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ABSTRACT

Lung cancer is a leading cause of cancer-related mortality worldwide, and 
cigarette smoking is the major environmental hazard for its development. This 
study intended to examine whether smoking could alter methylation of genes at 
lung cancer risk loci identified by genome-wide association studies (GWASs). By 
systematic literature review, we selected 75 genomic candidate regions based 
on 120 single-nucleotide polymorphisms (SNPs). DNA methylation levels of 2854 
corresponding cytosine-phosphate-guanine (CpG) candidates in whole blood 
samples were measured by the Illumina Infinium Human Methylation450 Beadchip 
array in two independent subsamples of the ESTHER study. After correction for 
multiple testing, we successfully confirmed associations with smoking for one 
previously identified CpG site within the KLF6 gene and identified 12 novel sites 
located in 7 genes: STK32A, TERT, MSH5, ACTA2, GATA3, VTI1A and CHRNA5 
(FDR <0.05). Current smoking was linked to a 0.74% to 2.4% decrease of DNA 
methylation compared to never smoking in 11 loci, and all but one showed 
significant associations (FDR <0.05) with life-time cumulative smoking (pack-
years). In conclusion, our study demonstrates the impact of tobacco smoking on 
DNA methylation of lung cancer related genes, which may indicate that lung cancer 
susceptibility genes might be regulated by methylation changes in response to 
smoking. Nevertheless, this mechanism warrants further exploration in future 
epigenetic and biomarker studies.

INTRODUCTION

Lung cancer is the most common cancer and a 
leading cause of cancer-related mortality globally [1]. 
In recent years, several large genome-wide association 
studies (GWASs) have been conducted to identify genetic 
risk factors of lung cancer [2]. They have successfully 
identified numerous single-nucleotide polymorphisms 
(SNPs) that might play a role in the pathophysiology of 
lung cancer, such as loci located in chromosomal regions 
15q (nicotinic acetylcholine receptor subunits: CHRNA3, 
CHRNA5), 5p (TERT-CLPTM1L) and 6p (BAT3-MSH5).

Smoking, the best established environmental hazard 
of lung cancer, accounts for 80% of the worldwide lung 
cancer burden in males and at least 50% in females [1]. 
Recent studies have shown that smoking could interact 
with genetic variation to influence lung cancer, including 
lung tumor initiation and progression [3, 4]. DNA 
methylation, which could be employed as a useful and 
stable surrogate of the genetic response, has recently been 
suggested to be one of the potential mechanisms of such 
interaction for smoking-related health outcomes [5, 6].

Recently, a number of epigenome-wide association 
studies (EWASs) have established the important role of 

                   Research Paper



Oncotarget59018www.impactjournals.com/oncotarget

tobacco smoking in genomic DNA methylation profiles 
within whole blood samples. They identified smoking 
related CpG sites in various genes, such as AHRR, F2RL3 
and GPR15, in whole blood samples, and showed that 
these sites could be utilized as quantitive biomarkers 
of current and past smoking exposure and predictors 
of smoking-associated health risks [5–8]. Another 
two studies by Steenaard et al. and Ligthart et al. have 
demonstrated that smoking is associated with differential 
DNA methylation of the risk genes of coronary artery 
disease and diabetes [9, 10]. However, no previous studies 
have systematically addressed the impact of smoking on 
DNA methylation of risk loci for lung cancer. Hence, we 
conducted an epigenetic investigation in the ESTHER 
study, focusing on the association of smoking with 
whole blood DNA methylation of loci at/near confirmed 
lung cancer related genes, with the aim of identifying 
methylation signals that could have the potential to aid in 
the development of risk prediction models or in advancing 
the understanding of the exact links of smoking with lung 
cancer.

RESULTS

Participant characteristics

Characteristics of the study population in the 
discovery (n=978) and validation panels (n=531) 
were comparable with respect to age, lifestyle factors, 
smoking behavior, as well as prevalent diseases, and are 
summarized in Table 1 . Average age in the two subsets 
was about 62 years. More than half of the participants 
in each subset were ever smokers, and around 18% still 
smoked at the time of recruitment. In both subsets, the 
proportions of men were much higher in current smokers 
than that in never smokers: 60.8% vs. 29.4% in the 
discovery panel and 48.0% vs. 21.1% in the validation 
panel (data not shown). Average cumulative smoking 
exposure in current smokers and former smokers were 
36.8 and 23.3 pack-years, respectively, in the discovery 
panel, and 33.9 and 19.9 pack-years, respectively, in 
the validation panel. Average cessation time for former 
smokers in the two subsets was also similar, approximately 
17 years.

Associations between tobacco smoking and 
methylation of lung cancer related genes

DNA methylation levels of 2854 CpG candidates 
corresponding to 75 genes were measured by the Illumina 
Infinium Human Methylation450 Beadchip array. 
Associations between current smoking exposure (current 
vs. never; independent variable) and methylation levels of 
these candidates (dependent variable) were assessed by 
three mixed linear regression models (Models 1- 3) with 
methylation assay batch as random effect and increasing 

adjustment for potential confounders (details were 
presented in Methods). Compared with Model 1 and 
Model 2 which were less powerful (Supplementary 
Table S1), after fully controlling for confounding factors 
(Model 3), 31 of the 2854 CpG candidates passed the 
threshold of FDR <0.05 in the discovery phase (Figure 1, 
Supplementary Table S2). The 31 CpG sites were then 
replicated in the validation panel by the fully-adjusted 
mixed linear regression model (Model 3). As a result, 
13 of these 31 CpG sites were confirmed as significantly 
smoking-related loci (Table 2, FDR < 0.05). Among 
these, only cg24287110 (KLF6), was previously reported 
to be related to smoking exposure [11]. The remaining 
12 sites were located in 7 genes: STK32A (n=1), TERT 
(n=2), MSH5 (n=2), ACTA2 (n=1), GATA3 (n=3), VTI1A 
(n=2) and CHRNA5 (n=1). Current smoking was mostly 
associated with hypomethylation (11 sites), whereas 
hypermethylation was observed at cg17928584 (STK32A) 
and cg19696491 (CHRNA5). Effect sizes of the 13 CpG 
sites between never and current smokers ranged from 
0.6% to 2.9%.

Furthermore, in the analyses of associations between 
other smoking indicators and the 13 validated CpG sites 
which were identified as the smoking-related loci, all loci 
except cg19696491 (CHRNA5) were significantly associated 
with pack-years (Table 3, FDR<0.05), whereas none of 
the 13 loci exhibited an association with the time since 
smoking cessation after FDR correction. In line with this, 
comparisons of methylation between current and former, or 
between former and never smokers generally were weaker, 
and did not reach significance, with the possible exception 
of cg19335412 (ACTA2) (adjusted p-value = 0.018 for 
the comparison of former and never smokers). However, 
methylation changes associated with former smoking were 
generally in the same direction as those associated with 
current smoking (detailed data not shown).

Characteristics of significant CpG sites

Genome characteristics of the 13 validated CpG sites 
are presented in Table 4 . They are located at chromosomes 
5 (n=3), 6 (n=2), 10 (n=7) and 15 (n=1). Eight of these 
13 CpG sites are located at the gene bodies, 4 at the 
transcription start sites (TSS200/ TSS1500) and only 
one at the untranslated region (3′UTR). None of them 
is located at the cis-eQTLs. With the exception of three 
CpG sites within GATA3, the distances between other 
significant CpG sites and their corresponding lung cancer 
related SNPs were less than 1Mb. Correlations between 
methylation at the 13 sites are described in  Supplementary 
Table S3, significant moderate pairwise correlations were 
frequently observed, stronger positive correlations were 
seen between CpG sites located on the same genes. In 
particular, cg19696491 within CHRNA5 has the strongest 
correlations (p<0.0001) with other CpG sites except loci 
cg11430077 (GATA3) and cg24287110 (KLF6).
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Table 1: Characteristics of study population in discovery and validation panels a

Characteristics Discovery Panel Validation Panel p value

N 978 531

Age (years) 62.1 (6.5) 62.0 (6.6) 0.817

Sex <0.001

 Male 495 (50.6%) 207 (39.0%)

 Female 483 (49.4%) 324 (61.0%)

Smoking status 0.877

 Current smoker 181 (18.5%) 98 (18.4%)

 Former smoker 328 (33.5%) 182 (34.3%)

 Never smoker 469 (48.0%) 251 (47.3%)

Body mass index b 0.246

 Underweight (<18.5) 8 (0.8%) 1 (0.2%)

 Normal (18.5-<25.0) 237 (24.3%) 161 (30.3%)

 Overweight (25.0-<30.0) 472 (48.4%) 228 (42.9%)

 Obese (≥30.0 ) 258 (26.5%) 141 (26.6%)

Alcohol consumption c 0.511

 Abstainer 311 (34.1%) 169 (34.4%)

 Low 531 (58.2%) 290 (59.1%)

 Intermediate 53 (5.8%) 27 (5.5%)

 High 17 (1.9%) 5 (1.0%)

Physical activity d 0.061

 Inactive 189 (19.3%) 109 (20.5%)

 Low 433 (44.3%) 261 (49.2%)

 Medium or high 356 (36.4%) 161 (30.3%)

Prevalence of diabetes e 0.647

 Not prevalent 819 (84.4%) 436 (83.5%)

 Prevalent 151 (15.6%) 86 (16.5%)

Prevalence of CVD f 0.627

 Not prevalent 796 (81.5%) 438 (82.5%)

 Prevalent 181 (18.5%) 93 (17.5%)

Prevalence of cancer g 0.748

 Not prevalent 892 (93.4%) 487 (93.8%)

 Prevalent 63 (6.6%) 32 (6.2%)

Leukocyte compositionh

 CD8+ T-cells 0.081 (0.039) 0.098 (0.041) <0.001

 CD4+ T-cells 0.166 (0.058) 0.171 (0.056) 0.041

 NK cells 0.098 (0.044) 0.096 (0.042) 0.281

(Continued )
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Characteristics Discovery Panel Validation Panel p value

 B-cells 0.063 (0.024) 0.070 (0.019) <0.001

 Monocytes 0.101 (0.022) 0.100 (0.020) 0.867

 Granulocytes 0.548 (0.097) 0.531 (0.094) 0.002

Pack-years of smokingi

 Current smokers 36.8 (19.3) 33.9 (17.5) 0.250

 Former smokers 23.3 (16.3) 19.9 (15.1) 0.031

Smoking cessation time 
(years) j

17.3 (11.3) 17.6 (10.6) 0.755

a: Mean values (SD) for continuous variables and n (%) for categorical variables; Kruskal-Wallis Test was applied to 
examine continuous variables and Chi-Square test was applied to examine categorical variables
b: Data missing for 3 participants in discovery panel
c: Data missing for 66 and 40 participants, respectively, in discovery and validation panels. Categories defined as follows: 
abstainer, low [women: 0 -<20 g/d, men: 0 -<40 g/d], intermediate [20 -<40 g/d and 40 -<60 g/d, respectively], high [≥40 
g/d and ≥60 g/d, respectively]
d: Categories defined as follows: inactive [ < 1h of physical activity/week], medium or high [≥2 h of vigorous and ≥ 2 h of 
light physical activity/week], low [other]
e: Data missing for 8 and 9 participants, respectively, in discovery and validation panels
f: CVD: cardiovascular disease. Data missing for 1 participant in discovery panel
g: Data missing for 23 and 12 participants, respectively, in discovery and validation panels
h: Estimated by the Houseman algorithm [27]
i: A pack-year was defined as having smoked 20 cigarettes per day for 1 year, including all participants from validation 
panel, pack-year= 0 for never smokers
j: Former smokers only, data missing for 9 and 3 participants, respectively, in discovery and validation panels; cessation 
time equals age at recruitment minus age at cessation

Figure 1: Manhattan plot of discovery panel. Red line: raw p-value of FDR = 0.05; Green dots: 31 significant sites; Chr: chromosome 
position
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DISCUSSION

In the present study, based on two independent 
subgroups of a population-based cohort of older adults 
from Germany, we identified 13 smoking-related CpG 
sites within 8 genes suggested to be associated with 
lung cancer development by GWASs. Smoking-induced 
hypomethylation was observed for loci within KLF6, TERT, 
MSH5, ACTA2, GATA3 and VTI1A, and hypermethylation 
was observed for loci within STK32A and CHRNA5. The 
effect sizes between never and current smokers ranged from 
0.6% to 2.9%. These findings may indicate that lung cancer 
susceptibility genes might be regulated by methylation 
changes in response to smoking. The associations with 
smoking may also partly explain the positive correlation of 
methylation levels between the identified sites.

Altogether, we were able to identify 12 novel 
smoking-related CpG sites and replicate one previously 
identified locus within two independent cohorts. Although 
their methylation alterations were not as pronounced as 
well-established smoking-related CpG sites, such as 
cg05575921 (AHRR) and cg03636183 (F2RL3) [8, 12–14], 
clear patterns of lowest (highest) and intermediate 
methylation levels, respectively, among current and former 

smokers, compared with never smokers were consistently 
observed for all hypomethylated (hypermethylated) loci. 
Although differences between former and never smokers 
were weaker and not statistically significant, they were 
in the same direction as differences between current and 
never smokers, and additional associations were observed 
between cumulative smoking exposure and methylation at 
the identified sites. This pattern of “methylation recovery” 
after quitting smoking is consistent with findings from 
recent epigenetic studies of smoking cessation [11, 14, 15]. 
Accordingly, it appears worthwhile to further explore 
dose-response relationships of life-time smoking exposure 
with methylation at the identified loci in larger cohorts.

Our study also discloses evidence that might 
narrow the apparent ethnical discrepancy of lung cancer 
susceptibility. We identified methylation changes in 
three genes, VTI1A, STK32A and GATA3 that were rarely 
reported in relation to lung cancer among Caucasians 
previously. The corresponding SNP rs7086803 of VTI1A 
(vesicle transport through interaction with t-SNAREs 1A) 
was only identified in female non-smoking Asians as the 
strongest association signal of lung cancer [16]. A recent 
study further identified it as a potential contributor to 
lung cancer susceptibility and poor survival in smoking 

Table 2: Significant associations between tobacco smoking and methylation of lung cancer related genes in validation 
panel

CpG site Gene Mean β value (Standard deviation) Effect 
size b

Estimate (se) p-value FDR

Never smoker Current smoker

cg00640087 MSH5 0.165 (0.036) 0.159 (0.035) -0.006 -7.4 e-3 (3.1 e-3) 0.019 0.049

cg03281572 VTI1A 0.812 (0.028) 0.793 (0.036) -0.019 -0.018 (3.0 e-3) 3.8 e-7 1.2 e-5

cg07269053 VTI1A 0.733 (0.039) 0.715 (0.052) -0.018 -0.013 (5.0 e-3) 0.007 0.023

cg10163955 GATA3 0.669 (0.043) 0.640 (0.049) -0.029 -0.024 (5.1 e-3) 5.1 e-4 6.6 e-5

cg11430077 GATA3 0.147 (0.032) 0.132 (0.029) -0.015 -0.013 (4.0 e-3) 0.001 0.006

cg12324353 TERT 0.788 (0.032) 0.779 (0.032) -0.009 -0.011 (3.5 e-3) 0.002 0.011

cg17928584 STK32A 0.156 (0.053) 0.161 (0.052) 0.005 0.012 (5.0 e-3) 0.020 0.049

cg19335412 ACTA2 0.461 (0.036) 0.451 (0.033) -0.010 -0.011 (4.1 e-3) 0.009 0.026

cg19696491 CHRNA5 0.470 (0.058) 0.488 (0.060) 0.018 0.018 (6.9 e-3) 0.010 0.028

cg20640261 MSH5 0.443 (0.048) 0.424 (0.048) -0.019 -0.015 (5.0 e-3) 0.003 0.013

cg22770911 GATA3 0.481 (0.033) 0.458 (0.042) -0.023 -0.015 (4.5 e-3) 0.001 0.005

cg24287110 KLF6 0.365 (0.056) 0.349 (0.053) -0.016 -0.022 (6.0 e-3) 6.2 e-4 0.005

cg24908166 TERT 0.926 (0.021) 0.916 (0.026) -0.010 -0.010 (2.6 e-3) 0.0001 0.001

a: Adjusted for age (years), sex, random batch effects, leukocyte distribution (Houseman algorithm [27]), alcohol 
consumption (abstainer/ low/ intermediate/ high), body mass index (BMI, underweight/ normal weight/ overweight/ obese), 
physical activity (inactive/ low/ medium or high), prevalence of cardiovascular diseases (yes/no), prevalence of diabetes 
(yes/no) and prevalence of cancer (yes/no)
All 31 loci identified by discovery panel were validated by the three models, and the threshold of FDR is 0.05. A total of 13 
CpG sites were validated as significant smoking-related CpG sites by validation
b: Effect size = Mean βcurrent smoker – Mean βnever smoker
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Chinese [17], but this locus never demonstrated a 
significant association with lung cancer in GWASs among 
other ethnicities. Likewise, STK32A (encoding serine/
threonine kinase 32A) was only reported by a GWAS in 
a Chinese population, and the risk allele, rs2895680, was 
significantly associated with smoking dose [18]. Lastly, 
for GATA3 (GATA binding protein 3), no corresponding 
SNP was disclosed by any GWASs on lung cancer yet, 
while only an adjacent SNP, rs1663689, was identified 
in a Chinese population and might mediate genetic 
damage among workers exposed to polycyclic aromatic 
hydrocarbons [18, 19]. Overall, our study might provide 
some indications that these loci may play some roles in the 
pathway between smoking and lung cancer development 
in the Caucasian population as well, which should be 
followed up in further research.

Furthermore, we also identified CpG sites within two 
well-established lung cancer related genes. CHRNA5 is 
one of the three cholinergic nicotine-receptor genes within 
genome region 15q25, encoding nicotine acetylcholine 
receptors (nAChRs) in neuronal and other tissues [20]. Its 
association with smoking quantity was reported in 2008, 

suggesting that SNPs in nAChRs may alter the risk of lung 
cancer through smoking behavior and regulate direct effects 
of nicotine as well [20]. Our finding of hypermethylation 
of cg19696491 within CHRNA5 under smoking exposure 
possibly reflects altered expression of CHRNA5, which could 
render a potential mechanism to support this suggestion. 
TERT (telomerase reverse transcriptase) is another plausible 
lung-cancer gene candidate which is known for its function 
in telomere replication and maintenance [21]. It is located at 
the 5p15.33 region, which is not only involved in lung cancer, 
but also in brain, bladder and prostate cancer development 
[22]. Moreover, locus cg12324353 within TERT was recently 
reported to be related to coronary artery disease [9]. These 
findings indicate that the genotypes and epigenotypes of 
TERT might provide valuable contributions to signatures for 
risk of a wide range of cancers and chronic diseases, which 
warrants further exploration. The same applies to another 
three genes KLF6 (Krüppel-like zinc finger transcription 
factor) [23], MSH5 (MutS protein homolog 5) [24] and 
ACTA2 (Alpha-smooth muscle actin) [25], which were also 
found to be associated with lung cancer by several previous 
GWASs, albeit not as prominently as CHRNA5 and TERT.

Table 3: Associations of cumulative smoking exposure (pack-years) and cessation time (year) with methylation of 
validated CpG sitesa

CpG site Gene Cumulative smoking exposure b Smoking cessation time c

Estimate (se) p-value FDR Estimate (se) p-value FDR

cg00640087 MSH5 -2.3 e-4 (7.2 e-5) 1.4 e-3 1.7 e-3 2.7 e-4 (1.9 e-4) 0.155 0.252

cg03281572 VTI1A -3.8 e-4 (8.8 e-5) 1.6 e-5 5.1 e-5 4.9 e-4 (2.6 e-4) 0.060 0.131

cg07269053 VTI1A -2.5 e-4 (1.0 e-4) 0.015 0.016 2.3 e-4 (3.0 e-4) 0.455 0.493

cg10163955 GATA3 -5.5 e-4 (1.1 e-4) 5.8 e-7 3.7 e-6 7.0 e-4 (3.2 e-4) 0.030 0.131

cg11430077 GATA3 -3.0 e-4 (8.8 e-5) 8.0 e-4 1.1 e-3 5.3 e-4 (2.4 e-4) 0.032 0.131

cg12324353 TERT -3.1 e-4 (7.3 e-5) 2.3 e-5 6.1 e-5 3.7 e-4 (1.9 e-4) 0.052 0.131

cg17928584 STK32A 3.7 e-4 (1.1 e-4) 7.0 e-4 1.1 e-3 -3.5 e-4 (2.9 e-4) 0.230 0.307

cg19335412 ACTA2 -3.2 e-4 (9.2 e-5) 6.0 e-4 1.1 e-3 4.4 e-4 (2.5 e-4) 0.084 0.156

cg19696491 CHRNA5 2.0 e-4 (1.5 e-4) 0.178 0.178 4.7 e-4 (4.2 e-4) 0.262 0.310

cg20640261 MSH5 -5.3 e-4 (1.1 e-4) 2.5 e-6 1.1 e-5 6.4 e-4 (3.1 e-4) 0.040 0.131

cg22770911 GATA3 -4.8 e-4 (9.1 e-5) 2.2 e-7 2.9 e-6 6.0 e-4 (2.7 e-4) 0.027 0.131

cg24287110 KLF6 -5.7 e-4 (1.4 e-4) 5.1 e-5 1.1 e-4 4.5 e-4 (3.8 e-4) 0.236 0.307

cg24908166 TERT -1.8 e-4 (5.5 e-5) 1.5 e-3 1.7 e-3 4.3 e-5 (1.6 e-4) 0.788 0.788

a: Estimated by mixed linear regression in validation panels. Both models were adjusted for age (years), sex, batch effects, 
leukocyte distribution (Houseman algorithm [27]), alcohol consumption (abstainer/ low/ intermediate/ high), body mass 
index (BMI, underweight/ normal weight/ overweight/ obese), physical activity (inactive/ low/ medium/ high), prevalence 
of cardiovascular diseases (yes/no), prevalence of diabetes (yes/no) and prevalence of cancer (yes/no); The threshold of 
FDR (false discovery rate) is 0.05
b: A pack-year was defined as having smoked 20 cigarettes per day for 1 year, including all participants from validation 
panel, pack-year= 0 for never smokers
c: Cessation time defined as age at the time of recruitment minus age at cessation, including former and current smokers 
from validation panel, cessation time = 0 for current smokers
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Table 4: Characteristics of the validated CpG sites

CpG site Position a Gene Function Placement Reported SNPs SNP position

cg17928584 chr5:146,614,458 STK32A Encoding members of 
the serine/threonine 
kinase family that has a 
paramount role in cellular 
homeostasis, transcription 
factor phosphorylation 
and cell-cycle regulation

TSS200 rs2895680 chr5:146,643,865-
146,644,365

cg12324353
cg24908166

chr5:1,269,197
chr5:1,268,801

TERT Encoding human 
telomerase reverse 
transcriptase, which 
is important in the 
maintenance of telomere 
length

Body
Body

rs2736100
rs2853677
rs465498

chr5:1,286,266-
1,286,766

chr5:1,286,944-
1,287,444

chr5:1,325,553-
1,326,053

cg00640087
cg20640261

chr6:31,707,203
chr6:31,707,020

MSH5 Encoding a member of the 
mutS family of proteins 
that are involved in DNA 
mismatch repair and 
meiotic recombination

TSS1500
TSS1500

rs3117582 chr6:31,620,270-
31,620,770

cg19335412 chr10:90,694,875 ACTA2 Encoding a protein which 
belongs to the actin family 
of proteins and are highly 
conserved proteins that 
play a role in cell motility, 
structure and integrity

3′UTR rs1926203 chr10:90,727,084-
90,727,584

cg10163955
cg11430077
cg22770911

chr10:8,101,402
chr10:8,099,019
chr10:8,101,307

GATA3 Encoding a protein which 
belongs to the GATA 
family of transcription 
factors

Body
Body
Body

rs1663689 b chr10:9,024,945-
9,025,445

cg24287110 chr10:3,824,688 KLF6 Encoding a member of 
the Kruppel-like family 
of transcription factors, 
which is a transcriptional 
activator and functions as 
a tumor suppressor

Body rs10508266
rs3750861

chr10:3,839,764-
3,840,264

chr10:3,824,183-
3,824,683

cg03281572
cg07269053

chr10:114,502,318
chr10:114,497,612

VTI1A Encoding vesicle transport 
through interaction with 
t-SNAREs homolog 1A

Body
Body

rs7086803 chr10:114,498,226-
114,498,726

cg19696491 chr15:78,857,125 CHRNA5 Encoding a nicotinic 
acetylcholine receptor 
subunit, which is a 
member of a superfamily 
of ligand-gated ion 
channels that mediate fast 
signal transmission at 
synapses

TSS1500 rs1051730 c

rs16969968
rs8034191 c

chr15:78,894,089-
78,894,589

chr15:78,882,675-
78,883,175

chr15:78,805,773-
78,806,273

a: According to GRCh37/hg19
b: This SNP is located close to GATA3
c: CHRNA5 is cis-eQTL gene of this SNP
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Major strengths of the present study include the 
relatively large sample size with detailed information 
on a broad range of covariates in a large population-
based cohort and the comprehensive validation in an 
independent group. Although smoking and lung cancer 
related changes of methylation would be expected to 
primarily manifest in buccal tissues [26], we were 
able to disclose such changes in DNA of whole 
blood samples, which would be the primary sample 
matrix available in screening settings in general 
practice. Even though associations of smoking with 
DNA methylation in whole blood may be affected 
by smoking related shifts in leukocyte distribution, 
the observed associations persisted after control for 
leukocyte distribution by the Houseman algorithm [27]. 
Furthermore, even potential (residual) confounding by 
leukocyte distribution would not impair the potential 
utility of the methylation patterns for risk prediction. 
Lastly, one plausible explanation for our observation 
could be that DNA methylation lies on the regulatory 
pathway linking smoking with lung cancer, which 
would be in line with Zhang et al.’s finding that the 
association between smoking and lung cancer was 
strongly attenuated or even disappeared when DNA 
methylation was included in predictive models [28]. 
Therefore, further studies focusing on elucidating 
potential causal pathways would be desirable. Still, 
other alternative/ additional explanations, such as DNA 

methylation being a more reliable marker of smoking 
exposure or DNA methylation reflecting susceptibility 
to smoking exposure would also have to be kept in 
mind. In addition, genomic variations might influence 
the DNA methylation patterns identified in our study. 
However, due to the lack of gene expression data and 
the limited number of lung cancer cases in our study 
population, we were not able to address potential 
underlying pathophysiological mechanisms.

Even with significant strides in diagnosis and 
treatment, the prognosis of lung cancer remains poor, 
with overall 5-year survival rates around 15%, primarily 
owing to detection at advanced stages [29]. Screening 
by available routine assays like sputum cytological 
examination and chest radiography, but also by low-
dose computed tomography have serious limitations 
[30, 31]. Therefore, novel approaches for enhanced 
risk stratification and performance of lung cancer 
screening would be highly desirable. DNA methylation 
signatures might be a promising approach toward this 
end. Recently, Zhang et al. demonstrated the potential 
of methylation of F2RL3, a strongly smoking associated 
locus, as a predictor of lung cancer risk [28]. Further 
studies should evaluate the extent to which the identified 
CpG sites may be more predictive of lung cancer than 
self-reported smoking indicators or genetic background, 
and then address the potential of such CpG sites, alone or 
in combination with other markers, to predict lung cancer 

Figure 2: Flowchart of selection of CpG sites
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risk and to enhance risk stratification and screening for 
lung cancer.

MATERIALS AND METHODS

Study population

All study subjects were selected from the ESTHER 
study, an ongoing statewide population-based cohort study 
conducted in southwest Germany. Details of study design 
have been reported previously [32]. Briefly, 9949 older 
adults (aged 50-75 years) were enrolled by their general 
practitioners during a routine health check-up between 
July 2000 and December 2002, and followed up thereafter. 
Two independent subgroups were selected as discovery 
panel and validation panel, respectively, for epigenetic 
analyses. The discovery panel included 1000 participants 
who were recruited consecutively at the start of ESTHER 
study between July and October 2000. The validation 
panel included 548 participants randomly selected from 
participants recruited between October 2000 and March 
2001. The study was approved by the ethics committees of 
the University of Heidelberg and the state medical board 
of Saarland, Germany. Written informed consent was 
issued by all participants.

Data collection

Information on socio-demographic characteristics, 
lifestyle factors, health status, and history of major 
diseases at baseline was obtained by standardized self-
administrated questionnaires. Participants were asked 
about past and present cigarette, cigar and pipe smoking 
behavior and were then categorized into current, former 
and never smokers. Furthermore, detailed information on 
smoking history was also obtained from questionnaires, 
including age at initiation and smoking intensities at 
various ages, as well as age of quitting smoking for 
former smokers. Twenty-two and seventeen participants 
were excluded from the discovery and the validation 
panel, respectively, because of missing information on 
smoking status, respectively. Additional information on 
body mass index (BMI) and prevalent diseases, such as 
diabetes, cancer, or cardiovascular disease was extracted 
from a standardized form filled by the general practitioners 
during the health check-ups. Prevalent cardiovascular 
disease at baseline was defined by either physician-
reported coronary heart disease or a self-reported history 
of myocardial infarction, stroke, pulmonary embolism 
or revascularization of the coronary arteries. Prevalent 
cancer [ICD-10 C00-C99 except non-melanoma skin 
cancer (C44)] was defined by either self-report or records 
from the Saarland Cancer Registry. Blood samples were 
taken during the health check-up and stored at -80°C until 
further processing. Whole blood DNA was extracted by 
using a salting out procedure [33].

DNA methylation data

DNA methylation of whole blood samples was 
assessed by the Illumina Infinium Human Methylation 
450 Beadchip array (Illumina, San Diego, CA, USA). 
As previously described [34], samples were analyzed 
following the manufacturer’s instruction at the Genomics 
and Proteomics Core Facility of German Cancer Research 
Center, Heidelberg, Germany. Illumina’s GenomeStudio® 
(version 2011.1; Illumina.Inc.) was employed to extract 
DNA methylation signals from the scanned arrays 
(Module version 1.9.0; Illumina.Inc.). Methylation status 
of a specific CpG site was quantified as a β value ranging 
between 0 (no methylation) and 1 (full methylation). 
According to the manufacturer’s protocol, no background 
correction was done and data were normalized to internal 
controls provided by the manufacturer. All controls 
were checked for inconsistencies in each measured 
plate. Signals of probes with a detection p-value >0.05 
were excluded from analysis. We used the Illumina 
normalization and preprocessing method implemented in 
Illumina’s Genomestudio (“Illumina normalization”).

Identification of CpG candidates

GWASs for lung cancer conducted among smokers, 
non-smokers and the general population that were 
published from 2007 to July.2015 [2, 16-21, 23-25, 35-
39] were reviewed by one of the authors (XG), from 
which 120 lung cancer related SNPs within 59 genetic 
regions were identified (Figure 2). Furthermore, since 
cis-expression-quantitive trait loci (cis-eQTL) might 
affect the gene expression levels of nearby genes [40], 
we therefore identified 33 cis-eQTL within 1 Mb of the 
identified SNPs from the blood cis-eQTL database (FDR 
< 0.05) [40]. After excluding 17 duplicates, we identified 
3044 corresponding methylation probes within the 
remaining 75 lung cancer related genes from the probe 
database of the Illumina 450K assay. Subsequently, 
we excluded 3 probes containing SNPs with a minor 
allele frequency above 1% from the candidate list, 
since variations in these SNPs are able to cause bias in 
the methylation measurement [41]. We also excluded 
known cross-reactive and polymorphic probes (n=187), 
as they could introduce bias in the results [42]. Finally, 
we obtained a list of 2854 probes considered for further 
analysis (Supplementary Table S1).

Statistical analysis

The study populations in the discovery and 
validation panels were described with respect to major 
socio-demographic characteristics, lifestyle factors, 
smoking behavior and prevalent diseases.

Firstly, we chose the current and never smokers from 
the discovery panel to investigate the associations between 
current smoking exposure (current vs. never; independent 
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variable) and methylation levels of 2854 CpG candidates 
(dependent variable). Three mixed linear regression 
models with methylation assay batch as random effect 
were employed, controlling for potential confounding 
factors, including factors that have been shown to be 
associated with DNA methylation in previous studies [43–
47]. Model 1 was adjusted for age (years) and sex. Model 
2 was additionally adjusted for the leukocyte distribution 
estimated by the Houseman algorithm [27]. Model 3 
was further adjusted for alcohol consumption (abstainer, 
low [women: 0 -<20 g/d, men: 0 -<40 g/d], intermediate 
[20 -<40 g/d and 40 -<60 g/d, respectively], high [≥40 
g/d and ≥60 g/d, respectively]), body mass index (BMI, 
kg/m2, underweight [<18.5], normal weight [18.5 -<25], 
overweight [25 -<30], obese [≥30]), physical activity 
(inactive [ <1h of physical activity/week], medium or 
high [≥2 h of vigorous and ≥ 2 h of light physical activity/
week], low [other]), the prevalence of cardiovascular 
diseases (yes/no), diabetes (yes/no) and cancer (yes/no). 
After correction for multiple testing by the false discovery 
rate (FDR, Benjamini-Hochberg method [48]), CpG 
sites with corrected p-values <0.05 were selected (raw 
p-value <5.4×10-4). A Manhattan plot was plotted by the 
R-package ‘qqman’. Identified sites were then validated in 
current and never smokers from the validation panel. Loci 
with replication FDR <0.05 were considered as smoking-
associated loci.

To evaluate the impact of cumulative smoking 
exposure and smoking cessation on DNA methylation, 
we separately performed additional analyses on the 
associations of pack-years and time since cessation 
of smoking with the validated smoking-associated 
CpG sites in the validation panel. Furthermore, the 
differences in the methylation of the validated CpG 
sites were compared for current smokers vs. former 
smokers and for former smokers vs. never smokers. In 
all aforementioned analyses, the models were adjusted 
for covariates as in Model 3 and p-values were corrected 
by FDR (FDR <0.05). Mutual correlations between 
methylation at the validated CpG sites were assessed by 
Spearman’s correlation coefficients. All data analyses 
were conducted by SAS version 9.3 (SAS Institute Inc., 
Cary, NC, USA).
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