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ABSTRACT:
Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a 

candidate gene approach. In an alternative strategy, we analyzed the impact of single 
nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response 
to imatinib, using a DNA chip containing 857 SNPs covering 94 drug transporter genes. 
Two cohorts of CML patients treated with imatinib were evaluated:  an exploratory 
cohort including 105 patients treated at 400 mg/d and a validation cohort including 
patients sampled from the 400 mg/d and 600 mg/d arms of the prospective SPIRIT 
trial (n=239). Twelve SNPs discriminating patients according to cumulative incidence 
of major molecular response (CI-MMR) were identifi ed within the exploratory cohort. 
Three of them, all located within the ABCG2 gene, were validated in patients included 
in the 400 mg/d arm of the SPIRIT trial. We identifi ed an ABCG2 haplotype (defi ne 
as G-G, rs12505410 and rs2725252) as associated with signifi cantly higher CI-MMR 
in patients treated at 400 mg/d. Interestingly, we found that patients carrying this 
ABCG2 “favorable” haplotype in the 400 mg arm reached similar CI-MMR rates that 
patients randomized in the imatinib 600 mg/d arm. Our results suggest that response 
to imatinib may be infl uenced by constitutive haplotypes in drug transporter genes. 
Lower response rates associated with “non- favorable” ABCG2 haplotypes may be 
overcome by increasing the imatinib daily dose up to 600 mg/d.
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INTRODUCTION

Imatinib (Glivec®, Novartis Pharmaceuticals 
Corporation), along with other tyrosine kinase inhibitors 
(TKIs), has revolutionized treatment of chronic 
myelogenous leukemia (CML). Long-term follow-up of 
the IRIS pivotal study revealed that overall survival for 
patients who received imatinib as initial therapy was as 
high as 88% at 6 years [1].  Two second generation TKIs, 
dasatinib (Sprycel®, Bristol-Myers Squib) and nilotinib 
(Tasigna®, Novartis Pharmaceuticals Corporation) are 
now registered as frontline therapy for chronic phase 
CML (CP-CML) patients. Recent studies reported faster 
and deeper responses assessed by cytogenetic or molecular 
analysis  with these drugs [2-3], however data are yet too 
preliminary to determine whether these agents will offer 
a survival advantage over imatinib. Comorbidities, age, 
and co-medications tend to drive the choice of the TKI 
in fi rst-line therapy. Emerging reports of adverse events 
with nilotinib (peripheral arterial occlusive disease) [4] 
and dasatinib (pulmonary hypertension) [5] along with 
the upcoming arrival of generic imatinib will move TKI 
therapy towards a personalized approach. Disease-related 
factors such as initial Sokal score have been shown to 
infl uence molecular responses [6-9], however, few patient-
related parameters such as adherence to therapy or trough 
imatinib levels have been evaluated [10-12]. 

Association studies have suggested that single 
nucleotide polymorphisms (SNPs) may be related to a 
susceptibility to develop CML [13-16], CML progression 
[17-18] or intracellular accumulation of imatinib in 
leukocytes of CML patients [19]. Only a limited number 
of selected SNPs have been tested in relation to imatinib 
response[20-28], and results obtained with the most 
extensively studied gene ABCG1 (MDR1)  are not 
consistent across published analyses[29-30]. Complete 
cytogenetic response (CCR) at 12 months remains the 
best surrogate marker for survival in CML patients. 
However, major molecular response (MMR, defi ned by 
BCR-ABL≤0.1%) was used as a primary end point of 
clinical trial (such as in the ENEST 1st study) [31] and 
MMR at 18 months is also part of the “optimal response” 
defi nition of the ELN2009 recommendation for CML 
patient management [32]. We thus selected cumulative 
incidence of major molecular response (CI-MMR) as a 
criteria to identify SNPs in drug transporter genes which 
are associated with a favorable outcome. We performed 
an association study using a custom-made DNA chip in 
an exploratory cohort. An ABCG2 haplotype associated 
with high CI-MMR was identifi ed. We then validated this 
haplotype in an independent “prospective-retrospective” 
cohort[33], and evaluated its impact according to imatinib 
daily dose. 

RESULTS

Patient characteristics are presented in Table 1. 
Median age, sex ratio and Sokal score distribution were 
comparable between all cohorts (P > 0.05 in all cases). 

Determinants of CI-MMR

CI-MMR were estimated according to Sokal score 
(n = 312). Using the Fine and Gray model we confi rmed 
that CI-MMR was strongly related to Sokal score levels 
(regression coeffi cient: 0.64, 95% confi dence interval (CI), 
0.53 to 0.78, P < 0.001). Figure 1A illustrates the inverse 
relationship between Sokal score and CI-MMR.

CI-MMR was estimated in the SLEC (n = 105), 
SVC (n = 239), and in the two imatinib SVC treatment 
arms (n = 132 at 400 mg/d; n =107 at 600 mg/d; Figure 
1B). CI-MMR was comparable between the SLEC and 
the SVC 400 mg/d arm (P = 0.700), but was signifi cantly 
higher in the SVC 600 mg/d arm (P = 0.003). The 
regression coeffi cient increased by more than 50% (1.53, 
95% CI, 1.09 to 2.14) when the dose increased from 400 
mg/d to 600 mg/d (P = 0.014).

SNP association study

Of the 857 selected SNPs, 413 (48.2%) from 86 drug 
transporters were well genotyped in all evaluated patients 
and passed quality control criteria. We identifi ed 12 SNPs 
(located in eight transporter genes) in the SLEC group 
which were signifi cantly associated with CI-MMR at 18 
months on the basis of an FDR < 50% (Table 2). Only 
one of these SNPs (rs12505410), located in the ABCG2 
gene, was signifi cantly associated with CI-MMR in the 
overall SVC cohort. Separate analysis of the two SVC 
cohorts revealed three SNPs (rs12505410, rs13120400 
and rs2725252), all from the ABCG2 gene, which were 
signifi cantly associated with response in the 400 mg/d arm 
while none were associated in the 600 mg/d arm. CI-MMR 
at 18 months in the two SVC groups for the three validated 
ABCG2 SNPs is shown in Supplementary Figure SF1. 

Haplotype frequency

As expected, pairwise linkage disequilibrium was 
found between the three SNPs at the ABCG2 locus in the 
SLEC. We therefore performed haplotyping at this locus. 
Estimated frequencies was 22% for haplotype 1 (G-C-G) 
having G, C and G bases at loci rs12505410, rs13120400 
and rs2725252, respectively, < 1% for haplotype 2 
(G-C-T), 5% for haplotype 3 (G-T-G), 15% for haplotype 
4 (T-T-G), 57% for haplotype 5 (T-T-T) and 2% for 
haplotype 6 (G-T-T) (Supplementary Table ST2).

Haplotype frequencies at the same loci were also 
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calculated in the independent set of unrelated individuals 
from the CEU population (n = 76). Frequency of 
haplotype 1 plus 3 was 27% in the SLEC versus 28% in 
the CEU population, 56% versus 55% for haplotype 5 and 
16% versus 17% for other haplotypes. Equal distribution 
of haplotypes between populations was confi rmed (P = 
0.70; Figure 2A and Supplementary Table ST2).

Haplotype association study

CI-MMR at 18 months was evaluated with respect 
to ABCG2 haplotype distribution in the exploratory 

cohort. Multivariate analysis identifi ed haplotypes 1 and 3 
(G-C-G and G-T-G respectively) as linked to signifi cantly 
higher CI-MMR rates. These two haplotypes share the 
same alleles at rs12505410 and rs2725252 and differ at 
rs13120400, suggesting that the association could be with 
the G-G haplotype at these two SNPs; carriers of the G-G 
haplotype at rs12505410 and rs2725252 had signifi cantly 
higher CI-MMR than non-carriers (Figure 2B).

The validation cohort was analyzed using the same 
approach. Haplotype frequencies at ABCG2 locus were 
verifi ed as being comparable to the SLEC and the CEU 
populations (Figure 2A). This confi rmed the analysis in 

Table 1: Patient characteristics 
 Saint-Louis 

Exploratory 
Cohort (SLEC)

SPIRIT Validation Cohort (SVC) Total

 (400 mg)
N=105

(400 mg)
N=132

(600 mg)
N=107

(SVC)
N=239

N=344

Gender
Male 63 (60%) 88 (67%) 52 (49%) 143 (60%) 206 (60%)
Female 42 (40%) 44 (33%) 55 (51%) 96 (40%) 138 (40%)

Sokal 
Score
 

Low 34 (32%) 52 (39%) 38 (36%) 90 (38%) 124 (36%)
Int. 24 (23%) 54 (41%) 45 (42%) 99 (41%) 123 (36%)
High 15 (14%) 26 (20%) 24 (22%) 50 (21%) 65 (19%)
NA* 32 0 0 0 32

Median age (years) 50.5 51.8 51.5 51.5 51.5
All p values of differences among groups were not signifi cant 
* Not available 

Figure 1: Cumulative incidence of MMR (CI-MMR) according to Sokal score and treatment arms. A) 18 months CI-
MMR was estimated with respect to Sokal score (n = 312). A Fine and Gray model showed that time to MMR was related to Sokal status 
and that the coeffi cient of regression within the fi rst 18 months decreased by 36% (95% confi dence interval (CI), 47% to 22%) on average 
when Sokal increased (P < 0.001). CI-MMR was 70% for the low Sokal score, 57% for the intermediate Sokal score and 39% for high Sokal 
score. B) CI-MMR was estimated in the exploratory cohort (SLEC) and compared to both treatment arms of the validation cohort (SVC). 
CI-MMR was comparable between the SLEC and the 400 mg/d arm of SVC (n = 237, P = 0.700), but signifi cantly different between the 
SLEC and the 600 mg/d arm of SVC (n = 212, P = 0.003). HR was 1.71% (95% CI, 1.20% to 2.44%) in the latter (n = 212, P = 0.003). 
CI-MMR was 49% for the exploratory cohort, 49% and 67% for the 400 and the 600 mg/d arm of the SVC, respectively.
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the SVC population was performed according to   the 
same assumptions as for the exploratory cohort and was 
analyzed overall and by treatment arms (Figure 2 C, D, E 
and F and Table 3). 

In the overall SVC, 18-month CI-MMR increased 
by 36% for patients with one copy of haplotype G-G (P 
= 0.005, Figure 2C). In patients included in the imatinib 
400 mg/d arm, 18-month CI-MMR increased by 64% 
(P = 0.002, Figure 2D). Association of haplotype G-G 
with CI-MMR in patients included in the imatinib 600 
mg/d arm was not signifi cant (P = 0.180, Figure 2E). CI-
MMR curves of patients with haplotype G-G included in 
the imatinib 400 mg/d arm were comparable to those of 
patients with other haplotypes in the imatinib 600 mg/d 
arm (Figure 2F, P = 0.480). Of note, Sokal score remained 
an independent determinant of CI-MMR in all populations 
in a multivariate model (Table 3). 

As expected from results of the Fine and Gray model 
in the validation cohort, early molecular responses (BCR-
ABLIS at 3 months ≤ 10%) as well as responses of interest 
(BCR-ABLIS at 12 months ≤ 1%, BCR-ABLIS at 18 months 
≤ 0.1%) were associated with the ABCG2 G-G haplotype 
in patients treated with imatinib 400 mg/d (Table 4).

Using the CEU population genotypes, we tested 
associations between haplotype G-G and 1772 SNPs 
near or within the ABCG2 gene (including rs2231135, 
rs2231137 and rs2231142). We identifi ed 240 SNPs 
with alleles in linkage disequilibrium with the haplotype 
G-G. Interestingly rs2231135, located in the 5’UTR and 
potentially linked to ABCG2 differential expression, was 
signifi cantly linked to haplotype G-G (P = 0.043).

DISCUSSION

We report here a haplotype/CI-MMR association 
study in two independent cohorts of CP-CML patients 
receiving imatinib, in which patients were genotyped 

using a custom-made DNA chip [34] mainly containing 
tag SNPs. The exploratory SLEC cohort refl ected real-
life practice with patients treated at imatinib 400 mg/d, 
while the validation SVC cohort was composed of patients 
included in the SPIRIT clinical trial and randomized to 
imatinib 400 mg/d or imatinib 600 mg/d. We used the fi rst 
cohort to perform an association study with a large number 
of drug transporter genes SNPs in CP-CML patients and 
the second cohort in order to validate these results. 

Studies evaluating SNPs in CML patients have 
been performed on a small number of genes pre-selected 
for their potential relationship to response [20-28]. 
However, the clinical signifi cance of these results is far 
from established, fi rstly because different genes were 
analyzed by different groups and secondly when the 
same gene was studied, the SNPs analyzed were not the 
same. Accordingly, only two genes have been tested in 
a validation cohort. One of them was confi rmed (IFN-γ) 
[25] whereas results for ABCG1 were not reproducible or 
were contradictory [26-30]. 

Our approach confi rmed known key data: the inverse 
relationship between MMR rates and Sokal score and 
signifi cantly higher MMR rates at 12 and 18 months with 
600 mg imatinib compared to 400 mg [35-36]. We have 
extended these results with the identifi cation of an ABCG2 
haplotype associated with signifi cantly higher CI-MMR in 
two patient groups receiving 400 mg/d imatinib (i.e. a real-
life and a clinical setting). Patients with at least one copy 
of haplotype G-G (G at rs12505410 and G at rs2725252) 
were good responders at 400 mg. This “favorable” 
haplotype is widespread; about half of the population in 
our study carries at least one copy. Interestingly, patients 
in the validation cohort treated at 600 mg/d who did not 
carry this haplotype showed similar CI-MMR levels as 
haplotype carriers treated at 400 mg/d. Moreover, the 
clinical pertinence of these results is supported by the 
association of the G-G ABCG2 haplotype with the early 

Table 2: Drug transporter SNPs associated with CI-MMR at 18 months

SNP Chr. Coordinate Transporter 
gene symbol

SLEC SVC (P-value)
P-value FDR All 400 

mg/d 600 mg/d

rs609468 6 160498904 SLC22A1 <0.001 0.001 0.920 0.210 0.090
rs10841907 12 21942563 ABCC9 0.001 0.238 0.310 0.670 0.450
rs12505410 4 89249865 ABCG2 0.002 0.238 0.045* 0.035* 0.320
rs4149182 11 62524689 SLC22A8 0.002 0.238 0.750 0.640 0.820
rs1189451 13 94520087 ABCC4 0.005 0.430 0.260 0.360 0.330
rs17556915 14 69318111 SLC10A1 0.008 0.482 0.068 0.130 0.230
rs11024300 11 17452549 ABCC8 0.009 0.482 0.870 0.550 0.160
rs13120400 4 89252551 ABCG2 0.012 0.482 0.140 0.046* 0.740
rs2725252 4 89280934 ABCG2 0.012 0.482 0.086 0.047* 0.740
rs2665691 11 22327832 SLC17A6 0.012 0.482 0.075 0.110 0.360
rs1678405 13 94627682 ABCC4 0.014 0.482 0.710 0.850 0.370
rs1048099 11 17453092 ABCC8 0.014 0.482 0.950 0.220 0.150

Chr., chromosome; FDR, false discover rate; SNP, single nucleotide polymorphism
* Signifi cant association between CI-MMR and SNP (P < 0.05)
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molecular response at 3 months and responses of interest 
at 12 and 18 months. 

The ATP-binding cassette transporter ABCG2 
(BCRP, MXR or ABCP) is highly expressed in the 
gastrointestinal tract and liver, and is involved in 
absorption, distribution and excretion of a wide variety of 
clinically relevant drugs, among them imatinib [37-38]. 
Germline polymorphisms in the ABCG2 gene have been 
described as affecting expression, cellular localization 
and/or substrate recognition of the encoded protein. More 
than 24 sequence variations have been reported. The most 
studied C421A (rs2231142) nucleotide change, results 
in a glutamine-to-lysine substitution in the translated 

protein (pQ141K). Among the studies of SNPs in the 
ABCG2 gene, two included CML patients treated with 
imatinib [20, 26]. The fi rst showed that the homozygous 
GG genotype of rs2231137 in ABCG2 in advanced stage 
CML patients was signifi cantly associated with poor major 
or complete cytogenetic response[26], although this result 
was not subsequently validated in an independent cohort 
20. 

We were able to test the association between 
ABCG2 haplotype G-G and 1772 other ABCG2-
related SNPs including rs2231137 and rs2231142 (not 
represented in our DNA chip) by means of an open-access 
database. We found that rs2231135, which is a 5’UTR 

Figure 2: Frequencies and cumulative incidence of MMR relative to ABCG2 haplotypes. A) Distribution of haplotype 
frequencies in the SLEC, SVC and the CEU populations. Haplotypes were distributed homogeneously over the different populations. B) 
Cumulative incidence at 18-months of major molecular response (CI-MMR) was calculated in the SLEC according to ABCG2 haplotypes 
G-G. CI-MMR of patients with at least one copy of haplotype G-G was 69%. CI-MMR for other patients was 34%. C) CI-MMR at 
18-months in all SVC patients with haplotype G-G was 63% and 47% for other patients (P = 0.006). D) CI-MMR in SVC patients treated 
with 400 mg/d was 57% and 36% for G-G haplotype carriers and other haplotype carriers respectively (P = 0.005). E) CI-MMR in SVC 
patients treated with 600 mg/d was 74% and 58% for G-G haplotype carriers and other patients respectively (P = 0.185). F) CI-MMR was 
not signifi cantly different between in SVC patients with haplotype G-G receiving 400 mg/d and those with other haplotypes receiving 600 
mg/d (57% vs 58% respectively, P = 0.950).
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and is potentially implicated in ABCG2 expression, was 
associated with haplotype G-G of ABCG2. However, the 
statistical association between ABCG2 polymorphisms 
and CI-MMR does not necessary imply a causal 
relationship and eventual changes in ABCG2 expression 
linked to these polymorphisms will have to be addressed 
in further studies. 

The SNP rs609468 from SLC22A1 (also known 
as OCTN1 or HOCT1 and involved in imatinib uptake) 
had the lowest p-value in our exploratory cohort (SLEC). 
SLC22A1 has previously been studied in relation to 
imatinib response. The SNP rs683369 and advanced 
disease stage correlated with a high rate of loss of 
cytogenetic response or treatment failure to imatinib [26], 
whereas a polymorphism in rs1050152 was signifi cantly 
associated with MMR [20]. SLC22A1 activity was 
found predictive of MMR and correlated with overall 
and event-free survival, especially in patients receiving 
less than 600 mg/d of imatinib daily [39]. Although the 
hypothesis that changes in SLC22A1 sequence may result 
in changes of activity affecting imatinib bioavailability 
is particularly attractive, more recent studies have failed 
to demonstrate association between SLC22A1 SNPs 
and imatinib response [27, 40]. In the same way, SNP 
rs609468 identifi ed in the SLEC, was not validated in the 
SVC in our study. 

Finally, only 3 SNPs out of 12 were validated. This 
result is in accordance with the FDR level selected in our 
analysis. Interestingly no SNPs from our chip located 
in the ABCG1 gene were found to be associated with 
imatinib response in our analysis.

Pharmacological studies have suggested that 
imatinib trough levels may mediate molecular response 
[10, 12], and it is thus of interest to identify if this is the 
case for the observed effect of ABCG2 haplotype on 
molecular response (as is the dose effect). This question 
will be addressed in patients included in the OPTIM-
imatinib clinical trial, an ongoing prospective clinical trial 
evaluating imatinib dose adjustment driven by imatinib 
trough levels (OPTIM-Imatinib, EudraCT number 2010-

019568-35).
In conclusion, our results demonstrate the infl uence 

of a constitutive ABCG2 haplotype on the response to 
imatinib in CP-CML patients and raise the possibility of 
personalizing imatinib daily doses in this population on 
the basis of constitutive genotyping.

PATIENTS AND METHODS

Study design

This study was approved by the Human Ethics 
Committee of the St Louis Hospital, Paris. Written 
informed consent was obtained from all patients prior to 
study participation. 

Analyses were performed in two independent 
patient cohorts; the Saint Louis exploratory cohort (SLEC) 
treated at the Saint Louis hospital specialized clinical trial 
center (CIC), and the SPIRIT validation cohort (SVC) 
treated at participating centers in the SPIRIT trial [36] 
(clinicaltrials.gov: NCT00219739). Data were collected 
at participating institutions, analyzed using the sponsor’s 
data management systems. Access to primary clinical data 
was available to all authors. 

Patients and assessments

The SLEC included 105 consecutively referred CP-
CML patients enrolled at the CIC between 2006 and 2009 
and treated with imatinib 400 mg/d. The SVC included 
239 CP-CML patients from the prospective SPIRIT trial 
based on sample availability from patients recruited to the 
imatinib arms; 132 patients were treated with 400 mg/d 
and 107 with 600 mg/d. Patients receiving imatinib plus 
pegylated interferon-alpha2b or imatinib plus cytarabine  
were not analyzed. 

Peripheral blood samples for DNA extraction 
were collected at the time of recruitment. BCR-ABL 

Table 3: ABCG2 haplotype associated with CI-MMR at 18 months

SLEC
SVC
All patients 400 mg/d 600 mg/d 

Univariate n = 105 (P-value)  n = 239 (P-value) n = 132 (P-value) n = 107 (P-value)
G-G 68.09

(<.001)
63.72

(.006)
56.90

(.005)
73.68

(.185)
Other haplotypes 34.48 46.81 34.78 58.33
Bivariate Fine and 
Gray model statistics n = 73   n = 239 n = 132  n = 107  

G-G
Reg. Coef. 2.27 (.006) 1.75  (.002) 2.41  (.002) 1.32  (.270)
95%CI 1.26 to 4.10      1.22 to 2.51     1.39 to 4.19       0.81 to 2.15      

Sokal 
score

Reg. Coef. 0.64 (.024) 0.62 (<.001) 0.68 (.034) 0.51 (.001)
 95%CI 0.43 to 0.94      0.49 to 0.78      0.47 to 0.97       0.38 to 0.69       
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transcripts were quantifi ed by RTQ-PCR every 3 months 
in accordance with international recommendations, and 
expressed according to the international scale (IS) as a 
BCR-ABL/ABL standardized ratio (BCR-ABLIS) [41]. 
MMR was defi ned as a BCR-ABLIS ratio ≤0.1%). 

Genotypes from 76 unrelated and unaffected 
individuals obtained from the CEU population (Utah 
residents with northern and western European ancestry) 
from the CEPH (“Centre d’Etudes du Polymorphisme 
Humain”) database were downloaded from the 1000 
Genomes Project website [42]. 

SNP selection and genotyping

A dedicated DNA chip[34] designed in 2006 by the 
French REPAC network (coordinated by Pierre Laurent-
Puig and Fabien Calvo, Supplementary Table ST1) was 
used for patient genotyping. Among 16 561 SNPs on 
the chip, 857 covering 94 drug transporter genes were 
selected. Genotyping was performed by Integragen SA 
using the Illumina GoldenGate assay. A list of variations 
from the ABCG2 gene was downloaded from the 1000 
Genomes Project website [34]. All 16 561 SNPs genotyped 
in the 105 SLEC patients and the 239 SVC patients were 
included in the quality control process. Individuals with 
a call rate below 90%, SNPs with minor allele frequency 
below 10%, and SNPs with a call rate below 90% were 
excluded. 

Statistical analysis

Patient characteristics were compared between 
cohorts using Chi-squared or Wilcoxon tests. Sample 
size simulations show that for conventional type 1 and 
2 error rates, in a population of about one hundred with 
approximately 60% of patients expected to reach MMR 
within the fi rst 18 months and with a regression coeffi cient 
of two between groups, SNPs differentiating more than 

one-third of patients are required [44]. This result led us 
to investigate those SNPs discriminating at least one third 
of the patients in a recessive mode. 

CI-MMR at 18 months was analyzed in the various 
patient cohorts (SLEC/SVC, and by imatinib dose) using 

the Fine and Gray regression model with multivariate and 
univariate analyses. Adverse events, toxicities or deaths 
not related to CML which led to loss of molecular follow-
up were handled as competing events. An SNP association 
analysis for CI-MMR at 18 months was also performed 
using the Fine and Gray model. Markers with a false 
discovery rate (FDR) < 50% in the SLEC population were 
investigated in the validation cohort (overall, 400 mg/d 
and 600 mg/d) using a signifi cance cut-off of P = 0.05. The 
Benjamini and Hochberg method was used for multiple 
testing issues [45]. Haplotype frequencies were estimated 
in the SLEC, SVC (overall, 400 mg/d and 600 mg/d) 
and CEU populations using the classic EM algorithm on 
unrelated individuals implemented in the Haplo.stats R 
library [46-48]. Homogeneity in haplotypic distribution 
between populations was tested. An association analysis 
between haplotype or Sokal score with CI-MMR at 
18-months was performed using a Fine and Gray model. 
The association between early molecular response (BCR-
ABLIS ≤ 10% at 3 months) and responses of interest 
(BCR-ABLIS ≤ 1% at 12 months and BCR-ABLIS ≤ 0.1% 
at 18 months) and ABCG2 haplotypes were tested using 
the chi-squared test. Data were analyzed using R Project 
for Statistical Computing software (R version 2.15.2) [49].

Supplementary information is available on the 
Oncotarget website.
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