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AbstrAct
As the recent development of high-throughput technologies in cancer 

pharmacogenomics, there is an urgent need to develop new computational approaches 
for comprehensive identification of new pharmacogenomic biomarkers, such as 
microRNAs (miRNAs). In this study, a network-based framework, namely the SMiR-NBI  
model, was developed to prioritize miRNAs as potential biomarkers characterizing 
treatment responses of anticancer drugs on the basis of a heterogeneous network 
connecting drugs, miRNAs and genes. A high area under the receiver operating 
characteristic curve of 0.820 ± 0.013 was yielded during 10-fold cross validation. 
In addition, high performance was further validated in identifying new anticancer 
mechanism-of-action for natural products and non-steroidal anti-inflammatory drugs. 
Finally, the newly predicted miRNAs for tamoxifen and metformin were experimentally 
validated in MCF-7 and MDA-MB-231 breast cancer cell lines via qRT-PCR assays. 
High success rates of 60% and 65% were yielded for tamoxifen and metformin, 
respectively. Specifically, 11 oncomiRNAs (e.g. miR-20a-5p, miR-27a-3p, miR-29a-3p, 
and miR-146a-5p) from the top 20 predicted miRNAs were experimentally verified as 
new pharmacogenomic biomarkers for metformin in MCF-7 or MDA-MB-231 cell lines. 
In summary, the SMiR-NBI model would provide a powerful tool to identify potential 
pharmacogenomic biomarkers characterized by miRNAs in the emerging field of precision 
cancer medicine, which is available at http://lmmd.ecust.edu.cn/database/smir-nbi/.

IntroductIon

Genetic profiles or molecular features often 
characterize the responses (e.g. resistance) of an 
individual to anticancer treatment [1]. Identification of 
those genetic profiles or molecular features will help to 
find the right drug with right dosage for the right person 
in the era of precision medicine [2]. The traditional 
pharmacogenomic studies focus on identifying which 
drugs will be the most effective with low toxicity for 
a particular patient harboring unique genetic profiles, 

such as single nucleotide polymorphisms, somatic copy 
number alterations or differential expressions of drug 
targets, drug-metabolizing enzymes or transporters [3]. 
Recent studies suggest that microRNAs (miRNAs) 
might play critical roles in pharmacogenomics [4, 5].  
MiRNA pharmacogenomics is to study treatment 
responses at the miRNA level (Figure 1A): to decrease 
or increase the expressions of miRNAs, target genes 
or to change the activities of binding miRNAs [6].  
In the context of cancer pharmacogenomics, miRNA 
biomarkers have been found to be involved in intrinsic 
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and acquired resistance to cancer therapies by decreasing 
the expressions of their target genes [4].

Compared with other miRNA regulation strategies, 
like locked nucleic acids (LNA), small molecules 
attracted increasing attention for its strength in organism 
affinity and extensive experience in clinical research 
and pharmacokinetic test [7]. MiRNA regulation by 
small molecules or drugs could result from inference in 
miRNA biogenesis at three levels: before, during and after 
transcription [7]. Small molecules increase or decrease 
miRNA expressions indirectly, by altering miRNA promoter 
regions [8] or binding to the transcription factors [9].  
They also can disrupt the maturation of miRNAs by binding 
with essential RNA-endonucleases [10]. In general, one 
small molecule can alter tens of miRNAs, and one miRNA 
can target ~200 genes in average [11]. For example, a 
total of 132 miRNAs were altered in an array analyses of 
HCT116 colon cancer cells treated by sulindac sulfide [12]. 
However, it is time-consuming to identify the regulations 
between small molecules and miRNAs by experimental 
approaches owing to the high complexity of biological 
systems. Therefore, there is an urgent need to develop new 
computational approaches or models to systematically 
decipher the relationships between anticancer agents and 
their treatment responses mediated by miRNAs to speed up 
cancer pharmacogenomic studies [13].

As the advance of high-throughput technologies, 
miRNA-related online resources sprung up, mainly 
focusing on miRNA identification, target gene validation/
prediction, and function annotation [14, 15]. MiRBase 
[16], the reference database for miRNA annotation, 
has enrolled 2,588 human mature miRNAs in the latest 
release (Version 21, June 2014). The miREnvironment 
[17] and SM2miR [18] databases are created by text-
mining, including literature-curated associations between 
xenobiotics and miRNAs. In addition, several miRNA 
target gene databases, such as miRTarBase [11], TarBase 
[19] and miRecords [20] curated thousands of the target 
genes for miRNAs supported by experimental data. The 
multiMiR [21] is an integrated R package, including 
various resources of the validated and predicted miRNA-
target gene pairs. Those databases provide high-quality 
data for the development of new computational models 
for miRNA pharmacogenomic studies, such as network-
based approaches [4]. Lv et al. built a network-based 
computational model to predict novel regulations 
between small molecules and miRNAs on the basis of 
the integrated similarities using Random Walk with 
Restart algorithm [22]. Meng et al. constructed a rank-
based model to predict potential modulators for 25 cancer 
significant miRNAs based on gene expression similarity 
[23]. Currently, there is still a great need for feasible, 
high efficient and/or accuracy models for comprehensive 
evaluation of the regulations between small molecules and 
miRNAs in large-scale.

In this study, a network-based miRNA 
pharmacogenomic framework, namely the predictive Small 
Molecule-miRNA Network-Based Inference (SMiR-NBI)  
model, was developed to discover the underlying 
mechanisms of anticancer drug responses mediated 
by miRNAs. The SMiR-NBI model was built based on 
a heterogeneous network connecting drugs, miRNAs 
and genes, using our previously developed network-
based inference (NBI) framework [24]. The SMiR-NBI 
model, with high accuracy and low computational cost, 
only utilized the network topology information from the 
constructed heterogeneous network as input [25]. Further, 
network and bioinformatics analyses were used to identify 
miRNAs as potential pharmacogenomic biomarkers 
in cancer. Altogether, our SMiR-NBI model displayed 
high performance in cross-validation and experimental 
validation in several case studies, and would provide a 
valuable computational tool for miRNA pharmacogenomic 
studies in the emerging field of precision cancer medicine.

rEsuLts

drug-mirnA network building and topological 
analyses

A comprehensive network connecting small 
molecules and miRNAs (abbreviated as SM-miR 
network) was built based on the data collected from the 
miREnvironment [17] and SM2miR [18] databases. Only 
experimental records from 453 references tested in human 
were used. After removing duplicates and performing data 
standardization, the final high-quality dataset included 
2,447 SM-miR regulations connecting 154 small molecules 
and 618 human mature miRNAs (Table 1). Among them, 
1,359 regulations were labeled as up-regulation, while 
1,088 regulations were annotated as down-regulation. 
In order to illustrate the function of the regulated 
miRNAs, the genes directly targeted by those miRNAs 
were extracted using the multiMiR R package [21].  
For 618 miRNAs in the SM-miR network, 376 ones 
were recorded with validated target genes. In total, 3,025 
miRNA-target gene pairs supported by strong validations 
and 32,648 miRNA-target gene pairs supported by weak 
validations were obtained.

The global SM-miR network diagram (Figure 2A) 
was constructed by Cytoscape [26], including 2,447 
SM-miR regulations. Most of the included drugs were 
connected each other by the co-regulated miRNAs, 
except the isolated benzothiazole and lovastatin owing to 
data incompleteness. To measure the topological features, 
degree (K) [27] was calculated by “Network analyzer” 
tool in Cytoscape. The statistics results for the nodes with 
the top 100 global degrees were displayed in Figure 2B. 
MiR-21-5p with the highest degree (K = 47) was the most 
studied miRNA, which was up-/down-regulated by 47 
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small molecules. Several miRNAs, including let-7a-5p, 
miR-16-5p, miR-27b-3p, miR-29a-3p, miR-34a-5p, miR-
125b-5p, and miR-181b-5p, were up-/down-regulated by 
more than 20 small molecules or drug combinations. Three 
drugs with the highest degrees, namely 5-fluorouracil, 
1,2,6-tri-o-galloyl-beta-d-glucopyranose and sulindac 
sulfide, regulated the expression levels of 208, 139 and 
131 miRNAs, respectively. Although multiple miRNAs 
were up-/down-regulated by multiple drugs, specificity for 
up-/down-regulation still existed. For instance, the drug 
combination of 5-aza-2′-deoxycytidine and trichostatin A 
increased the expression levels of all 47 linked miRNAs.

We further investigated the network modules 
(Supplementary Figure S1) on the global SM-miR 
network using the MCODE algorithm [28]. Drugs 
clustered in a module often share the same mechanism-
of-action (MOA), with commonly regulated miRNAs 
displayed in Module 4-6 (Figure 2C). For example, miR-
34a-5p may act as a common biomarker for 4 therapeutic 
strategies (Module 4): delta-tocotrienol, nutlin-3a, the drug 
combination of nicotinamide and etoposide, and the drug 
combination of paclitaxel and cyclopamine. The difference 
in topological features defined the various initial resources 
for small molecules or miRNAs, providing the basis to 
conduct network-based prediction.

Identification of new miRNAs as cancer 
pharmacogenomic biomarkers by the sMir-nbI 
model

A miRNA pharmacogenomic framework (Figure 1B)  
was built to discover potential miRNA biomarkers 
characterizing the responses of anticancer drugs via 
three steps (see Methods): 1) constructing the high-
quality reported heterogeneous network connecting small 
molecules and their regulated miRNAs; 2) predicting 
novel SM-miR regulations using network-based inference 
algorithm [24]; 3) investigating the miRNA-mediating 
MOA by bioinformatics analyses based on the miRNA-
gene function network.

The SMiR-NBI model can rank new miRNAs for a 
given small molecule or predict new small molecules for 
a miRNA of interest via its personalized network-based 
inference as described in our previous study [24, 25]. 
The performance of the SMiR-NBI model was measured 
by the areas under the receiver operating characteristic 
curves (AUC) during 100 times of 10-fold cross validation 
(Figure 3). A high AUC value of 0.820 ± 0.013 was yielded 
for predicting potential miRNAs to small molecules. In 
addition, a higher AUC value of 0.870 ± 0.010 was yielded 
for predicting potential small molecules to miRNAs. In 
total, 5,245 novel SM-miR regulations (score ≥ 0.1) were 
identified by the SMiR-NBI model for all included small 
molecules that we studied, except benzothiazole and 
lovastatin owing to lack the topological links of those 

two molecules with the whole network (Figure 2A). We 
integrated the predicted list with the previously reported 
SM-miR network collected from the miREnvironment 
[17] and SM2miR [18] databases with miRNA target 
genes extracted using the multiMiR R package [21]. All 
known and computationally predicted SM-miR regulations 
and miRNA function information were available on our 
website (http://lmmd.ecust.edu.cn/database/smir-nbi/) for 
the future experimental validations.

To further examine the performance of our SMiR-NBI  
model, we calculated the differentially expressed miRNAs 
in breast invasive carcinoma (BRCA) from The Cancer 
Genome Atlas (TCGA) [29] as a case study. Totally, 
265 miRNAs were identified as differentially expressed 
miRNAs in BRCA using a cut-off: |log2(fold change 
[FC])| > 1 and adjusted p-value < 0.05. Among the 265 
differentially expressed miRNAs, 183 mature miRNAs 
were predicted to be involved in the treatment responses to 
17 anti-breast cancer small molecules via the SMiR-NBI  
model (Supplementary Table S1 and Figure 4A),  
displaying the reliability of prediction by the SMiR-NBI  
model. On the other aspect, to illustrate the real application 
ability of the SMiR-NBI model for prioritizing potential 
miRNA biomarkers to small molecules, we further 
exemplified natural products and non-steroidal anti-
inflammatory drugs (NSAIDs) as two case studies.

Discovery of new miRNAs mediating anticancer 
responses for natural products

Contrasted with other small molecules, natural 
products have their immanent advantages like human 
body friendly and low toxicity properties. Recently, 
anticancer mechanisms for natural products have drawn 
great attention, especially those mediated by the critical 
miRNA pharmacogenomic biomarkers [30, 31]. We 
systematically studied the miRNA pharmacogenomic 
profiles for 7 natural small molecules included in the SMiR-
NBI model (Supplementary Table S2). The whole miRNA 
pharmacogenomic profiles for natural products contained 
the known up-/down-regulated miRNAs previously 
reported in the published literature (shown in green or red, 
respectively), the novel SM-miR regulations predicted by 
the SMiR-NBI model (shown in gray), and the hub target 
genes for the miRNAs. In total, 82 miRNAs were previously 
reported or computationally predicted as biomarkers for 
curcumin, with 40 miRNAs for epigallocatechin gallate 
(EGCG), 37 miRNAs for all-trans-retinoic acid (ATRA), 13 
miRNAs for isoflavone and resveratrol, and 12 miRNAs for 
genistein and 3,3′-diindolylmethane. The common miRNAs 
regulated by at least three different natural products resulted 
in 13 co-regulated miRNAs, including let-7a-5p, miR-16-
5p, and miR-21-5p (Figure 4B). These miRNAs may play 
crucial roles by mediating treatment responses for natural 
products.
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The downstream gene network for natural product-
mediating miRNA pharmacogenomics was next examined 
by bioinformatics analyses to illustrate molecular 
mechanisms. As shown in Supplementary Table S2, two 
cancer genes, namely the BCL2 (B-cell CLL/lymphoma 2)  
and the PTEN (Phosphatase and tensin homolog), were 
hub nodes in bioinformatics analyses. BCL2 was found 
to be targeted by 39 miRNAs, and PTEN was directly 
targeted by 28 miRNAs including oncogenic miR-17-92 
family (extracted from our collected miRNA-target gene 
network). The SMiR-NBI model predicted some novel 
SM-miR regulations for natural products in the BCL2 
pathway and the PTEN pathway. For instance, miR-16-5p,  
an endogenous antisense to treat BCL2-overexpressing 
tumors [32], was predicted by the SMiR-NBI model as a 
potential biomarker to anticancer responses for resveratrol, 
genistein and 3,3′-diindolylmethane (Figure 4B).  

In addition, miR-19a-3p, a member of miR-17-92 family 
involving in PTEN anticancer pathway, was predicted as a 
potential biomarker for genistein via the SMiR-NBI model 
(Figure 4B). Altogether, the predicted lists via the SMiR-
NBI model would provide potential pharmacogenomic 
biomarkers for understanding the treatment responses of 
natural products.

Discovery of new miRNAs characterizing 
anticancer indications by nsAIds

The MOA for the anticancer indications of 
non-steroidal anti-inflammatory drugs (NSAIDs) is 
poorly understood [33]. Herein, a comprehensive 
miRNA pharmacogenomic subnetwork for NSAIDs 
(Supplementary Figure S2) was investigated to search 
potential miRNAs mediating treatment responses for 

Figure 1: General diagrams of the SMiR-NBI model for miRNA-mediating cancer pharmacogenomic studies. (A) The 
biological diagram of miRNA pharmacogenomics. MiRNAs can be up-/down-regulated by an anticancer drug, then directly target the 
downstream genes to mediate its anticancer responses. (b) The workflow of miRNA pharmacogenomics. The predictive Small Molecule-
miRNA Network-Based Inference (SMiR-NBI) model was built by network-based inference algorithm, based on the curated heterogeneous 
network connecting small molecules and miRNAs (SM-miR network). The miRNA-mediating mechanism-of-action (MOA) of anticancer 
responses was annotated by bioinformatics analyses on the miRNA-gene function network.
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two classic NSAIDs: sulindac sulfide and celecoxib. 
Supplementary Figure S2 displayed 2,377 miRNA-target 
genes pairs with strong experimental evidence for 182 
both previously reported or computationally predicted 
miRNAs via the SMiR-NBI model.

Among the miRNA pharmacogenomic subnetwork 
for NSAIDs (Supplementary Figure S2), inflammation, as 
one of the cancer hallmarks [34], was displayed a hub.  
Thus, several inflammation-related genes (i.e. 
PTGS2, IL11, IL13, IFNG, STAT3 and NFKB1) were 
extracted from the whole miRNA-target gene network 

(Supplementary Table S3). We found that several new 
predicted miRNAs for NSAIDs via the SMiR-NBI model 
may mediate anti-inflammatory pathways. For example, 6 
miRNAs were predicted as potential biomarkers for COX-
2-characterizing pathway (COX-2 encoded by PTGS2),  
with 4 potential miRNAs for interleukin, and 3 potential 
miRNAs for STAT3. In addition, among several miRNA-
mediating key inflammatory factors, NF-κB was well 
identified in the previous study [12]. Finally, miR-16-5p  
displayed a potential anti-inflammatory biomarker of 
NSAIDs responses for future experimental validations, 

Table 1: Statistics of the heterogeneous network connecting small molecules, miRNAs and target genes
network name type sMc mirnAs Genes Associations

SM-miR neta

Up-regulation 132 503 / 1,359
Down-regulation 100 377 / 1,088

Total 154 618 / 2,447

miRNA-gene netb

Strong validation / 288 1,442 3,025
Weak validation / 282 11,820 32,648

Total / 376 12,085 35,673
aSM-miR net: the network of associations connecting small molecules and miRNAs;
bmiRNA-gene net: the network of associations connecting miRNAs and their target genes;
cSM: small molecules.

Figure 2: Building a SM-miR network connecting small molecules (SM) and miRNAs and network topological analyses.  
(A) Global diagram of the known SM-miR network containing 2,447 up-/down-regulations between 154 small molecules and 618 miRNAs; 
(b) The degree distribution for the top 100 small molecules and miRNAs; (c) Module 4-6, with clustered small molecules and their  
co-regulated miRNAs.
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with high predicted scores and directly targeting PTGS2, 
IFNG and NFKB1.

In addition to the inflammation pathway, several 
cancer-related pathways were identified from the global 
NSAIDs-regulating miRNA-gene subnetwork, including 
cell cycle (CDK6, CCND1, CCKN1A, and E2F1), 
proliferation (MYC), apoptosis (BCL2) and angiogenesis 
(VEGFA) [35]. Figure 4C showed a representative 
miRNA pharmacogenomic subnetwork for NSAIDs 
connecting the 10 hub genes (with the highest degrees) 
and 27 miRNAs (targeting at least 3 hub genes). 
Among 50 newly predicted miRNAs for NSAIDs, 
7 miRNAs with high degree distribution revealed 
potential candidates for future experimental validations. 
For example, the predicted miR-222-3p was clustered 
with down-regulated miR-221-3p and miR-18a-5p by 
directly targeting DICER1, ESR1 and PTEN. The newly 
predicted miR-107 shared the similar functional pathways 
with down-regulated miR-29 family. Collectively, 
the newly the top 10 predicted miRNAs (Figure 4C)  
via the SMiR-NBI model would provide potential miRNA 
pharmacogenomic candidates mediating treatment 
anticancer responses for NSAIDs, although future efforts 
are needed to perform experimental validations.

Experimental validation of new miRNAs 
characterizing tamoxifen responses in MCF-7 
breast cancer cells

Recent studies have suggested that miRNAs may 
play important roles in anti-breast cancer effects and 
drug responses [36, 37]. In this study, we predicted new 
miRNAs for tamoxifen via the SMiR-NBI model and 
tested prediction experimentally through the quantitative 
reverse transcription-PCR (qRT-PCR) assays. For 
tamoxifen, the top 10 predicted miRNAs with the highest 
scores by the SMiR-NBI model were selected to test 
using the qRT-PCR assays in two breast cancer cell 
lines. Fold-change was calculated after the tamoxifen 
treatment (100 nM, 500 nM and 1 µM, respectively) 
with the normalized miRNA expression in the control 
sample without tamoxifen. In total, 6 miRNAs (let-7a-5p,  
miR-16-5p, miR-27b-3p, miR-34a-5p, miR-125b-5p and 
miR-148a-3p) revealed the elevated expression levels with 
fold-change > 2 by a dose-dependent manner in a hormone-
positive (both estrogen and progesterone receptors) 
breast cancer line, MCF-7 (Figure 5A). It indicated a 
60% success rate for predicted miRNAs to tamoxifen 
via the SMiR-NBI model validated in MCF-7 cells.  

Figure 3: The receiver operating characteristic (ROC) curves of the SMiR-NBI model. The areas under the ROC curves 
(AUC) were labeled with means and standard errors using 100 times of 10-fold cross validation for predicting potential miRNAs to a given 
small molecule (magenta line) or predicting potential small molecules to a miRNAs of interest (steel blue line) via our previously developed 
network-based inference framework [24].
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Among 6 miRNAs, let-7a-5p was the most up-
regulated one with over 10-fold changes caused 
by tamoxifen in all three different concentrations, 
consistent with a previous study [38].  
We next tested the top 10 potential miRNAs in a triple 
negative breast cancer (TNBC) cell line, MDA-MB-231, 
using the qRT-PCR assays. Surprisingly, none showed 
over 2-fold changes by tamoxifen in a dose-dependent 
manner in MDA-MB-231 cells. These results indicated 
that tamoxifen may show strong cell type-specific miRNA 
pharmacogenomic biomarkers in TNBC versus hormone-
positive breast cancer [36].

Experimental validation of new miRNAs 
characterizing metformin responses in both 
MCF-7 and MDA-MB-231 cell lines

Metformin, the most prescribed oral anti-diabetic 
agent for type II diabetes, has recently been under phase 
III clinical trials for breast cancer therapies (http://www.
clinicaltrials.gov). Among the predicted list for metformin 
via the SMiR-NBI model, we tested the expression levels 
for the top 20 predicted miRNAs for metformin via the 
qRT-PCR assays in both MCF-7 and MDA-MB-231 
breast cancer cell lines. Figure 5B showed that 9 miRNAs 

(miR-7-5p, miR-15b-5p, miR-20a-5p, miR-27a-3p,  
miR-29a-3p, miR-98-5p, miR-146a-5p, miR-638, and 
miR-663a) displayed the decreased expression levels with 
fold-change < 0.5 in MCF-7 cell lines after metformin 
treatment. In contrast, 2 miRNAs (miR-34a-5p and  
miR-27b-3p) revealed the elevated expression levels with 
fold-change > 2 by a dose-dependent manner (Figure 5B).  
For MDA-MB-231 cells, 11 miRNAs showed the 
decreased expression with fold-change < 0.5 after 
metformin treatment, including 2 more miRNAs  
(miR-125b-5p and miR-126-3p) compared to MCF-7 
cells. Smilar to MCF-7 cells, one miRNA (miR-34a-5p)  
revealed the elevated expression with fold-change > 2 after 
metformin treatment responses in a dose-dependent manner 
(Figure 5C). In total, 13 predicted miRNAs for metformin 
were experimentally validated in the qRT-PCR assays, 
accounting for 65% success rate. Those newly identified 
miRNAs may provide potential pharmacogenomic 
biomarkers for characterizing treatment responses for 
metformin in breast cancer. For instance, miR-27a-3p,  
an oncomiRNA and a biomarker for breast cancer 
progression [39], was firstly validated as a potential 
biomarker for metformin via the SMiR-NBI model. In 
addition, two down-regulated miRNAs by metormin, 
i.e. miR-29a-3p and miR-146a-5p, were associated with 

Figure 4: Identification of potential pharmacogenomic biomarkers for breast cancer, natural products and  
non-steroidal anti-inflammatory drugs (NSAIDs) via the SMiR-NBI model. (A) The heatmap showed the predicted 
scores (color keys) of the SMiR-NBI model for 183 differentially expressed miRNAs in breast cancer from The Cancer Genome Atlas  
(see Methods) and 17 anti-breast cancer drugs. (b) The representative miRNA pharmacogenomic pathway for natural products included 13 
common miRNAs regulated by at least 3 different natural products. (c) The representative miRNA pharmacogenomic pathway for NSAIDs 
contained 10 hub genes with the highest degrees in NSAIDs-regulating miRNA-gene subnetwork and 27 miRNAs targeting at least 3 hub 
genes. Regulations between NSAIDs and miRNAs were denoted by different colors.
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treatment of drug-resistant breast cancer [40, 41]. The 10 
newly identified miRNAs for metformin were overlapped 
between MCF-7 and MDA-MB-231 cell lines, suggesting 
the non-cell type-specific pharmacogenomic biomarkers 
for metformin.

To further explore MOA for metformin mediated 
by miRNAs in breast cancer, we built a miRNA 
pharmacogenomic subnetwork (Figure 6A). The whole 
subnetwok for metformin contained 23 up-regulated 
miRNAs and 16 down-regulated miRNAs, by integrating 
literature data (Supplementary Table S4) and qRT-PCR 
validations (Figure 5B and 5C). Figure 6A contained 281 
target genes for the 13 newly identified union miRNAs 
in MCF-7 or MDA-MB-231 cell lines by the qRT-PCR 
assays. We found that these miRNA-target genes were 
significantly enriched in several critical cancer-related 
pathways, such as cell cycle pathway (p = 1 × 10−12), ERBB 
signaling pathway (p = 2.6 × 10−11), and p53 signaling 
pathway (p = 3.2 × 10−9) (Supplementary Table S5).

The miRNA pharmacogenomic effects of 
anticancer drugs often involve two aspects: up-regulating 
the expressions of tumor suppressor miRNAs or down-
regulating the expressions of oncogenic miRNAs [7]. 
Then we performed bioinformatics analyses to examine 
those two potential mechanisms. Considering the data 
incompleteness, miRNAs/genes with at least 2 miRNA-
target gene pairs were used to build a subnetwork for 

examing the down-regulation by tumor suppressor 
miRNAs (Figure 6B), and those connected by at least 3 
miRNA-target gene pairs were used to build a subnetwork 
for examing the up-regulation by oncogenic miRNAs 
(Figure 6C). Previous studies have suggested that over-
expression of miR-20a-5p may mediate breast cancer by 
targeting multiple cancer genes, such as PTEN and BCL2 
[42–44]. In this study, we found that metformin down-
regulated the expression of miR-20a-5p in both MCF-7 
and MDA-MB-231 cell lines by integrating the SMiR-
NBI model and the qRT-PCR assays (Figure 5B and 5C). 
Down-regulation of oncogenic miR-20a-5p and further 
regulating several important cancer genes (such as PTEN 
and BCL2) may provide a potential MOA for therapeutic 
effect of metformin in breast cencer (Figure 6B). A tumor 
suppressor miRNA, miR-34a-5p [45], targeted several 
critical cancer genes (Figure 6C), including CDK6, 
CCND1, CCNE2, E2F3 in the cell cycle pathway and 
VEGFA in the angiogenesis pathway [35]. Here, this 
miRNA was up-regulated by metformin in both MCF-7 
and MDA-MB-231 breast cancer cells identified by the 
qRT-PCR assays (Figure 5B and 5C). Altogether, down-
regulation of oncogenic miRNAs (such as miR-20a-
5p in Figure 6B) or up-regulation of tumor suppressor 
miRNAs (like miR-34a-5p in Figure 6C) by metformin 
may provide potential pharmacogenomic biomarkers for 
characterizing its anticancer effects.

Figure 5: Discovery of new miRNAs mediating treatment responses for tamoxifen and metformin in MCF-7 or MDA-
MB-231 cell lines via qRT-PCR assays. (A) The qRT-PCR assay for expression change of 6 predicted miRNAs among the top 
10 predicted candidates in the MCF-7 cells treated with 100 nM, 500 nM or 1 µM tamoxifen respectively. (b) The qRT-PCR assay for 
expression change for 11 predicted miRNAs among the top 20 predicted candidates in the MCF-7 cells treated with 1 mM, 5 mM or 10 mM 
metformin respectively. (c) The qRT-PCR assay for expression change of 12 predicted miRNAs among the top 20 predicted candidates 
in the MDA-MB-231 cells treated with 1 mM, 5 mM or 10 mM metformin respectively. *p < 0.05, **p < 0.01 and ***p < 0.001 were 
determined by t-test. Error bars represent standard errors (s.d., n = 3). 
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dIscussIon

Recent studies have suggested that miRNAs play 
important roles in mediating responses of anticancer small 
molecules, as well as epigenomics and gene negative 
regulation at the post-transcriptional level [4]. However, 
systematically identifying miRNAs as pharmacogenomic 
biomarkers mediating drug responses is poorly explored. 
In this study, we built a miRNA pharmacogenomic 
framework, named the SMiR-NBI model, for identifying 

potential miRNAs as biomarkers characterizing the 
treatment responses of anticancer small molecules. High 
performance was yielded in cross-validation and the qRT-
PCR assays. We showed that the SMiR-NBI model would 
provide a powerful approach for the identification of 
miRNAs as potential cancer pharmacogenomic biomarkers 
in the emerging research field of precision medicine. All 
the collected and predicted data are available on our 
website (http://lmmd.ecust.edu.cn/database/smir-nbi/) for 
future experimental validations.

Figure 6: The discovered metformin-miRNA-target gene regulatory network. (A) The whole network included 23  
up-regulated miRNAs and 16 down-regulated miRNAs with their 619 target genes. (b) and (c) The down-regulation subnetwork (B) and 
up-regulation subnetwork (C) for metformin identified by bioinformatics analyses. Regulatory details by metformin were represented by 
different colors of miRNA nodes.
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Nevertheless, we should pay more attentions 
when using this model to predict potential miRNA 
pharmacogenomic biomarkers for anticancer agents. At 
first, the high performance of the SMiR-NBI model largely 
depends on data completeness and the quality of the SM-
miR network. Although we constructed a high-quality 
dataset for the SMiR-NBI model building by removing 
unclear associations like “dysregulation” and conflict 
records, the potential data bias or false positive rates 
might exist in the currently public available databases. 
This pitfall may be solved based on the availability of 
more high-quality miRNA pharmacogenomic data in 
the near future owing to the rapid development of high-
throughput technologies. Secondly, SM-miR network is a 
directional network with up-/down-regulation. However, 
the network-based inference algorithm implemented in our 
current SMiR-NBI model is not directional yet. Our group 
members are actively developing and applying directional 
network-based inference algorithm for SM-miR  
network prediction in the future. Thirdly, the current 
SMiR-NBI model cannot predict new miRNAs for small 
molecules not interlinking with the existing SMiR-NBI 
network, such as benzothiazole and lovastatin here [25]. 
Recently, our group developed a SDTNBI algorithm [46] 
that can predict drug targets for new chemical entities. 
We plan to apply our SDTNBI algorithm for predicting 
potential miRNAs for such kinds of novel or isolated 
small molecules. Finally, prediction of new miRNAs 
with different expression levels for small molecules with 
different dose-responses was lost in the current SMiR-NBI  
model owing to lack of the available data. Thus, 
development of high-quality SM-miR network with 
miRNA expression information and drug dose-response 
information is urgently needed.

In addition to anticancer potentials, the miRNA 
pharmacogenomic framework can be applied in several 
related fields, depending on the functions of miRNAs. 
By targeting at least 60% of all protein-coding genes, 
miRNAs are key regulators in the therapy strategy of 
cardiovascular diseases [47], neurological diseases [48], 
viral infection [49], etc. Meanwhile, miRNAs can target 
key metabolic enzymes or transporters mediating drug 
pharmacokinetics [50], adverse events and toxicity [5, 51].  
In summary, we plan to develop more useful miRNA 
pharmacogenomic framework with a higher accuracy and 
robustness to identify more clinically relevant biomarkers 
for pharmacogenomic studies to speed up the development 
of precision medicine in the future.

MAtErIALs And MEtHods

data collection and network construction

The SM-miR network data were collected from the 
miREnvironment [17] and SM2miR [18] databases. Only 
records tested with human mature miRNAs were kept, 

and those analyzed by pre-miRNAs were deleted. As we 
only focused on small molecules, environmental factors 
(e.g. polypeptides) were excluded. All small molecular 
names were standardized by the Unified Medical Subject 
Headings (MeSH) [52] and the mature miRNAs were 
annotated by the miRBase ID [16]. To ensure the data 
quality, we only kept the data of miRNA expression 
directly regulated by small molecules supported by 
experiments. In addition, we checked miRNA expressions 
from the miREnvironment database by manual reference 
inspection. Associations without altered expression 
details were removed. The final SM-miR network was 
transformed into adjacent matrix after eliminating the 
overlap and conflicts.

The miRNA-gene targeting gene pairs were 
collected using the multiMiR R package [21], containing 
data from several resources, including miRTarBase 
[11], TarBase [19], and miRecords [20]. Here, only data 
supported by experiments tested in humans was used. 
Genes were standardized by GenBank Identifier [35]. Then 
miRNA-target gene pairs were divided into two categories 
based on the existing experimental evidences: (i) strong 
validations tested by q-PCR, western blot, reporter assay, 
and other low-throughput experiments, and (ii) weak 
validations tested by microarray, CLIP, sequencing, and 
other high-throughput assays [21]. If a miRNA-target gene 
pair was supported with both strong and weak validations, 
it will be labeled as strong validations. The duplicated data 
was removed. The final miRNA-gene network was used to 
illustrate the molecular mechanisms of miRNAs.

Model building and validation

The SMiR-NBI model was built using the state-
of-the-art network-based inference (NBI) algorithm 
as described previously [24, 25, 53–56]. Briefly, the 
initial resources for a given small molecule located in 
its regulated miRNAs. Then each miRNA averagely 
distributes the resources to all adjacent small molecules 
and the latter immediately redistribute their received 
resources to every neighboring miRNA. The end resource 
score for miRNAs stood for their likelihood to be regulated 
by the given small molecule [25]. Mathematically, 
denoting S = {s1, s2, …, sm} is a set of m small molecules, 
M = {m1, m2, …, mn} is a set of n miRNAs, and the initial 

resource matrix A can be represented as T

O X
A

X O
=
 
 
 

, 

where X is a m × n matrix, defined as X (i, j) = 1 if si is 

linked with mj otherwise 0. Let ( ) m+n

l 1

A(i, j)
B i, j

A(i, l)
=

=
∑

,

the final resource matrix is F = A × B2, where F (i, m + j) 
(0 < i ≤ m , 0 < j ≤ n) is the score of si − mj association. 
Finally, the scores for the subnetwork of a specific miRNA 
or small molecule were converted to standardized scores 
ranging from 0 to 1.
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To evaluate the performance of the SMiR-NBI 
model, 100 times of 10-fold cross validation were 
performed. All links in the SM-miR network were 
randomly divided into ten parts of equal size, and then 
each part was used as test set in turn with the remaining 
parts as training set. To eliminate the error caused by 
separating data sets, all the results were yielded by a 
simulation of 100 independent tests. The area under 
the receiver operating characteristic (ROC) curve 
was calculated as the measure to evaluate the model 
performance.

Calculating of differentially expressed miRNAs 
in breast cancer

We downloaded miRNA-seq data for 654 breast 
invasive carcinoma (BRCA) and 85 matched normal 
samples (12/2015) from The Cancer Genome Atlas 
(TCGA) [29]. The miRNA differential expression was 
calculated using edgeR software [57]. We then used 
|log2(fold change)| > 1 and adjusted p-value < 0.05 as the 
cutoff to definite the differentially expressed miRNAs.

network analyses

Network analyses were performed using Cytoscape 
[26]. Degrees were calculated by “Network analyzer” tool 
for each node in three types of SM-miR networks: global 
network, up-regulation network and down-regulation 
network, respectively. Then the top 100 small molecules 
or miRNAs with high degrees in global network were 
extracted and regulations were divided into up-regulation, 
or down-regulation mode. A visualization of the whole 
SM-miR network diagram was obtained by edge-weighted 
spring embedded layout, with the size of node stood for 
the global degrees. The heterogeneous SM-miR network 
was transformed into a homogeneous network with links 
connecting all reported small molecules characterized by 
the co-regulated miRNAs. MCODE plugin [28] was applied 
for module analyses in the homogeneous network of small 
molecules with parameters set at: node score cutoff 0.2, 
max depth from seed 5, others as default. The downstream 
genes targeted by miRNAs were of great importance to 
illustrate the miRNA functions. Degrees of genes in the 
miRNA-gene function subnetwork regulated by a specific 
small molecule were calculated to obtain the hub genes with 
the highest degrees, which often participated in multiple 
key miRNA pharmacogenomic pathways. To cut down 
the complexity of the regulated miRNA pharmacogenomic 
network, important regulatory pathways were extracted for 
some small molecules depending on the degrees in SM-miR 
network or miRNA-gene network.

Experimental validation

Quantitative reverse transcription-PCR (qRT-PCR) 
assay was used to test the expression levels of the top 
20 predicted miRNA candidates for metformin and the 
top 10 predicted potential miRNAs for tamoxifen. The 
human MCF-7 (hormone-positive [ER and PR] breast 
cancer) and MDA-MB-231 (triple negative breast cancer) 
cell lines used in this study were purchased from the 
Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences (Shanghai, China). The MCF-7 
cell line was cultured in complete media consisting of 
1640 media, while MDA-MB-231 cell line was cultured 
in complete media consisting of DMEM media. Both 
were supplemented with 10% fetal bovine serum (FBS, 
GIBCO, USA) and 1% antibiotic-antimycotic (ABAM 
Life Technologies, California, USA) under an atmosphere 
of 5% CO2 and 95% air at 37°C. These two breast cancer 
cell lines were treated for 24 hours with 1 mmol/L 
(mM), 5 mM and 10 mM metformin (Sigma, USA), and 
100 nmol/L (nM), 500 nM and 1 µmol/L (µM) tamoxifen 
(Sigma, USA), respectively. Total RNA was purified 
using Trizol reagent (Invitrogen, CA, USA) according 
to the supplier’s instruction. The miRNA was reversely 
transcribed by TransScript miRNA First-Strand cDNA 
Synthesis SuperMix(Transgen, China), and qRT-PCR was 
performed with TransScript Top Green qPCR SuperMix 
according to the manufacturer’s protocols (Transgen, 
China) with an iCycler thermal cycler (Bio-Rad, USA). 
Relative quantification of the miRNA expression level 
was calculated using the comparative cycle threshold (Ct) 
method (2−(ΔΔCt)). The expression of U6 was used as the 
endogenous control. Reported values are the means and 
standard errors of results from three biological replicates. 
The p values were computed by Student’s t-test and 
difference significance between groups was assessed as  
*p < 0.05; **p < 0.01; ***p < 0.001. The sequences 
of each primer used in this study were shown in 
Supplementary Table S6.
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