrine syndromes: genetic and clinical features.

Syndrome Causative gene Gene location Protein GEP-NET type
(penetrance)

MEN1 MEN1 11q13 Menin

Gastrinoma (40%)
Non-functioning pNET (20%)
Insulinoma (10%)
Glucagonoma <1%
VIPoma <1%
Gastric carcinoid 10%

VHL syndrome VHL 3p25 VHL Non-functioning pNET (12-17%)
Tuberous sclerosis TSC1/TSC2 9q34/16p13 Hamartin/tuberin pNET (<5%)
NF1 NF1 17q11.2 Neurofibromin Somatostatinoma (6%)
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in microtubule stabilization, cell cycle regulation and 
induction of apoptosis [24], and the aberrant methylation 
of its promoter has been observed in 60-100% of 
pNETs [25-29]. Of interest, the transcription levels of 
RASSF1A are inversely correlated with the degree of gene 
methylation [30], and RASSF1A hypermethylation seems 
to predict pNET malignant features such as larger tumor 
diameter, nodal involvement and hepatic metastases [26, 
28]. Cyclin-dependent kinase inhibitor 2A (CDKN2A) 
encodes for the tumor suppressor protein p16, which 
concurs to regulate cell cycle progression by inhibition of 
the G1/S transition. In a study of 48 well-differentiated 
pNETs, hypermethylation of CDKN2A was observed 
in 40% of tumors and was significantly associated with 
decreased patient survival and early tumor recurrence after 
surgery [26]. Of note, CDKN2A hypermethylation seems 
to be a hallmark of gastrinomas, since it occurs in 52-62% 
of gastrinomas but only in 17% of insulinomas [31-33]. 
Loss of p16 as result of gene promoter methylation is not 
associated with disease stage or prognosis, thus suggesting 
its early occurrence in gastrinoma pathogenesis [31, 32]. 
In vitro, reacquisition of p16 expression after treatment 

with the hypomethylating agent 5-aza-2’-deoxycytidine 
(decitabine) resulted in growth inhibition of pNET cells 
[34]. Methylation of the tumor suppressor tissue inhibitor 
of metalloproteinase-3 (TIMP3) has been found in 8/18 
(44%) samples of pNETs, and has been correlated with 
loss or reduction of protein expression. TIMP3-negative 
tumors are at increased risk of lymph node and/or liver 
metastases, whereas they are apparently never associated 
with ectopic insulin production [35]. The suicide enzyme 
O6-methylguanine DNA methyltransferase (MGMT) 
repairs DNA by removing the O6-alkylguanine adducts, 
and its role in pNET chemoresistance to alkylating agents 
including temozolomide has been widely investigated, 
with controversial results [36-39]. Methylation in the 
promoter region of MGMT has been observed in up 
to 56% of pNETs, and only a partial concordance with 
protein expression has been demonstrated, thus suggesting 
the existence of various mechanisms of MGMT expression 
regulation in addition to transcriptional modulation [38]. 
Both MutL homolog 1 (MLH1) and Insulin-like growth 
factor 2 (IGF2) are frequently methylated in insulinomas, 
but not in other pNETs [40, 41]. Accordingly, in a recent 

Figure 2: Frequent epigenetic modifications in insulinomas and other pNETs. While the epigenetic landscape of insulinomas 
is characterized by alterations of the signaling of MLH1 and IGF2, non-insulinoma pNETs are defined by a different pattern of epigenetic 
changes, eventually leading to cell cycle dysregulation, increased cell motility and chemoresistance.
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study investigating the DNA methylation level of 807 
cancer-related genes in insulinomas, gastrinomas and non-
functioning pNETs, DNA methylation patterns were found 
to be specific for each tumor subtype [42]. An overview 
of recurring epigenomic difference between insulinomas 
and other pNETs is provided in Figure 2. Along with 
fundamental difference in the genetic background [3, 
43], epigenetic changes peculiar of insulinomas might 
contribute to determine their unique clinical behavior.

Hyperactivation of the Wnt/β-catenin signaling 
contributes to the pathogenesis and progression of pNETs. 
Although mutations of β-catenin or Wnt antagonists 
such as APC are rare, epigenetic silencing of Wnt 
inhibitors including Axin-2, secreted Frizzled-related 
proteins (SFRPs), Wnt inhibitory factor-1 (WIF-1) and 
DICKKOPFs (DKKs) has been reported in pNET cell 
lines. In particular, while silencing of SFRPs and Axin-2 

was related to the promoter methylation, downregulation 
of WIF-1, DKK-1 and DKK-3 was caused by repressive 
histone modifications leading to increased H3K9me2 
presence at promoter level. Interestingly, treatment with 
decitabine was able to restore the expression of these 
genes, resulting in tumor suppressor functions both in vitro 
and in vivo [44].

Tumors that are characterized by frequent promoter 
methylation of tumor suppressor genes harbor the 
so called CpG island methylator phenotype (CIMP). 
CIMP positivity has been observed in 83% of pNETs 
versus 66% of extra-pancreatic NETs, and is apparently 
correlated with high proliferation index (Ki-67 > 10%) 
and poor prognosis, at least based on descriptive survival 
analyses [29]. In a study of 56 low-to-intermediate grade 
pNETs, methylation-sensitive multiple ligation-dependent 
probe amplification and long-interspersed nucleotide 

Table 2: Incomplete list of epigenetic changes in sporadic NETs by primary site.
NET primary site Epigenetic alteration Reference

Pancreas

Promoter hypermethylation:
RASSF1A
CDKN2A
TIMP3
MGMT
MLH1
IGF2
Axin-2, SFRPs
CIMP positivity
Histone modifications:
Upregulation of histone H3K9me2 
miRNA upregulation:
miR-103, -107, -23a, -26b, -192, -342
miR-144/451
miRNA downregulation:
miR-155
IncRNA downregulation:
MEG3

[27-31]
[28,33-35]
[37]
[40]
[42]
[43]
[46]
[31]

[46]

[51]
[52]

[51]

[53]

Small bowel

Promoter hypermethylation:
RASSF1A
TCEB3C
THBS1, MGMT, p14, p16
LAMA3, SERPINB5, RANK
Global hypomethylation
Histone modifications:
Upregulation of histone H1x
Upregulation of H3K4diMe
miRNA upregulation:
miR-183, -488, - 19a+b
miR-96, -182, -183, - 196a, 200a
miRNA downregulation:
miR-133a, -145, -146, -222, -10b
miR-31, -129-5p, 133a, -215

[54]
[58]
[59]
[5]
[61,63]

[64]
[65]

[66]
[67]

[66]
[67]

Lung

Promoter hypermethylation:
RASSF1A
P15INK4b
Histone modifications:
Downregulation of H4KM20 and H4KA16
miRNA upregulation:
miR-129, -323-3p, -487b, -410, -369-3p, 376a
miRNA downregulation:
miR-203, -224, -155, -302, -34b, -181b, -193a, -5p, -34b

[69]
[70]

[73]

[74]

[74]
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element-1 (LINE-1) analysis were used to assess tumor 
hypermethylation and hypomethylation status respectively. 
Futhermore, unsupervised hierarchical clustering allowed 
to separate a group of pNETs lacking both hyper- and 
hypomethylation features, a group characterized by 
moderate promoter hypermethylation as well as LINE-1 
hypomethylation, and a highly hypermethylated group. 
The highly hypermethylated tumor phenotype predicts 
unfavorable disease progression, and is apparently 
associated with stage IV [29, 45].

Recently, a genome-wide DNA methylation study 
has been performed to assess the epigenetic consequences 
of DAXX/ATRX loss in pNETs. Alterations in the DNA 
methylation profile were more profound in DAXX-
negative pNETs rather than in ATRX-negative or DAXX/
ATRX-positive tumors, suggesting that the deficiency of 
DAXX, but not ATRX, drives genome-wide methylation 
changes leading to pNET formation [46]. DAXX and 
ATRX exert multiple functions including chromatin 
remodeling during heterochromatin assembly at repetitive 
guanine-rich regions, where they are required for 
incorporation of the histone variant H3.3 [47]. Mutations 
of DAXX or ATRX are mutually exclusive, and result in 
nuclear protein loss with consequent activation of the 
alternative lengthening of telomeres (ALT) pathway, 
a mechanism of telomerase-independent telomere 
maintenance. This eventually leads to chromosomal 
instability (CIN), tumor heterogeneity and metastases 
[48]. Histone modifications have been poorly studied 
in pNETs. However, the recurrent mutations of MEN1 
in sporadic pNETs suggest covalent histone changes as 
possible drivers of disease pathogenesis.

Studies of miRNAs in pNETs are scarse. In a series 
of pancreatic cancers and normal tissue, overexpression 
of miR-103 and miR-107 with concurrent miR-155 
downregulation was distinctive of tumors, but did not 
separate pNETs from pancreatic acinar carcinomas. As 
compared with non-functioning pNETs, insulinomas were 
enriched in miR-204 [49]. In another study, a peculiar 
miRNA expression profile was shown to distinguish 
between insulinomas and normal pancreatic islets, and 
the miRNA cluster miR-144/451 was found to promote 
NET cell proliferation through suppression of the PTEN/
AKT pathway [50]. Long non-coding RNAs (IncRNAs) 
have been implicated in pNET pathogenesis downstream 
of MEN1 biallelic inactivation. In particular, the IncRNA 
maternally expressed gene 3 (MEG3) is downregulated 
in pNETs, thus leading to the overexpression of its target 
protooncogene c-Met and consequently increased cell 
proliferation [51].

Small bowel NETs

Similarly to pNETs, downregulation of RASSF1A 
as result of gene promoter methylation has been 
implicated in the progression of small bowel carcinoid 

tumors. In a study of 33 small bowel NETs and matched 
metastases, methylation levels of RASSF1A and CTNNB1, 
the gene encoding β-catenin, were significantly higher in 
metastatic tissue as compared with primaries. Of interest, 
both genes were unmethylated in an additional cohort of 
6 nonmetastatic appendiceal carcinoids, thus suggesting 
that methylation of these genes is required for metastasis 
development [52]. More recently, increased methylation 
and consequent transcriptional repression of RASSF1A, 
but not CTNNB1, has been shown in metastases rather 
than small bowel primary NETs. Notably, low expression 
of RASSF1A significantly predicted poor survival and 
was associated with loss of chromosome 16q. In vitro, 
treatment with decitabine resulted in restored expression 
of RASSF1A in NET cell lines [53].

DNA methyltransferases (DNMTs) are the enzymes 
primarily responsible for DNA methylation. In particular, 
while DNMT1 maintains genome methylation during 
cellular replication, DNMT3a and DNMT3b act as de 
novo methyltransferases [54]. In a series of 63 foregut, 
midgut and hindgut GEP-NETs, DNMT1, 3a and 3b 
were expressed in 87%, 81% and 75% of samples 
respectively, and their expression was significantly higher 
in stage IV tumors. Of interest, DNMT3a and 3b were 
significantly down-regulated in midgut tumors relative 
to the foregut or hindgut NETs [55], thus suggesting that 
distinct epigenetic alterations characterize these diverse 
entities. Transcription Elongation Factor B Polypeptide 
3C (TCEB3C) encodes for Elongin A3, which interacts 
with Elongin BC thus increasing the RNA polymerase II 
transcription elongation potential. TCEB3C is the only 
known imprinted gene on chromosome 18, and frequent 
loss of chromosome 18 has been reported in small bowel 
NETs. Epigenetic repression of TCEB3C has been recently 
observed in midgut carcinoids, and is apparently related 
to both DNA and histone methylation. Both decitabine, 
a demethylating agent, and the histone methyltransferase 
inhibitor 3-deazaneplanocin A and DNMT1 silencing 
via siRNA induced TCEB3C expression, thus leading to 
decreased carcinoid cell survival [56]. Using a candidate 
gene-driven approach, Chan et al. demonstrated that 
p14, p16, thrombospondin 1 (THBS1) and MGMT were 
selectively hypermethylated in midgut carcinoids when 
compared with the adjoining normal mucosa. CpG 
island methylation of p16 also correlated with patient 
age and metastatic status [57]. CIMP positivity has been 
demonstrated in up to 29% of well-differentiated foregut 
and midgut NETs, and did not affect patient survival [29].

Although its importance is often underestimated 
as compared with the hypermethylation of the promoter 
of tumor-suppressor genes, global hypomethylation is 
a key epigenetic feature of human tumors. It refers to 
the methylation levels of DNA repeat elements such as 
short interspersed (Alu) and long interspersed nucleotide 
elements (LINE-1), which constitute approximately 
half of the genome, and is correlated with chromosomal 



Oncotarget57420www.impactjournals.com/oncotarget

instability and increased tumor mutation rate [58]. 
Contrasting results have been reported so far regarding 
the global methylation pattern of small bowel carcinoids. 
By LINE-1 and Alu methylation analyses, intestinal 
NETs were shown to be hypomethylated as compared 
with normal tissue, and this feature was more prevalent 
in ileal carcinoids rather than in other NETs, and was 
associated with lymph node metastases [59]. However, in 
a subsequent study, hypomethylation was more marked 
in pNETs, while NETs metastatic to lymph nodes were 
less frequently hypomethylated than nonmetastatic tumors 
[60]. More recently, Fotouhi et al. observed significantly 
lower methylation levels in small bowel carcinoids when 
compared to normal ileum, as well as in distant metastases 
rather than in primary tumors. Global hypomethylation 
was also associated with chromosome 18 loss [53]. In 
an attempt to define the epigenetic changes that take 
place during metastatic progression, the methylation 
profile of 10 small intestine NETs and 10 matched lymph 
node metastases has been recently compared. Overall, 
hypomethylation was more pronounced in metastatic 
tissue, and a large number of genes regulating cell growth, 
apoptosis, proliferation and metastasis formation were 
found to be differentially methylated between primaries 
and metastases. However, definite conclusions were 
hindered by the small sample size of the study [61]. 

In a large-scale multilocus analysis of DNA 
methylation patterns, two distinct groups of small 
intestine NETs were identified based on their DNA 
global methylation profile. Of interest, these two groups 
did not show any histological differences, including 
proliferation index, and were not associated with other 
known prognostic factors, thus suggesting possible 
pathogenetic differences lacking relevant consequences 
on tumor behavior [42]. Recently, Karpathakis et al. [5] 
have characterized 97 small bowel NETs by genetic, 
epigenetic and transcriptional profiling, and identified 
three subgroups of tumors by integrated molecular 
analysis. The largest group of NETs was defined by 
chromosome 18 loss of heterozygosity, and was associated 
with CDKN1B mutations and CIMP negativity. Patients 
of this subgroup had the most favorable progression-free 
survival (PFS) after resection and presented at an older 
age, thus suggesting a less aggressive tumor phenotype. 
On the other hand, a second subgroup was characterized 
by the absence of arm-level copy number variations 
(CNVs), a high level of CIMP and an intermediate PFS, 
while the third subgroup was defined by multiple CNVs, 
younger age at onset and dismal PFS. Overall, up to 85% 
of small bowel carcinoids harbored epimutations, and 
21 epigenetically silenced genes were identified. Among 
those, there were genes located on chromosome 18 such 
as laminin alpha 3 (LAMA3), serpin peptidase inhibitor 
clade B member 5 (SERPINB5) and receptor activator of 
nuclear factor-κB (RANK). Because of the frequent LOH 
of chromosome 18 in small intestine NETs, epigenetic 

dysregulation of these genes has been proposed as the 
“second hit” capable to drive the tumorigenic process.

Studies on histone modifications in small bowel 
NETs are limited. Overexpression of histone variant H1x 
in gastrointestinal NETs seems to reflect its abundance 
in normal neuroendocrine cells, and might be useful for 
differential diagnosis in equivocal cases [62]. In 16 small 
intestine NETs, high levels of dimethylation of histone H3 
at lysine 4 (H3K4diMe) have been observed, but further 
studies are needed to define the molecular implications of 
this finding in NET pathogenesis [63].

Small bowel NET progression is apparently 
characterized by a differential pattern of miRNA 
expression. In a study of 8 ileal carcinoid tumors, miR-
183, -488, and 19a+b were up-regulated while miR-
133a, -145, 146, -222 and -10b were down-regulated in 
metastatic tissue with respect to primary tumors [64]. In 
a subsequent study, 24 small intestinal NETs at different 
stages were profiled in their miRNA expression, and 
up-regulation of miR-96, -182, -183, -196a and 200a as 
well as down-regulation of miR-31, -129-5p, -133a and 
-215 were reported during tumor progression [65]. Up-
regulation of miR-183 and down-regulation of miR-133a 
in both studies makes these miRNAs appealing targets 
for future investigations. Moreover, recent evidence 
suggests that miR-129-5p may have an anti-proliferative 
and anti-metastatic effect in midgut carcinoid tumors, and 
that its down-regulation during tumor progression might 
affect factors involved in RNA binding and nucleotide 
metabolism such as EGR1 and G3BP1 [66].

Lung NETs

Chromatin remodeling and epigenetic dysregulation 
have been depicted as key events in the pathogenesis 
of pulmonary carcinoids. A recently published whole-
genome/exome sequencing study of 69 lung NETs 
demonstrated mutually exclusive mutations of histone 
covalent modifiers in 40% of the samples. Among these 
genes, there were the menin-binding protein PSIP1, 
the histone methyltransferases SETD1B, SETDB1 and 
NSD1, the histone demethylases KDM4A, PHF8 and 
JMJD1C, as well as members of the Polycomb repressive 
histone H3K27 methyltransferase complexes CBX6, 
EZH1 and YY1. Numerous mutations were also found 
in ATP-dependent chromatin remodeling SWI/SNF 
complex members including ARID1, ARID2, SMARCA1, 
SMARCA2, SMARCA4,SMARCC2, SMARCB1 and 
BCL11A. Given the almost universal absence of other 
cancer-related mutations, alteration of chromatin-
remodeling pathways is apparently sufficient to drive early 
steps of lung NET tumorigenesis [2].

As previously reported for pNETs and small bowel 
carcinoids, RASSF1 promoter hypermethylation is a 
frequent event in low-to intermediate grade lung NETs. 
Of interest, the degree of promoter methylation was 
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associated with tumor grade, while there was a non-
linear correlation between levels of methylation and 
RASSF1 mRNA or protein content, thus suggesting that 
other transcriptional or post-transcriptional events may 
concur in its regulation [67]. In a series of 5 low-grade 
and 15 high-grade lung NETs, aberrant methylation 
at the 5’-region of the p15INK4b gene was observed 
in 15% of tumors, but not in normal bronchial tissue. 
p15INK4b encodes for a cyclin-dependent kinase 
inhibitor, and has recently emerged as a possible regulator 
of tumorigenesis via cell cycle dysregulation [68]. The 
protein arginine methyltransferase-5 (PRMT5) is a 
chromatin-modifying enzyme, and is overexpressed in 
bronchial NETs. In particular, nuclear overexpression of 
PRMT5 was negatively associated with tumor grade, thus 
reflecting potential differences in the epigenetic control 
of oncogenesis of low- and high-grade lung NETs [69]. 
Consistently with this hypothesis, expression levels of the 
histone methyltransferase enhancer of zeste homolog 2 
(EZH2) have been shown to inversely correlate with tumor 
grade in lung NETs [70].

Comprehensive analyses of histone modifications 
in bronchial carcinoids are lacking. In a study of 32 lung 
NETs, histone H4 acetylation at lysine 16 (H4KA16) 
and trimethylation at lysine 20 (H4KM20) were studied. 
As in other cancers, a progressive loss of H4KM20 and 
H4KA16 was observed during progression from normal 
bronchiolar epithelium to low grade tumors and then 
to high-grade carcinomas. The biological implications 
underlying this finding need to be clarified [71].

Several studies have recently profiled the expression 
of miRNAs in pulmonary carcinoids, reporting differences 
between normal lung tissue and tumor, low- and high-
grade bronchial NETs as well as localized and metastatic 
disease [72-75]. Among recurrently deregulated miRNAs 
in pulmonary carcinoids, miR-21, miR-155 and miR-129-
5p were already identified as possible regulators of pNET 
or midgut NET pathogenesis, thus suggesting their pivotal 
role in NET oncogenesis and progression.

CLINICAL ONCOEPIGENOMICS OF NETS 
IN THE PRECISION MEDICINE ERA

Precision medicine refers to individualized 
prevention and treatment of diseases based on their 
underlying molecular causes, and carries the promise of 
coupling established clinical-pathological parameters with 
state-of-the-art molecular profiling to create diagnostic, 
prognostic and therapeutic strategies tailored to each 
patient’s requirements. Data from the Human Genome 
Project and the global diffusion of next-generation 
sequencing technologies have dramatically advanced 
the practice of personalized medicine, and many cancers 
are currently treated using agents targeting underlying 
aberrant genomic changes [76].

The genomic landscape of NETs has been decoded 
only very recently, and the clinical relevance of peculiar 
mutational profiles is still under investigation. However, 
no genetic signature can be used for treatment tailoring in 
NET patients at present, even when driver mutations affect 
the signaling pathways targeted by currently approved 
drugs. While genetic features of different site NETs are 
extremely heterogeneous, a limited number of pathways 
seem to have a role in their pathogenesis, as demonstrated 
by the almost universal efficacy of somatostatin analogs 
and mTOR inhibition in these tumors [77, 78]. Since 
disruption of the epigenetic machinery is common to 
all NETs, a possible molecular reunification of such a 
diverse disease can be envisaged, thus explaining their 
similar response to several therapeutic agents. Although 
the NET epigenome characterization is still in its infancy, 
epigenetic profiles have already demonstrated clinical 
utility for the diagnosis and prognosis of NETs, and might 
pave the way to new personalized therapeutic strategies.

Epigenetic profiles in NET diagnosis and 
prognosis

A whole-genome DNA methylation analysis of 
12 normal lung tissue samples and 124 lung tumors has 
recently identified five DNA methylation subgroups. 
Of note, one epitype was distinctly associated with 
neuroendocrine differentiation [79]. Similarly, small 
bowel carcinoids and distinct pNET subtypes have been 
shown to harbor peculiar DNA methylation patterns [42]. 
Discrimination of the various subtypes of pulmonary NETs 
via miRNA profiling has been demonstrated to be feasible 
[80]. Recently, an integrated multi-omics data analysis 
has assessed the transcriptomic (mRNA and miRNA), 
mutatomic (selected mutations) and metabolomic profile 
of pNETs, identifying three distinctive molecular subtypes. 
While the islet/insulinoma tumor (IT) subtype was 
characterized by low grade and low metastatic potential, 
the metastasis-like primary (MLP) subtype displayed high 
proliferative activity, a clinically aggressive behavior and 
a gene expression profile consistent with epithelial-to-
mesenchymal transition (EMT). On the other hand, the 
MEN1-like/intermediate subtype was enriched in MEN1 
mutations, and showed moderate metastatic potential. 
Although validation studies are needed, this seminal 
molecular classification of pNETs shows promising 
clinical applicability, potentially leading to a better 
therapeutic planning [81]. Observations from our group 
are also in line with this classification. In fact, we have 
previously reported that osteotropic NETs overactivate 
EMT, while being characterized by very dismal prognosis 
[82]. Given the apparent pivotal role of CXCR4 in 
inducing EMT and metastases in NETs (manuscript 
submitted), and the robust epigenetic regulation of 
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the CXCL12/CXCR4 axis in cancer [83], future work 
should determine if complex NET epigenetic profiles 
and resulting patterns of biologic malignancy as well as 
clinical outcomes may be recapitulated, at least in part, by 
CXCR4 expression.

A multianalyte whole blood RNA multigene 
signature has been developed to predict NET activity. 
Interestingly, among the omic clusters capable of 
differentiating disease activity (stable versus progressive 
disease), there was the epigenome [84]. Future studies 
should assess if the epigenomic profiling per se may serve 
as a predictive biomarker for treatment tailoring in NET 
patients. In this context, the epigenetic silencing of MGMT 
has been described as predictive of response to alkylating 
agents in pNETs [38, 39], but prospective validation is still 
lacking. The prospective randomized trial NCT01824875, 
investigating temozolomide alone or in combination 
with capecitabine in pNET patients, incorporates MGMT 
promoter methylation testing, and may therefore provide 
further insight on this topic.

Epigenetic clustering has shown prognostic 
relevance in GEP-NETs, while studies in bronchial 
carcinoids are lacking. In low-to-intermediate pNETs, the 
combination of DNA global hypomethylation and cluster 
gene hypermethylation significantly predicted patient 
outcomes in multivariable analysis [45]. In addition, high 
expression of miR-196a is apparently associated with 
decreased overall survival (OS) and disease-free survival 
(DFS) in pNET patients [85]. As described above, the 
CIMP status has demonstrated prognostic relevance in 
small bowel NETs, with a substantial impact on patient 
PFS [5].

Epigenetic therapy of NETs

Since alterations of the chromatin remodeling 
machinery seem to be major drivers of NET development, 
epigenetic agents such as DNMT antagonists or 
HDAC inhibitors may be effective for patients with 
NETs. Moreover, in contrast to DNA mutations, DNA 

methylation and histone modifications are reversible and 
seem to be a feature defining cancer stem cells [86], thus 
representing an appealing therapeutic target in cancer. An 
overview of the epigenetic agents currently approved by 
FDA for cancer patients, their mechanism of action and 
clinical indications is provided in Table 3.

The efficacy of DNMT inhibitors in NETs has 
been tested only in vitro thus far. Azacytidine caused 
a dose-dependent reduction of the proliferation of 
CNDT2.5, H727 and BON1 cell lines [87]. Similarly, the 
demethylating agent decitabine showed antiproliferative 
effects on QGP1 pNET cells, possibly as result of the 
restoration of multiple genes silenced by pathogenetic 
de novo methylation. In particular, after treatment with 
the drug, tumor cells expressed a differential pattern of 
genes involved in proliferation, apoptosis and metastases 
[34]. Decitabine was also able to restore the expression of 
RASSF1A in bronchial NET cell lines [52].

HDAC inhibitors such as trichostatin A, sodium 
butyrate and entinostat have been tested on pNET 
cell lines, and caused a dose-dependent inhibition 
of proliferation, cell cycle arrest and apoptosis. No 
synergistic effects were noted after combination with 
somatostatin or octreotide [88]. The antiproliferative 
effects of valproic acid (VPA) as a class I and IIa HDAC 
inhibitor have been extensively investigated in NETs. 
The drug is able to induce a dose-dependent growth 
inhibition of NET cells of pancreatic and intestinal origin 
in vitro through activation of both intrinsic and extrinsic 
apoptosis. Of note, expression of up to 20% of protein-
coding genes was significantly modified by VPA in NET 
cell lines, leading to major alterations in key regulatory 
pathways including the signaling of p53, TGFβ1 and 
MYC [89]. VPA has also been demonstrated to up-regulate 
Notch1 and somatostatin receptor subtype 2 (SSTR2). 
While activation of Notch1 is able per se to suppress 
NET tumor growth and is associated with reduction of 
NET tumor markers [90, 91], SSTR2 up-regulation has 
been used to synergistically increase the cytotoxicity of 
a SSTR-targeting camptothecin-somatostatin conjugate 
[92]. Concurrent activation of the Notch1 pathway and 

Table 3: Approved epigenetic agents in the treatment of cancer in Europe and North America.

Drug Mechanism of action Approved indications
First 
FDA 
approval

Azacitidine Inhibition of DNA methyltransferases
Myelodysplastic syndromes (FDA, EMA)
Acute myeloid leukemia (EMA)
Chronic myelomonocytic leukemia (EMA)

2004

Decitabine Inhibition of DNA methyltransferases Myelodysplastic syndromes (FDA)
Acute myeloid leukemia (EMA) 2006

Vorinostat Inhibition of histone deacetylases (class I and II) Cutaneous T-cell lymphoma (FDA, EMA) 2006
Romidepsin Inhibition of histone deacetylases (1,2,4,6) Cutaneous T-cell lymphoma (FDA) 2009

Belinostat Inhibition of histone deacetylases (class I, II and 
IV) Peripheral T-cell lymphoma (FDA) 2014

Panobinostat Inhibition of histone deacetylases (class I and II) Multiple myeloma (FDA, EMA) 2015
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inhibition of the GSK3β signaling by combination of 
VPA and lithium has been reported to suppress NET cell 
proliferation, while decreasing CgA production [93].

Early evidence showed that VPA exerts antisecretory 
effects in NETs, significantly decreasing the plasma 
concentration of somatostatin in a single patient with 
somatostatinoma [94]. In a pilot phase II study of eight 
patients with low-grade pNETs or midgut carcinoids, 
VPA at 500 mg daily induced an unconfirmed partial 
response and disease stabilization in one and four 
subjects respectively. Of note, Notch1 upregulation 
following treatment was apparently associated with 
better outcomes [95]. The HDAC inhibitor depsipeptide 
has been investigated in a phase II study of 15 patients 
with metastatic NETs. The trial has been prematurely 
discontinued due to an unexpected rate of severe cardiac 
toxicities, including a fatal ventricular arrhythmia [96]. In 
a single arm phase II study of 15 patients with GEP-NETs, 
panobinostat was associated with a 90% rate of disease 
stabilization and a median PFS of 11.8 months. The trial 
was stopped at interim analysis due to lack of objective 
responses [97]. However, it should be noted that response 
rate is currently not considered an optimal endpoint for 
NET clinical trials [98]. The DNA methylation and 
deacetylation inhibitor RRx-001 has recently demonstrated 
to inhibit hormone release in a single patient with 
carcinoid syndrome, leading to rapid symptom reversal 
and improved quality of life [99]. However, future studies 
are needed to confirm this observation.

Modulators of H3K4me3 demethylases of the 
KDM5 family are currently being developed, and have 
already shown significant antitumor activity in murine 
models of MEN1 knock-out pNETs [20]. Inhibition of 
KDM5 proteins could be an attractive future strategy in 
NET patients, and MEN1 deficiency might be envisaged 
as a potential predictor of response. Although preclinical 
evidence of efficacy for epigenetic agents in NETs is 
promising, no significant benefit has been demonstrated 
so far by clinical trials. However, as a possible 
explanation for this lack of efficacy, it should be noted 
that these studies were carried out using HDACi, while 
the preclinical investigations of epigenetic agents in NETs 
have prevalently used demethylating agents. The only 
epigenetic modulator still under clinical investigation is 
belinostat, which is currently being trialled in combination 
with cisplatin and etoposide, in patients with advanced 
neuroendocrine carcinomas (https://clinicaltrials.gov/ct2/
show/study/NCT00926640?term = nct00926640&rank = 
1).

CONCLUSIONS AND FUTURE 
PERSPECTIVES

Since commonly mutated oncogenes play little or no 
pathogenetic role in NETs, epigenetic alterations are likely 
to be major determinants of NET tumorigenesis. However, 

whether the observed modifications of DNA packaging are 
driver or passenger events, and their position and role in 
the evolutionary tree of NETs still remains to be clarified. 
Recently, several studies have compared the genomic 
make-up of NET cell lines to the genetic signature of 
primary NETs, demonstrating striking differences in the 
rates and patterns of mutations [100, 101]. Future work 
is needed to assess the degree of overlap between the 
epigenetic landscape of NET cell lines and correspondent 
patient tumors. In the meanwhile, the results from 
experiments with NET cell lines should be interpreted 
with caution, and direct clinical extrapolation should be 
avoided.

Although profiles of the epigenome of NETs have 
been already proposed, results need to be validated 
in larger studies. The identification of molecularly 
different NET subtypes might have a dramatic impact on 
clinical practice, potentially leading to new diagnostic 
classification, prognostic stratification and innovative 
clinical trials. While precision medicine has thus far led 
to the “explosion” of each form of cancer in multiple 
distinct diseases, the common epigenetic changes seen in 
a wide spectrum of NETs have the potential of re-unifying 
such diverse clinical entities. Future investigations 
should verify if the epigenetic fingerprinting of NETs 
might provide better clinical classification/prognostic 
stratification than site of disease or grade. No biomarker-
driven clinical trials of epidrugs have been carried out in 
NETs so far, thus possibly explaining the observed lack of 
significant efficacy with these agents. Similarly to studies 
of therapeutics targeting discrete genomic mutations, 
innovative basket trials testing epigenetic drugs should 
ideally include molecularly defined subpopulations of 
NET patients, thus paving the way to studies dedicated to 
emerging homogeneous epitypes of NET patients.

Since NETs originate from neuroendocrine cells, 
studies of epigenetic profiling should be carried out with 
appropriate control tissue. This might be a potential 
drawback for a precise characterization of small bowel or 
bronchial carcinoids, but innovative methods for single-
cell genome-wide epigenomic analyses are now on the 
horizon [102]. Recent evidence [103, 104] suggests that 
epidrugs stimulate the expression of benign retroviruses 
inserted in the genome of all human cells, including 
tumor cells. As result, a “viral mimicry” phenomenon 
and its beneficial effects on tumor immunogenicity have 
been described, thus providing a rationale for possible 
combination studies in NETs with epidrugs and immune 
checkpoint inhibitors such as nivolumab or ipilimumab 
[105]. Impressive progress has been made in our 
understanding of NET pathogenesis in recent years, and 
the recognition of pivotal pathways of tumorigenesis has 
led to the approval of new targeted therapies for NET 
patients. Outstanding bench to bedside and back work is 
now again needed to further move from NET treatment to 
NET cure.

https://clinicaltrials.gov/ct2/show/study/NCT00926640?term=nct00926640&rank=1
https://clinicaltrials.gov/ct2/show/study/NCT00926640?term=nct00926640&rank=1
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L, Doenecke D, Happel N. Histone H1x is highly expressed 
in human neuroendocrine cells and tumours. BMC Cancer. 
2008; 8: 388. doi: 10.1186/1471-2407-8-388.

63. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch 
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Sedláková E, Cadiot G, Wolin EM, Capdevila J, Wall 
L, Rindi G, Langley A, Martinez S, et al; CLARINET 
Investigators. Lanreotide in metastatic enteropancreatic 
neuroendocrine tumors. N Engl J Med. 2014; 371: 224-33. 
doi: 10.1056/NEJMoa1316158.

78. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin 
E, Tomasek J, Raderer M, Lahner H, Voi M, Pacaud 
LB, Rouyrre N, Sachs C, et al; RAD001 in Advanced 
Neuroendocrine Tumours, Fourth Trial (RADIANT-4) 
Study Group. Everolimus for the treatment of advanced, 
non-functional neuroendocrine tumours of the lung or 
gastrointestinal tract (RADIANT-4): a randomised, 
placebo-controlled, phase 3 study. Lancet. 2016; 387: 968-
77. doi: 10.1016/S0140-6736(15)00817-X.

79. Karlsson A, Jönsson M, Lauss M, Brunnström H, Jönsson 
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